
Introduction to R

Luce Skrabanek, Jason Banfelder
Friederike Dündar, Paul Zumbo
Applied Bioinformatics Core

September, 2021

I Prologue

i. What is R?

R is a free software environment for statistical computing and graphics (www.r-project.org). It can e↵ec-
tively analyze large-scale datasets, such as those resulting from high-throughput sequencing experiments.
It promotes automated and reproducible analyses of scientific data, creates a wide spectrum of publica-
tion quality figures, and has an extensive library of add-on packages to facilitate many complex statistical
analyses. Because it is free and ubiquitously available (it runs on Windows, Mac, and Linux computers),
your investment in learning R will pay dividends for years to come.

ii. What is RStudio?

While R is very powerful, it is essentially a command line program and is thus not the friendliest thing to
use. Especially when learning R, a friendlier environment is helpful, and RStudio provides this, giving you
things you expect in a modern interface like integrated file editing, syntax highlighting, code completion,
smart indentation, tools to manage plots, browse files and directories, visualize object structures, etc.

From your computer, choose the RStudio application. This will start R under the hood for you.

© 2014-2021 L. Skrabanek, J. Banfelder, Weill Cornell Medical College Page 1 of 38

II INTRODUCTION

II Introduction

i. R is a calculator

1. The Console panel (lower left panel) is where you type commands to be run immediately. When R
is waiting for a new command, you will see a prompt character, >.

2. To add two numbers, type after the prompt:

1 + 2

When you hit return, you should see . . .

[1] 3

3. The answer is of course 3, but what is the [1] before it? It turns out that all numbers in R are vectors,
and the [1] is a hint about how the vector is indexed. To see a long vector of random numbers, type:

rnorm(100)

For now we can ignore the vector indexing; we will learn more about vectors and indexing shortly.

4. R understands basic math. Try typing:

3 - 4

5 * 6

7 / 8

5. The order of operations is kept (PEMDAS). Note the di↵erence between . . .

1 + 2 * 3

and . . .

(1 + 2) * 3

6. You can force R to do integer division using the %/% operator (division symbol inside two percent
signs):

17 %/% 4

and to get the remainder:

17 %% 4

7. You can also compute powers:

2 ^ 4

even with fractional exponents.

2 ^ 4.3

8. R comes with an extensive library of built-in functions.

log(4) # natural log

log10(4) # log in base 10

log(4, 10) # same as above

sqrt(9) # square root

abs(3-4) # absolute value

exp(1) # exponential

© 2014-2021 L. Skrabanek, J. Banfelder, Weill Cornell Medical College Page 2 of 38

ii. R has variables II INTRODUCTION

9. Note in the examples above, we have used comments (preceded by the # character). You can type
them if you want but they do not add anything to the work that R does. Comments are not usually
used when interactively typing commands into the Console, but are essential when writing scripts -
stay tuned!

ii. R has variables

1. It can be really useful to assign values to variables, so they can be referred to later. This is done
using the assignment operator (<-).

us.population <- 3.24e8 # From Wolfram|Alpha

us.area <- 3719000 # From Wolfram|Alpha

us.pop.density <- us.population / us.area

us.pop.density

(us.pop.density <- us.population / us.area)

Some notes:

(a) Once a variable is defined, you will see it show up in the environment panel in RStudio.

(b) R will not automatically print out the value of an assigned variable. Type the name of the
variable by itself to see it. Alternatively, wrapping the assignment in parentheses executes the
assignment and prints the result.

(c) Case matters: US.area is not the same as us.area.

(d) Word separation in R is traditionally done with periods, but this is slowly losing favor. Other
options include snake case (separated by underscores) or camelCase (capitalize each new word).

2. Often, “quick and dirty” variable names that you will be using often in the Console are named with
single letter variables, whereas variables in a script are long enough to be self-explanatory.

Tip: Note that in RStudio, the Tab key will attempt to autocomplete the variable or function
name that your cursor is currently on.

