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STANSTICALLY SPEAKING, IF YOU PICK UP A
SEASHELL AND DOVT HOLD IT TOYOUR ERR,
YOU CAN PROBABLY HEAR THE OCEAN.

Source: https://rwer.wordpress.com/2021/01/24/the-keynes-ramsey-savage-debate-on-probability-2/



Probability
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Conditional Probability

7th Grade Classroom
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P(Tall | Female) = 4/7

Probability that the student is tall given that the student is female (Conditional Probability)

We expect P(Tall | Female) > P(Tall) without taking any measurements of this particular class.



Joint Probability

7th Grade Classroom
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/(Takl?n le) = P(Female) = P(Tall | Female)

Probability that the student is fall and that the student is female (Joint Probability)
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Joint Probabillity

7th Grade Classroom
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OR, equivalently
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P(Female , Tall) = P(Tall) - P(Female | Tall) =

P(Tall , Female) = P(Female , Tall)

W |-



Deriving Bayes' Rule

We have shown that:

P(Tall , Female) = P(Female) - P(Tall | Female)
P(Tall, Female) = P(Tall) - P(Female | Tall)

Therefore:

P(Female) - P(Tall | Female) = P(Tall) - P(Female | Tall)

P(Female | Tall) -P(Tall)

P(Tall | Female) = P(Female)

Or generally, for generic events A & B, we have
P(BA)-P(A)

P(A1B) = o)




Bayes’' Rule: Terminology

Likelihood

Prior Probabilit
Posterior Probability po ability

l _ P(B|A)-P(A)
P(A|B)= P(B) - Marginal Likelihood




Applying Bayes’ Rule

Information:
* 1% of women in a given population have breast cancer

 |f a woman has breast cancer, there is a 90% chance that a particular
diagnostic test will return a positive result (10% false negative rate)

* |f a woman does not have breast cancer, there is a 10% chance that
this diagnostic test will return a positive result (10% false positive rate).

Question:
What is the probability that a woman with a positive test result actually

has cancer?




Multiple Choice:

Which notation shows the probability that a woman with a positive test
result actually has cancer?

a.) P(Cancer | Positive Test)
b.) P(Cancer , Positive Test)
c.) P(Positive Test | Cancer)

d.) P(Positive Test N Cancer)



Applying Bayes’ Rule

* Information:
* 1% of women in a given population have breast cancer

 |f a woman has breast cancer, there is a 90% chance that a particular
diagnostic test will return a positive result (10% false negative rate)

* |f a woman does not have breast cancer, there is a 10% chance that
this diagnostic test will return a positive result (10% false positive rate).

P(Positive | Cancer) -P(Cancer)
P(Positive)

P(Cancer | Positive) =



Applying Bayes’ Rule

* Information:
* 1% of women in a given population have breast cancer

 |f a woman has breast cancer, there is a 90% chance that a particular
diagnostic test will return a positive result (10% false negative rate)

* |f a woman does not have breast cancer, there is a 10% chance that
this diagnostic test will return a positive result (10% false positive rate).
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Applying Bayes’ Rule

* Information:
* 1% of women in a given population have breast cancer

* [f a woman has breast cancer, there is a 90% chance that a particular
diagnostic test will return a positive result (10% false negative rate)

* |f a woman does not have breast cancer, there is a 10% chance that
this diagnostic test will return a positive result (10% false positive rate).
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Applying Bayes’ Rule

* Information:
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Applying Bayes’ Rule

* Information:
* 1% of women in a given population have breast cancer

 |f a woman has breast cancer, there is a 90% chance that a particular
diagnostic test will return a positive result (10% false negative rate)

* |f a woman does not have breast cancer, there is a 10% chance that
this diagnostic test will return a positive result (10% false positive rate).

P(Positive) = P(True Positive) + P(False Positive)
P(Positive) = P(Positive | Cancer)- P(Cancer) + P(+ | Healthy)- P(Healthy)
P(Positive) = 0.9-0.01 + 0.1-(1-0.01)

P(Positive) = 0.108



Now we can complete Bayes' Rule

P(Positive | Cancer) -P(Cancer)

P(Cancer | Positive) =

0.9:0.01
P(Cancer | Positive) = = 0.083




How can we apply Bayes’
rule to estimating model
parameters?



