George Khelashvili, Ph.D.

Assistant Professor of Research in Physiology and Biophysics

  • Assistant Professor of Research in Computational Biophysics in the Institute for Computational Biomedicine


1300 York Avenue, Room LC-501A
New York, NY 10065


Research Areas

Research Summary:

Image created by H. Adam Steinberg,

The overall goal of the research projects in the lab is to uncover dynamic mechanisms in fundamental biological processes of signal transduction by cell surface proteins in the categories of receptors (such as G protein-coupled receptors, GPCRs), transporters in the family of Neurotransmitter:Sodium-Symporters (NSS), and lipid scramblases. Special emphasis is on understanding how the spatial organization and function of these molecular machines are regulated by the cell membrane, its components (i.e. cholesterol, various lipids), and interactions with the rich environment of the cell’s proteins. We approach these research topics with advanced quantitative methods of theoretical and computational biophysics, developed and utilized at the highest level of each specialty. We pursue interdisciplinary and multi-scale strategies that integrate biophysical theory and computation with biophysical measurements and molecular cell biology experimentation. Our approach takes advantage of an abundance of molecular level insights from experimental explorations of the function and interactions of membrane-associated signaling proteins, and interprets them in a novel quantitative multi-scale framework to yield insights based on energetics, and experimentally testable hypotheses we validate with respect to mechanisms by which membrane properties and remodeling (e.g. curvature, lipid segregation) affect protein function, organization and signaling-associated interactions that are of major importance to cell physiology.

Recent Publications:

  1. Gotfryd, K, Boesen, T, Mortensen, JS, Khelashvili, G, Quick, M, Terry, DS et al.. X-ray structure of LeuT in an inward-facing occluded conformation reveals mechanism of substrate release. Nat Commun. 2020;11 (1):1005. doi: 10.1038/s41467-020-14735-w. PubMed PMID:32081981 PubMed Central PMC7035281.
  2. Khelashvili, G, Chauhan, N, Pandey, K, Eliezer, D, Menon, AK. Exchange of water for sterol underlies sterol egress from a StARkin domain. Elife. 2019;8 :. doi: 10.7554/eLife.53444. PubMed PMID:31799930 PubMed Central PMC6940019.
  3. Khelashvili, G, Cheng, X, Falzone, ME, Doktorova, M, Accardi, A, Weinstein, H et al.. Membrane lipids are both the substrates and a mechanistically responsive environment of TMEM16 scramblase proteins. J Comput Chem. 2020;41 (6):538-551. doi: 10.1002/jcc.26105. PubMed PMID:31750558 PubMed Central PMC7261202.
  4. Khelashvili, G, Falzone, ME, Cheng, X, Lee, BC, Accardi, A, Weinstein, H et al.. Dynamic modulation of the lipid translocation groove generates a conductive ion channel in Ca2+-bound nhTMEM16. Nat Commun. 2019;10 (1):4972. doi: 10.1038/s41467-019-12865-4. PubMed PMID:31672969 PubMed Central PMC6823365.
  5. Doktorova, M, LeVine, MV, Khelashvili, G, Weinstein, H. A New Computational Method for Membrane Compressibility: Bilayer Mechanical Thickness Revisited. Biophys. J. 2019;117 (4):790. doi: 10.1016/j.bpj.2019.07.039. PubMed PMID:31378312 PubMed Central PMC6712547.
  6. LeVine, MV, Terry, DS, Khelashvili, G, Siegel, ZS, Quick, M, Javitch, JA et al.. The allosteric mechanism of substrate-specific transport in SLC6 is mediated by a volumetric sensor. Proc. Natl. Acad. Sci. U.S.A. 2019;116 (32):15947-15956. doi: 10.1073/pnas.1903020116. PubMed PMID:31324743 PubMed Central PMC6689989.
  7. Plante, A, Shore, DM, Morra, G, Khelashvili, G, Weinstein, H. A Machine Learning Approach for the Discovery of Ligand-Specific Functional Mechanisms of GPCRs. Molecules. 2019;24 (11):. doi: 10.3390/molecules24112097. PubMed PMID:31159491 PubMed Central PMC6600179.
  8. Doktorova, M, LeVine, MV, Khelashvili, G, Weinstein, H. A New Computational Method for Membrane Compressibility: Bilayer Mechanical Thickness Revisited. Biophys. J. 2019;116 (3):487-502. doi: 10.1016/j.bpj.2018.12.016. PubMed PMID:30665693 PubMed Central PMC6369663.
  9. Khelashvili, G. Mesoscale Computational Modeling of Protein-Membrane Interactions Based on Continuum Mean-Field Theory. Methods Mol. Biol. 2019;1860 :15-31. doi: 10.1007/978-1-4939-8760-3_2. PubMed PMID:30317496 .
  10. Lee, BC, Khelashvili, G, Falzone, M, Menon, AK, Weinstein, H, Accardi, A et al.. Gating mechanism of the extracellular entry to the lipid pathway in a TMEM16 scramblase. Nat Commun. 2018;9 (1):3251. doi: 10.1038/s41467-018-05724-1. PubMed PMID:30108217 PubMed Central PMC6092359.
  11. Herlo, R, Lund, VK, Lycas, MD, Jansen, AM, Khelashvili, G, Andersen, RC et al.. An Amphipathic Helix Directs Cellular Membrane Curvature Sensing and Function of the BAR Domain Protein PICK1. Cell Rep. 2018;23 (7):2056-2069. doi: 10.1016/j.celrep.2018.04.074. PubMed PMID:29768204 .
  12. Razavi, AM, Khelashvili, G, Weinstein, H. How structural elements evolving from bacterial to human SLC6 transporters enabled new functional properties. BMC Biol. 2018;16 (1):31. doi: 10.1186/s12915-018-0495-6. PubMed PMID:29540172 PubMed Central PMC5852957.
  13. Terry, DS, Kolster, RA, Quick, M, LeVine, MV, Khelashvili, G, Zhou, Z et al.. A partially-open inward-facing intermediate conformation of LeuT is associated with Na+ release and substrate transport. Nat Commun. 2018;9 (1):230. doi: 10.1038/s41467-017-02202-y. PubMed PMID:29335402 PubMed Central PMC5768729.
  14. Morra, G, Razavi, AM, Pandey, K, Weinstein, H, Menon, AK, Khelashvili, G et al.. Mechanisms of Lipid Scrambling by the G Protein-Coupled Receptor Opsin. Structure. 2018;26 (2):356-367.e3. doi: 10.1016/j.str.2017.11.020. PubMed PMID:29290486 PubMed Central PMC5803311.
  15. Pandey, K, Ploier, B, Goren, MA, Levitz, J, Khelashvili, G, Menon, AK et al.. An engineered opsin monomer scrambles phospholipids. Sci Rep. 2017;7 (1):16741. doi: 10.1038/s41598-017-16842-z. PubMed PMID:29196630 PubMed Central PMC5711885.
  16. LeVine, MV, Cuendet, MA, Razavi, AM, Khelashvili, G, Weinstein, H. Thermodynamic Coupling Function Analysis of Allosteric Mechanisms in the Human Dopamine Transporter. Biophys. J. 2018;114 (1):10-14. doi: 10.1016/j.bpj.2017.10.030. PubMed PMID:29153319 PubMed Central PMC5773750.
  17. Doktorova, M, Heberle, FA, Kingston, RL, Khelashvili, G, Cuendet, MA, Wen, Y et al.. Cholesterol Promotes Protein Binding by Affecting Membrane Electrostatics and Solvation Properties. Biophys. J. 2017;113 (9):2004-2015. doi: 10.1016/j.bpj.2017.08.055. PubMed PMID:29117524 PubMed Central PMC5685651.
  18. Clark, LD, Dikiy, I, Chapman, K, Rödström, KE, Aramini, J, LeVine, MV et al.. Ligand modulation of sidechain dynamics in a wild-type human GPCR. Elife. 2017;6 :. doi: 10.7554/eLife.28505. PubMed PMID:28984574 PubMed Central PMC5650471.
  19. Verchère, A, Ou, WL, Ploier, B, Morizumi, T, Goren, MA, Bütikofer, P et al.. Light-independent phospholipid scramblase activity of bacteriorhodopsin from Halobacterium salinarum. Sci Rep. 2017;7 (1):9522. doi: 10.1038/s41598-017-09835-5. PubMed PMID:28842688 PubMed Central PMC5572738.
  20. Razavi, AM, Khelashvili, G, Weinstein, H. A Markov State-based Quantitative Kinetic Model of Sodium Release from the Dopamine Transporter. Sci Rep. 2017;7 :40076. doi: 10.1038/srep40076. PubMed PMID:28059145 PubMed Central PMC5216462.
Search PubMed