3. Use the rm() function to get rid of a variable from your environment.

rm(us.pop.density) # gets rid of the us.pop.density variable

Note that removing variables from your environment can help reduce clutter and is essential when
dealing with large objects.

iii. Working with environments and history

1. You can save your environment (the set of variables you have defined). To do so, click the Save icon
in the Environment tab (top right). Once you have saved your environment, the actual R command
that was run pops up in your Console. Note that RStudio automatically adds the traditional file
extension of .RData.

2. To clear your current environment, click the broom icon on the Environment panel. You can also
achieve this by typing:

rm(list = ls(all = TRUE))

Note that all the variables you just defined have disappeared!

© 2014-2021 L. Skrabanek, J. Banfelder, Weill Cornell Medical College Page 3 of 38

iv. Getting help II INTRODUCTION

3. To load an environment, click the Load icon and select the .RData file that you saved earlier. Again,
you’ll see the corresponding R command in the Console panel. Note that loading an environment
does not empty your existing environment, but it will overwrite any existing variables.

4. It is good practice to have a separate directory for each project or analysis that you are working
on. If you tell R about this directory, it will, by default, load and save files from it. We call this the
working directory. You can browse files and directories from the Files tab of the lower right panel.
Set the working directory using the gear icon (the More button). Alternatively, you can use the
ctrl-shift-H shortcut. Once run, the R command to set the working directory is also shown in the
Console tab.

5. When you quit R, you will be asked if you want to save your workspace image (meaning your
environment) in your working directory in a file called .RData.

6. RStudio always saves your history in your working directory. This can be a problem when restarting
RStudio just by clicking on the Dock or the Start menu as your working directory will be your home
directory and you will not see the history saved from your last session. On Macs, an easy way to
specify your project directory when starting R is to drag the folder you want onto the RStudio icon.
For Windows, the icon in your Toolbar does not work; you will have to use an alias on your Desktop.
This will also load any saved .Rdata and .Rhistory files from that directory.

7. An even better practice is to create a new RStudio project for every analysis. This is RStudio’s way of
supporting and streamlining the common practice of keeping all the input data, R scripts, and other
files associated with that analysis together. This will create a .Rproj file in your project directory.
Now, whenever you want to work on that analysis again, opening that .Rproj file will bring you back
to exactly where you left o↵ (the same working directory, the same files open, the same command
history), although you’ll have to re-populate your environment.

8. Note that you can easily copy a line from your history to the Console by double-clicking it, or using
the To Console icon.

iv. Getting help

1. Much work has gone into making R self-documenting. There are extensive built-in help pages for all
R commands, which are accessible with the help() function. Thus, to see how sqrt() works, type:

help(sqrt)

The help page will show up in the Help section of the RStudio window. In case typing help is too
long, there is a shortcut.

?sqrt

2. It should be noted that some special characters or reserved words have to be quoted when using
either of the above help functions.

?"+"

will show the help page for the arithmetic operators. Note that since the + function is just one of a
group of similar operators, the help page explains all of them in a single page, rather than having
separate pages for +, -, *, / etc. The help pages quite often will group similar functions together this
way (e.g., the related functions log() and exp() are found on the same page).

3. Another very useful command is the example() function. Almost all R commands will include a
series of examples on their help pages (accessible using the help() or ? functions). You can run these

© 2014-2021 L. Skrabanek, J. Banfelder, Weill Cornell Medical College Page 4 of 38

v. Data types II INTRODUCTION

examples directly from your console by using the example() function. To see the examples for the
sqrt() function, type:

example(sqrt)

This runs the set of examples that are listed at the bottom of the help page, exactly as if you had
typed them out yourself.

4. The R help is not always as transparent as one would like and StackOverflow (stackoverflow.com)
may be a better bet for answering your questions.

v. Data types

1. So far, we have only been dealing with numerical data, but in the real world, data takes many forms.
R has several basic data types that you can use.

has.diabetes <- TRUE # logical (note case!)

patient.name <- "Jane Doe" # character

moms.age <- NA # used to represent an unknown ("missing") value

NY.socialite.iq <- NULL # used to represent something that does not exist

2. When working with truth values, you can use the logical operators:

AND (&)

OR (|)

NOT (!)

is.enrolled <- FALSE

is.candidate <- has.diabetes & ! is.enrolled

3. R uses tri-state logic when working with truth values.

TRUE & FALSE

T | F

T & NA

F & NA

TRUE | NA

FALSE | NA

TRUE & ! FALSE & NA

4. R can convert among datatypes using a series of as.() methods.

as.numeric(has.diabetes)

as.numeric(is.enrolled)

as.character(us.population)

as.character(moms.age) # still NA - we still don't know!

