Graduate Education

Weill Cornell Graduate School of Medical Sciences (WCGSMS)

For more than a half-century, WCGS has focused on preparing its students for careers in the biomedical sciences. The Graduate School faculty today numbers more than 250, and more than 1,000 students have earned Cornell University PhDs from the school.

Physiology, Biophysics and Systems Biology (PBSB)

The PBSB graduate program website includes exciting information about the research and academic activities of the Faculty engaged in world class research aiming to understand the functional mechanisms in the human body, in health and in disease.

Tri-I PhD Program in Computational Biology and Medicine (TPCBM)

The Tri-I PhD Program in Computational Biology and Medicine (CBM) was established in 2003 to provide a unique training opportunity that takes advantage of the exceptional educational and research resources of Cornell University in Ithaca, its Medical College in NYC (Weill Cornell Medical College), and Memorial Sloan Kettering Cancer Center. It is our belief that the development of such a cadre of computational biologists, trained in the laboratories of exceptional program faculty from all three campuses, will foster discovery in frontiers of basic biological and biomedical sciences.

Tri-Institutional PhD Program in Chemical Biology (TPCB)

The Tri-Institutional PhD Program in Chemical Biology was established in 2001 as one of the first graduate programs in the world to focus on research and training at the interface of chemistry and biology. The program is a collaborative offering of three premier New York City institutions, Weill Cornell Medical College, The Rockefeller University, and the Memorial Sloan Kettering Cancer Center. Located adjacent to one another in the heart of Manhattan’s Upper East Side, these three institutions combine to create a unique university environment and provide unparalleled scientific opportunities to the next generation of leaders in chemical biology.

Aksay Lab

The neural system studied by the lab is the integrator for control of eye position. Neurons essential for function, located either in the brainstem or cerebellum, are examined in vivo during normal behavior. The experimental preparation used is the developing zebrafish, allowing a combination of optical, genetic, and electrophysiological tools. Some examples of methods brought to bear are…

Christini Lab

Sudden cardiac death, primarily caused by ventricular arrhythmias, is a major public health problem – it is one of the leading causes of mortality, resulting in more than 350,000 annual deaths in the United States alone. Our group’s efforts are focused on improving our understanding of, and therapies for, cardiac arrhythmias. We primarily investigate biophysical mechanisms of electrophysiological instabilities and…

Huang Lab

Our current research includes the structural biological studies to understand the mechanisms by which G-protein-coupled receptors activate G-proteins, and translational cancer biology. We are developing small-molecule compounds to block tumor cell migration, invasion and metastasis, as well as to reinvigorate anti-tumor immune response. We also investigate the physiological functions of G-proteins in blood vessel formation and bone homeostasis.

Mendias Lab

Our lab is part of Weill Cornell and the Hospital for Special Surgery, which allows us to conduct cutting edge basic science research in musculoskeletal biology and then translate these findings to patients in the clinic. Our trainees have come from a variety of backgrounds, and include graduate students, postdoctoral fellows, and clinical residents and fellows that work together in…

Palmer Lab

The Palmer lab studies the mechanisms of epithelial ion transport and its regulation by hormones and other factors.  Part of this research is at the molecular level.  Here we identify ion channel proteins that mediate the movement of Na+and K+into or out of epithelial cells, and explore the aspects of those proteins that confer the properties of ion conduction and…

Silver Lab

Our lab is focused on understanding the contributions of mast cells to a variety of diseases including bronchopulmonary dysplasia, lung and kidney fibrosis and abnormal wound healing. Mechanistically we study how mast cell mediators and exosomes communicate with cells found in close proximity, like fibroblasts. Taking a multifactorial approach we perform in vivo and in vitro experiments using murine models of…