Lawrence Palmer, Ph.D.

Professor of Physiology and Biophysics

  • Thomas H. Meikle Jr., Professor of Medical Education

212-746-6355

1300 York Avenue, Room C-501 C
New York, NY 10065


Techniques

Research Areas


Research Summary:

The Palmer lab studies the mechanisms of epithelial ion transport and its regulation by hormones and other factors.  Part of this research is at the molecular level.  Here we identify ion channel proteins that mediate the movement of Na+and K+into or out of epithelial cells, and explore the aspects of those proteins that confer the properties of ion conduction and selectivity for the cognate ion.  Epithelial Na+channels (ENaCs) for example, are exquisitely selective for Na+over K+but the basis for that selectivity is not well understood.

 

 

 

Experimental techniques include electrophysiology, both whole-cell and single-channel, heterologous expression systems and site-directed mutagenesis. A second line of investigation explores the processes that regulate these channels in cells, organs and whole animals. Here a fundamental question is how the kidneys adapt to changes in dietary intake to maintain constant concentrations and amounts of electrolytes in extracellular fluids. Here we look at changes in channel number, location and function in kidney cells under varying physiological conditions. Tools include electrophysiology, Western blotting and RNA sequencing, together with genetically modified animal models. Finally, we are beginning to explore interactions between different segments of the nephron that express different ion transporters in the maintenance of electrolyte homeostasis.

 

Recent Publications:

  1. Hartman-Houstman, HL, Ralph, DL, Nelson, JW, Palmer, LG, Faulkner, JE, Sullivan, JC et al.. Optimizing renal transporter immunodetection: consequences of freeze-thaw during sample preparation. Am J Physiol Renal Physiol. 2024;327 (4):F655-F666. doi: 10.1152/ajprenal.00210.2024. PubMed PMID:39205660 PubMed Central PMC11483075.
  2. Shi, S, Frindt, G, Whelan, SCM, Palmer, LG. Control of ENaC ubiquitination. Am J Physiol Renal Physiol. 2024;327 (2):F265-F276. doi: 10.1152/ajprenal.00037.2024. PubMed PMID:38867672 PubMed Central PMC11444504.
  3. Wang, T, Liu, T, Xu, S, Frindt, G, Weinstein, AM, Palmer, LG et al.. High dietary K+ intake inhibits proximal tubule transport. Am J Physiol Renal Physiol. 2023;325 (2):F224-F234. doi: 10.1152/ajprenal.00013.2023. PubMed PMID:37318989 PubMed Central PMC10396284.
  4. Yang, L, Arbona, RJR, Smith, CS, Banks, KM, Thomas, VK, Palmer, L et al.. An evolutionarily conserved pacemaker role for HCN ion channels in smooth muscle. J Physiol. 2023;601 (7):1225-1246. doi: 10.1113/JP283701. PubMed PMID:36930567 PubMed Central PMC10065941.
  5. Palmer, LG. How Does Aldosterone Work?. Kidney360. 2023;4 (2):131-133. doi: 10.34067/KID.0000000000000058. PubMed PMID:36821603 PubMed Central PMC10103331.
  6. Clermont, A, Rouzier, V, Pierre, JL, Sufra, R, Dade, E, Preval, F et al.. High Dietary Sodium, Measured Using Spot Urine Samples, is Associated with Higher Blood Pressure among Young Adults in Haiti. Glob Heart. 2023;18 (1):5. doi: 10.5334/gh.1187. PubMed PMID:36817226 PubMed Central PMC9936908.
  7. Palmer, LG. Directing two-way traffic in the kidney: A tale of two ions. J Gen Physiol. 2022;154 (10):. doi: 10.1085/jgp.202213179. PubMed PMID:36048011 PubMed Central PMC9437110.
  8. Frindt, G, Meyerson, JR, Satty, A, Scandura, JM, Palmer, LG. Expression of ENaC subunits in epithelia. J Gen Physiol. 2022;154 (10):. doi: 10.1085/jgp.202213124. PubMed PMID:35939271 PubMed Central PMC9387651.
  9. Xu, S, Li, J, Yang, L, Wang, CJ, Liu, T, Weinstein, AM et al.. Sex difference in kidney electrolyte transport III: Impact of low K intake on thiazide-sensitive cation excretion in male and female mice. Pflugers Arch. 2021;473 (11):1749-1760. doi: 10.1007/s00424-021-02611-5. PubMed PMID:34455480 PubMed Central PMC8528772.
  10. Yang, L, Xu, Y, Gravotta, D, Frindt, G, Weinstein, AM, Palmer, LG et al.. ENaC and ROMK channels in the connecting tubule regulate renal K+ secretion. J Gen Physiol. 2021;153 (8):. doi: 10.1085/jgp.202112902. PubMed PMID:34143184 PubMed Central PMC8217949.
  11. Frindt, G, Shi, S, Kleyman, TR, Palmer, LG. Cleavage state of γENaC in mouse and rat kidneys. Am J Physiol Renal Physiol. 2021;320 (3):F485-F491. doi: 10.1152/ajprenal.00536.2020. PubMed PMID:33522411 PubMed Central PMC7988816.
  12. Palmer, LG. Are Some Nephrons More Equal Than Others?: Perspective on "Viewing Cortical Collecting Duct Function Through Phenotype-Guided Single-Tubule Proteomics". Function (Oxf). 2020;1 (1):zqaa010. doi: 10.1093/function/zqaa010. PubMed PMID:35330744 PubMed Central PMC8788712.
  13. Yang, L, Frindt, G, Xu, Y, Uchida, S, Palmer, LG. Aldosterone-dependent and -independent regulation of Na+ and K+ excretion and ENaC in mouse kidneys. Am J Physiol Renal Physiol. 2020;319 (2):F323-F334. doi: 10.1152/ajprenal.00204.2020. PubMed PMID:32628540 PubMed Central PMC7473898.
  14. Frindt, G, Bertog, M, Korbmacher, C, Palmer, LG. Ubiquitination of renal ENaC subunits in vivo. Am J Physiol Renal Physiol. 2020;318 (5):F1113-F1121. doi: 10.1152/ajprenal.00609.2019. PubMed PMID:32174140 PubMed Central PMC7294337.
  15. Li, J, Xu, S, Yang, L, Yang, J, Wang, CJ, Weinstein, AM et al.. Sex difference in kidney electrolyte transport II: impact of K+ intake on thiazide-sensitive cation excretion in male and female mice. Am J Physiol Renal Physiol. 2019;317 (4):F967-F977. doi: 10.1152/ajprenal.00125.2019. PubMed PMID:31390232 PubMed Central PMC6843050.
  16. Yang, L, Palmer, LG. Determinants of selective ion permeation in the epithelial Na+ channel. J Gen Physiol. 2018;150 (10):1397-1407. doi: 10.1085/jgp.201812164. PubMed PMID:30135076 PubMed Central PMC6168236.
  17. Yang, L, Xu, S, Guo, X, Uchida, S, Weinstein, AM, Wang, T et al.. Regulation of renal Na transporters in response to dietary K. Am J Physiol Renal Physiol. 2018;315 (4):F1032-F1041. doi: 10.1152/ajprenal.00117.2018. PubMed PMID:29923764 PubMed Central PMC6230734.
  18. Frindt, G, Yang, L, Bamberg, K, Palmer, LG. Na restriction activates epithelial Na channels in rat kidney through two mechanisms and decreases distal Na+ delivery. J Physiol. 2018;596 (16):3585-3602. doi: 10.1113/JP275988. PubMed PMID:29737520 PubMed Central PMC6092292.
  19. Palmer, LG. Epithelial transport in The Journal of General Physiology. J Gen Physiol. 2017;149 (10):897-909. doi: 10.1085/jgp.201711828. PubMed PMID:28931633 PubMed Central PMC5688356.
  20. Li, J, Hatano, R, Xu, S, Wan, L, Yang, L, Weinstein, AM et al.. Gender difference in kidney electrolyte transport. I. Role of AT1a receptor in thiazide-sensitive Na+-Cl- cotransporter activity and expression in male and female mice. Am J Physiol Renal Physiol. 2017;313 (2):F505-F513. doi: 10.1152/ajprenal.00087.2017. PubMed PMID:28566500 PubMed Central PMC5582908.
Search PubMed