© 2014-2021 L. Skrabanek, J. Banfelder, Weill Cornell Medical College Page 5 of 38

III KEEPING YOUR CODE

III Keeping your code

Up to this point, we have been using the interactive console panel of RStudio. We have seen that the
history panel keeps a record of what we have done, but what would happen if we quit RStudio and
did not save the .Rdata? The objects in our environment would disappear, and we would have to trawl
through the command history, remember those commands that worked, and re-run them to recreate our
environment.

There are two ways in which we can keep track of which commands we want to run to re-generate our
analyses, both of which use the Source panel.

i. R scripts

A best practice is to store R commands in a script file. Choose File) New File) R Script, or from the
green cross icon, choose R Script. An empty tab should appear, which you can populate with R commands,
exactly as you would type them in the Console panel. You can use the Console panel to engineer the
command to do exactly what you want, then copy it to the Source window. An easy way to do this is to
highlight the command in the History panel and click the ‘To Source’ button.

From the Source panel, you can run a single line (that the cursor is on), or a selection of highlighted lines
(Mac users press cmd-return). Clicking the Source button will run all the commands in the script, from
start to finish. Note that nothing will be printed to the Console window unless explicitly declared, or you
use the ‘Source With Echo’ option, which will print both the command and any output.

A good practice is to periodically empty your environment (but not your history - you might need it!), and
try to re-create it using just the script. This will let you know if you have inadvertently missed adding a
crucial command!

ii. R Markdown

This is a way of combining not just the code, but also notes and comments about the code and project.
It can be thought of as akin to a lab notebook, which you can use to capture scientific ideas and the
associated analysis results and communicate these with colleagues.

To start a new R Markdown document, choose File) New File) R Markdown, or select R Markdown
from the green cross icon. You will be asked to fill in some basic metadata (name of document and author)
and what you want the default output format to be.

There are three parts to an R Markdown document:

1. a YAML header, surrounded by triple dashes, which is automatically generated for you when you
open a new document

title: "Some title"

author: "Luce"

output: html_document

© 2014-2021 L. Skrabanek, J. Banfelder, Weill Cornell Medical College Page 6 of 38

ii. R Markdown III KEEPING YOUR CODE

2. the chunks of R code that will be run, surrounded by triple backticks (���)

``` {r optional_name, optional_options}

R code here

```

3. text, with Markdown formatting.

To produce a complete report including code and text, click the Knit button. If you haven’t already saved
the file, it will ask you to do so now. Try this now, with the default content given to you on creation.

By default, an HTML file will be produced, with a preview either in the Preview panel, or externally (which
preference can be set from the Options menu (the cog icon)). The HTML file can be sent to colleagues or
your PI, and viewed in a browser. Other output options include PDF and Word, although you will need
to install separate packages for that functionality. We will talk more about external packages in a later
section.

Each R code chunk can be run separately. The output from each chunk can include both the code and
the results (use echo=TRUE as a chunk option) or just the results (use echo=FALSE). The output, including
figures, may be shown inline (in the .Rmd file), but many people find this distracting, and prefer to see the
output in the Console and Plot panels, which can be set from the Options menu (select Chunk Output in
Console).

It is also possible to include mini-code chunks inline, surrounded by single backticks, and prefixed by the
letter r. These will get evaluated, and get filled in, whenever the document is knitted.

The formatting of the text is accomplished with standard Markdown formatting. Examples include:

• Di↵erent level headings are prefixed by varying numbers of #.

• Italic or bold text is surrounded by one or two *, respectively,

• Bulleted list items are prefixed by *,

• Numbered list items are prefixed by numbers.