Frequentist Coin Flip: 20 Flips; 13 Heads

Objective: Estimate the Coin’s Bias with a 95% Confidence Interval
binom.test (13, 20)

#

## Exact binomial test

s

## data: 13 and 20

## number of successes = 13, number of trials = 20, p-value =
## 0.2632

## alternative hypothesis: true probability of success is not equal to 0.5
## 95 percent confidence interval:

## 0.4078115 0.8460908

## sample estimates:

## probability of success

##t 0.65
Conclusion:
 Bias =0.65

. 95% Cl = (0.41, 0.85)



We know how to compute the probability
of any particular data outcome

dbinom(13, size = 20, prob = 0.5)

## [1] 0.07392883

dbinom (13, size = 20, prob = 0.25)
## [1] 0.0001541923



Computing the probabillity of getting the data
that we observed at various values of the
coin’s bias

coin.bias <- seq(from = 0, to = 1, by = 0.01)

likelihood <- dbinom(13, 20, prob = coin.bias)
barplot(likelihood, names.arg = coin.bias, ylab = "likelihood")

likelihood
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Imagine we have a pool of 101 coins each
with a different bias (0.00, 0.001, 0.002,...)

We can calculate the probability of each of the 101 coins being the one that we chose,
given the data that we observed.

Probability of having chosen the fair coin:

P(D13|Mo.50) - P(Mo.50)

P(My.50|D13) = P(Dr3)



Imagine we have a pool of 101 coins each
with a different bias (0.00, 0.001, 0.002,...)

We can calculate the probability of each of the 101 coins being the one that we chose,

given the data that we observed.
dbinom(13, size = 20, prob = 0.5)

## [1] 0.07392883
Probability of having chosen the fair coin: 1

P(D13|Moys0) - P(Mo.50)

P(My.50|D13) = P(Dr3)



Bayesian Coin Flip: 20 Flips; 13 Heads

Objective: Identify the bias (x) that yields the highest posterior probability. Given 13 heads were
observed out of 20 flips

Likelihood
Posterior Probability Prior I?/robabmty
l P(13 heads | bias = x) -P(bias = x)

P(bias = x | 13 heads) =

g

Evidence or Marginal Likelihood



Bayesian Coin Flip: Define Priors

prior.probability <- numeric(101)
prior.probability[0:101] <- 1

prior.probability <- prior.probability / (sum(prior.probability))

barplot(prior.probability, names.arg = coin.bias,xlab = "Coin Bias (x)", ylab = "P(bias = x)",ylim = ¢(0,0.02), m
ain = "Prior Probability Density Funciton: Biases Equally Likely", col ="#85C0F9")
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Marginal Likelihood

= P(13 heads | bias = 0.00) - P(bias = 0.00)

+ P(13 heads | bias = 0.01)
+ P(13 heads | bias = 0.02)

+ P(13 heads | bias = 0.50)

+ P(13 heads | bias = 0.99)
+ P(13 heads | bias = 1.00)

. P(bias = 0.01)
. P(bias = 0.02)

- P(bias = 0.50)

- P(bias = 0.99)
- P(bias = 1.00)
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= P(13 heads | bias = 0.00) - P(bias = 0.00)
+ P(13 heads | bias = 0.01) - P(bias = 0.01)
+ P(13 heads | bias = 0.02) - P(bias = 0.02)

+ P(13 heads | bias = 0.50) - P(bias = 0.50)

+ P(13 heads | bias = 0.99) - P(bias = 0.99)
+ P(13 heads | bias = 1.00) - P(bias = 1.00)



Marginal Likelihood

= P(13 heads | bias = 0.00) - 0.0099
+ P(13 heads | bias = 0.01) - 0.0099
+ P(13 heads | bias = 0.02) - 0.0099

+ P(13 heads | bias = 0.50) - 0.0099

+ P(13 heads | bias = 0.99) - 0.0099
+ P(13 heads | bias = 1.00) - 0.0099
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Marginal Likelihood

P(13 heads)

= P(13 heads | bias = 0.00) - 0.0099
+ P(13 heads | bias = 0.01) - 0.0099
+ P(13 heads | bias = 0.02) - 0.0099

+ P(13 heads | bias = 0.50) - 0.0099

+ P(13 heads | bias = 0.99) - 0.0099
+ P(13 heads | bias = 1.00) - 0.0099

likelihood
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Marginal Likelihood

P(13 heads)
= 0.0- 0.0099

+ 7.2e-22- 0.0099
+ 5.5e-18 - 0.0099
+ 0.07392883 - 0.0099

+ 6.8e-10- 0.0099
+ 0.0- 0.0099

=0.04714757

likelihood
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likelihood
Prior Probability (P(M_x))

0.05
|

Marginal Likelihood
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o Coin Bias
coin bias

coin.bias <- seq(from = 0, to = 1, by = 0.01)

