Writing good code

A short primer

Luce Skrabanek

6 October 2022

Consistency is key

Many style guides that will help guide you:
o Google Style Guide — https://google.github.io/styleguide/Rguide.html
o Rstudio / Hadley Wickham — http://adv-r.had.co.nz/Style.html

Luce Skrabanek Writing good code 6 October 2022 2/9

https://google.github.io/styleguide/Rguide.html
http://adv-r.had.co.nz/Style.html

Naming things

©

Good names are the first step to good code.

snake__case
lowerCamelCase
UpperCamelCase
leopard.case

vV vy vVvYyYy

o Be consistent with the use of plurals
o Aim to be concise, but meaningful
o Use nouns to name variables

o Use verbs to name functions

©

Avoid using names of existing functions or objects

Luce Skrabanek Writing good code 6 October 2022

3/9

Good indentation

o Essential for readable code

RStudio will do it for you!

©

o Be consistent

o Code within curly braces {} should always be indented (and opening
curly braces should not be on a line on their own)

©

Split up very long lines onto multiple lines

Luce Skrabanek Writing good code 6 October 2022 4/9

Whitespace is your friend

o Place spaces around all infix operators (=, +, -, <-, etc)

o Put spaces after commas; don't put spaces before commas, except
when selecting whole columns: data.frame[, column2]

o Use empty lines to group chunks of code that are logically related

Luce Skrabanek Writing good code 6 October 2022 5/9

Comments

o At a minimum, there should be an explanatory comment before each
function; detail the expected inputs and outputs, especially if your
argument names are not obvious

o Anything unclear should also get a clarifying comment

o Cleverer / more concise code often requires better comments

Luce Skrabanek Writing good code 6 October 2022 6/9

Functions and breaking code up

©

Good code is broken up into functions

©

Each function should do one well-defined thing

o Names of functions should tell you what they do (but use comments
anyway)

©

Don't copy code (DRY: Don't repeat yourself)

Luce Skrabanek Writing good code 6 October 2022 7/9

Performance

o Especially at first, worry about your code being clear and working first

o For loops aren't the fastest, but are easy to read and understand as
you are learning

» Explicitly set the size of the final vector

Luce Skrabanek Writing good code 6 October 2022 8/9

Performance: for-loop example

1000 iterations

runSimulation <- function(num_iterations = 100) {
d <- data.frame(lower = numeric(num_iterations), pre-allocated |
mean = numeric(num_iterations),
upper = numeric(num_iterations))
for (i in l:num_iterations) {

e P R ad-hoc-expansion -
dli, 1 <- mean(x) + c(-1.96, @, +1.96) * sd(x) / sqrt(length(x))
1
length(which(d$lower > @ | d$upper < @)) | I !
3} 700 800 1000
Time [milliseconds]
runSimulation® <- function(num_iterations = 100) { . .
d <- data.frame(lower = numeric(@), 10000 IteratIOnS
mean numeric(@),
upper = numeric(@))
for (i in l:num_iterations) {
X <= rnorm(10000) pre-allocated - Q
d[i,] = mean(x) + c(-1.96, @, +1.96) * sd(x) / sqgrt(length(x))
1
length(which(d$lower > @ | d$upper < @))
ad-hoc-expansion -
$ 10

Time [seconds]

Luce Skrabanek Writing good code 6 October 2022 9/9