There are a number of guides to help you construct your R Markdown documents directly from within
RStudio:

• an external R Markdown cheatsheet PDF, which lists all the most commonly used commands and
syntax, accessed from Help) Cheatsheets) R Markdown Cheat Sheet,

• an external markdown reference guide PDF, accessed from Help) Cheatsheets) R Markdown

Reference Guide, also found inline at Help) Markdown Quick Reference.

© 2014-2021 L. Skrabanek, J. Banfelder, Weill Cornell Medical College Page 7 of 38

IV DATA STRUCTURES

IV Data Structures

i. Overview

R has several di↵erent types of data structures and knowing what each is used for and when they are
appropriate is fundamental to the e�cient use of R. The ones that we are going to examine in detail here
are: vectors, matrices, lists and data frames.

A quick summary of the four main data structures:

Vectors are ordered collections of elements, where each of the objects must be of the same data type or
mode, but can be any mode.

A matrix is a rectangular array, having some number of columns and some number of rows. Matrices can
only comprise one data type (if you want multiple data types in a single structure, use a data frame).

Lists are like vectors, but whereas elements in vectors must all be of the same type, a single list can include
elements from any data type. Elements in lists can be named. A common use of lists is to combine multiple
values into a single object that can then be passed to, or returned by, a function.

Data frames are similar to matrices, in that they can have multiple rows and multiple columns, but in a
data frame, each of the columns can be of a di↵erent data type; within a column, all elements must be of
the same data type. You can think of a data frame as being like a list, where each element corresponds to
a complete vector, and all elements are the same length.

ii. Vectors

1. We’ve already seen a vector when we ran the rnorm() command. Let’s run that again, but this time
assigning the result to a variable.

x <- rnorm(100)

2. Many commands in R take a vector as input.

sum(x)

max(x)

summary(x)

plot(x)

hist(x)

Don’t get too excited about the plotting yet; we will be making prettier plots soon!

3. There are many ways of creating vectors. The most common way is using the c() function, where c
stands for concatenation. Here we assign a vector of characters (character strings must be quoted).

colors <- c("red", "orange", "yellow", "green", "blue", "indigo", "violet")

4. The c() function can combine vectors.

colors <- c("infrared", colors, "ultraviolet")

remember that "infrared" is a one-element vector

By assigning the result back to the colors variable, we are updating its value. The net e↵ect is to
both prepend and append new colors to the original colors vector.

5. You can get the length of a vector using the length() function.

© 2014-2021 L. Skrabanek, J. Banfelder, Weill Cornell Medical College Page 8 of 38

ii. Vectors IV DATA STRUCTURES

length(colors)

6. You can access an individual element of a vector by its position (or “index”). In R, the first element
has an index of 1.

colors[7]

7. You can also change the elements of a vector using the same notation as you use to access them.

colors[7] <- "purple"

Tip: Appending an element is a slow operation because it actually creates a new vector. If you
do this a limited number of times, this is fine, but if you are doing this 1000s of times, it is more
e�cient to create an empty vector of a pre-determined size, and then change the elements.
You can create a blank vector using the vector() function.
a.numeric.vector <- vector(mode="numeric", length=1000)

a.numeric.vector[50] <- 5

a.numeric.vector[750] <- 10

plot(a.numeric.vector)

8. You can access multiple elements of a vector by specifying a vector of element indices.

9. R has many built-in datasets for us to play with. You can view these datasets using the data()

function. Two examples of vector datasets are state.name and state.area.

10. We can get the last ten states (alphabetically) by using R’s convenient way of making a vector of
sequential numbers, with the “:” operator

indices <- 41:50

indices[1]

indices[2]

length(indices)

state.name[indices]

Exercise:

a. We’ve seen how to list the last 10 states (alphabetically). How would you list the first 10 states?

b. How would you list the first 10 and last 10 states (alphabetically)?

c. Can you generalize this so that it works for any arbitrary length vector?