(p.dl13 <- sum(dbinom(13, 20, coin.bias) * (1 / 101)))

## [1] 0.04714757

=0.04714757



Bayesian Coin Flip: Likelihood

coin.bias <- seq(from = 0, to = 1, by = 0.01)

r
likelihood <~ dbinom(13, 20, prob = coin.bias)
barplot(likelihood, names.arg = coin.bias, ylab = "Likelihood: P(13 Heads | bias x)", xlab = "Coin Bias (x)", c
ol = "#A95AA1")
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Posterior Probability

posterior.probability <- dbinom(13, 20, coin.bias) * (1 / 101) / p.dl3
sum(posterior.probability)

## [1] 1
barplot (posterior.probability, names.arg = coin.bias, xlab = "Coin Bias (x)", y Reca” FrequentISt ConCIUSIOn'
lab = "Posterior Probability: P(bias = x | 13 Heads)", main = "Posterior Probab ° Bias - O 65

ility Density Function: 13/20 Heads Observed")

. 95% Cl = (0.41, 0.85)

Posterior Probability Density Function: 13/20 Heads Observed
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Summary: Flipping a Coin with No
expectations of fairness

P(13 heads | bias = x) -P(bias = x)

P(bias = x| 13 heads) =

Prior Probability Density Funciton: Biases Equally Likely
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Summary of Bayes’ method

Prior Observe Data Posterior

Re-evaluate model /
prior distribution

probability
distribution

probability
distribution
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What if | assume there is a good chance
of the coin having a certain “bias”?

Prior Observe Data Posterior

probability
distribution

Re-evaluate model /
prior distribution

probability
distribution

4 I 4 I 4
Data: 13 heads

in 20 coin flips ?

: |




Our prior will reflect our assumption that
our friend is honest

prior.probability <- numeric(101)
prior.probability[0:101] <- 1
prior.probability[48:54] <- 3
prior.probability[50:52] <- 5
prior.probability[51] <- 7

prior.probability <- prior.probability / (sum(prior.probability))
barplot(prior.probability, names.arg = coin.bias) 7
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Our posterior probability distribution reflects a
complex interplay between the prior and the
data

posterior.probability <-
dbinom(13, 20, coin.bias) * prior.probability / p.d13
barplot(posterior.probability, names.arg = coin.bias)




What if | assume there is a good chance
of the coin having a certain “bias”?

Prior Observe Data Posterior

probability Re-evaluate model / probability
distribution prior distribution distribution
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Data: 13 heads
in 20 coin flips
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What if we collect more data?

Prior Observe Data Posterior

probability
distribution

probability Re-evaluate model /
distribution prior distribution

Data: 130 heads
in 200 coin flips ?
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Now in our posterior probability, the data
‘overwrites” our prior

p.d130 <- sum(dbinom(130, 200, coin.bias) * prior.probability)
posterior.probability <-

dbinom (130, 200, coin.bias) * prior.probability / p.d130
barplot(posterior.probability, names.arg = coin.bias)
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When we collect more data, the data
‘overwrites” our prior

Prior Observe Data Posterior

probability
distribution

Re-evaluate model /
prior distribution

probability
distribution

Data: 130 heads
in 200 coin flips
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Another example — imagine there is a
magic shop around the corner...

prior.probability <- numeric(101)
prior.probability[0:101] <- 1
prior.probability[48:54] <- 3
prior.probability[73:78] <- 3

prior.probability <- prior.probability / (sum(prior.probability))
barplot(prior.probability, names.arg = coin.bias)
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If we assume we are talking to a swindler,
our posterior will reflect that

(p.d6 <- sum(dbinom(6, 10, coin.bias) * prior.probability))
## [1] 0.1083962

posterior.probability <- dbinom(6, 10, coin.bias) * prior.probability / p.d6
barplot (posterior.probability, names.arg = coin.bias)
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If there is a magic shop around the corner, we
conclude the coin may be biased

Observe Data Posterior
Re-evaluate model /
prior distribution
4 N\
. Data: 6 heads
o
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Conclusion

Bayesian statistics
« Start with our understanding of how something works/ what is likely to happen
* We then update our belief based on our data

 Possible to perform multiple rounds of formulation of prior, evaluation of prior
based on data and formulation of posterior.

 Does not rely on the notion of a finding “as or more inconsistent with our Hy"

Frequentist approaches

* Do not assign probabilities to a hypothesis (no prior, posterior)
» Usually less computationally intensive

« Lower risk of bias
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