11. We can test all the elements of a vector at once using logical expressions. Let’s use this to get a list
of small states. First, how do we determine what a small state is?

summary(state.area)

Next, figure out which states are in the bottom quartile.

cutoff <- 37317

state.area < cutoff

Note that this returns a vector of logical elements. We have seen that we can access vector elements
using their indices, but we can also access them using logical vectors.

small.states <- state.name[state.area < cutoff]

12. We can test for membership in a vector using the %in% operator. To see if a state is among the
smallest:

© 2014-2021 L. Skrabanek, J. Banfelder, Weill Cornell Medical College Page 9 of 38

ii. Vectors IV DATA STRUCTURES

"New York" %in% state.name[state.area < cutoff]

"Rhode Island" %in% state.name[state.area < cutoff]

13. You can also get the positions of elements that meet your criteria using the which() function.

which(state.area < cutoff)

state.name[which(state.area < cutoff)]

Techniques like this can be useful for removing outliers from your data.

14. Let’s get the area of Wyoming:

state.area[state.name == "Wyoming"]

Notes:

(a) The == is a test for equality. This is di↵erent from assignment.

(b) The indexing vector here is a logical vector.

15. While this works, it can be a little long-winded. Luckily, R lets us name every element of a vector
using the names() function.

names(state.area) <- state.name

16. And now we can access Wyoming directly:

state.area["Wyoming"]

17. Here the indexing vector we are using to access elements is a character vector.

state.area[c("Wyoming", "Alaska")]

18. Now we can see all the small states and their areas in one shot:

state.area[small.states]

19. Sadly, not all functions that fetch an element from a vector keep the associated name.

min(state.area)

But you can find the index at which the minimum occurs, and use that.

state.area[which.min(state.area)]

20. In addition to using the : notation to create vectors of sequential numbers, there are a handful of
useful functions for generating vectors with systematically created elements.

seq(1, 10) # same as 1:10

seq(1, 4, 0.5) # shows all numbers from 1 to 4, incrementing by 0.5 each time

Let’s look carefully at the help page for the seq() function.

?seq

21. The seq() function can take five di↵erent arguments, but not all of them make sense at the same
time. In particular, it would not make sense to give the from, to, by, and length arguments, since
you can figure out the length given from, to, and by. You can pass argments by name rather than
position; this is helpful for skipping arguments.

seq(0, 1, length.out = 10)

Tip: In scripts, it is often good form to use named arguments, even when not necessary, as it
makes your intent clearer.

© 2014-2021 L. Skrabanek, J. Banfelder, Weill Cornell Medical College Page 10 of 38

ii. Vectors IV DATA STRUCTURES

seq(from = 1, to = 4, by = 0.5)

seq(from = 0, to = 1, length.out = 10)

22. Take a look at the help again: note that all of the arguments have default values, which will be used
if you don’t specify them.

seq(to = 99)

23. Another commonly used function for making regular vectors is rep(). This repeats the values in the
argument vector as many times as specified. This can be used with character and logical vectors as
well as numeric.

rep(colors, 2)

rep(colors, times = 2) # same as above

rep(colors, each = 2)

rep(colors, each = 2, times = 2)

24. When using the length.out argument, you may not get a full cycle of repetition.

rep(colors, length.out = 10)

25. In many cases, R will implicitly “recycle” vector elements as needed to get operations on vectors to
make sense. When vector operations align, results are as you would expect:

x <- 0:9

y <- seq(from = 0, to = 90, by = 10)

x + y

Here, the first element of x has the first element of y added to it, the second element of x has the
second element of y added to it, etc. What happens when the vectors are not the same length?

(1:5) + y

26. Here the elements of the first vector were recycled (your linear algebra professor would be horrified).
When one vector is shorter than the other, the elements of that entire vector get recycled, starting
from the first element and getting repeated as often as necessary. Note that if this mechanism does
not use a complete cycle, you’ll get a warning.

(1:4) + y

27. Finally, note that using a single value (i.e., a scalar) is just a special case of recycling the same value
over and over.

y * 2

Exercise:

a. 0:10 / 10 yields the same result as seq(from = 0, to = 1, by = 0.1). Can you understand
why? Which do you think is more e�cient?

b. Can you predict what this command does?

10 ^ (0:5)

28. R supports sorting, using the sort() and order() functions.

sort(state.area) # sort the areas of the states from smallest to largest

order(state.area) # return a vector of the positions of the sorted elements

state.name[order(state.area)] # sort the state names by state size

state.name[order(state.area, decreasing = TRUE)] # sort the state names by state size

© 2014-2021 L. Skrabanek, J. Banfelder, Weill Cornell Medical College Page 11 of 38

iii. Factors IV DATA STRUCTURES

29. We can also randomly sample elements from a vector, using sample().

sample(state.name, 4) # randomly picks four states

sample(state.name) # randomly permute the entire vector of state names

sample(state.name, replace = TRUE) # selection with replacement

This is frequently used in bootstrapping techniques.

30. Other miscellaneous useful commands on vectors include

rev(x) # reverses the vector

sum(x) # sums all the elements in a numeric or logical vector

cumsum(x) # returns a vector of cumulative sums (or a running total)

diff(x) # returns a vector of differences between adjacent elements

max(x) # returns the largest element

min(x) # returns the smallest element

range(x) # returns a vector of the smallest and largest elements

mean(x) # returns the arithmetic mean

Summary: Vector elements are accessed using indexing vectors, which can be numeric, character or
logical vectors.

Summary: List of logical expression functions:
< > <= >= != == %in%

Summary: Methods of generating regular vectors:
1. Numeric vector, from scratch, shortcut:

from:to

2. Numeric vector, from scratch:
seq(from, to, by, length.out, along.with)

3. Any type of vector, derived from an existing one (x):
rep(x, times, length.out, each)

iii. Factors

Factors are similar to vectors, but they have another tier of information. A factor keeps track of all the
distinct values in that vector, and notes the positions in the vector where each distinct value can be found.
Factors are R’s preferred way of storing categorical data.

The set of distinct values are called levels. To see (and set) the levels of a factor, you can use the levels()
function, which will return the levels as a vector.

1. R has an example factor built in:

state.division

levels(state.division)

2. To get a hint about how R stores factors (or any other object), we can use the str() function to view
the structure of that object. You can also use the class() function to learn the class of an object,
without having to see all the details.

str(state.division)

class(state.division)

© 2014-2021 L. Skrabanek, J. Banfelder, Weill Cornell Medical College Page 12 of 38

iv. Matrices IV DATA STRUCTURES

Note the list of integers corresponds to the level at each position. While factors may behave like
character vectors in many ways, they are much more e�cient because they are internally represented
as integers and computers are good at working with integers.

3. You can convert a vector to a factor using the factor() function. Let’s wish for some ponies.

pony.colors <- sample(colors, size = 500, replace = TRUE)

str(pony.colors)

Note that we are storing each color as a character string. This is not ideal. Let’s convert this vector
to a factor.

pony.colors.f <- factor(pony.colors)

str(pony.colors.f)

4. You can plot a factor to see how frequently each level appears.

plot(pony.colors.f)

The levels are plotted in the order they are returned by levels(). But you can control the order of
the levels when you create the factor.

pony.colors.f <- factor(pony.colors, levels = colors)

str(pony.colors.f)

plot(pony.colors.f)

5. You can make a factor from a factor, reordering its levels as you go.

plot(state.division)

state.division <- factor(state.division, levels = sort(levels(state.division)))

plot(state.division)

6. You can rename the levels in a factor by assignment to its levels(). This only changes the labels, not
the underlying integer representation. In this case, the labels we have are quite long; let’s abbreviate
them.

levels(state.division)

levels(state.division) <- c("ENC", "ESC", "MA", "MT", "NE", "PAC", "SA", "WNC", "WSC")

plot(state.division)

7. In most cases, you can treat a factor as a character vector, and R will do the appropriate conversions.
Here we list the states in the North East, and then compare the sizes of various groups of states.

state.name[state.division == "NE"]

mean(state.area[state.division == "NE"]) / mean(state.area[state.division == "WSC"])

t.test(state.area[state.division == "SA"], state.area[state.division == "MT"])

iv. Matrices

Multi-dimensional structures in R, where all the elements are of the same data type, are called arrays.
Arrays have three dimensions: number of rows, number of columns and number of layers. Matrices are a
special type of array using only two of those dimensions (rows and columns) and can be thought of as
tables.

1. Let’s use one of R’s built-in datasets, the USPersonalExpenditure dataset, which describes how
much Americans spent in five categories from 1940-1960.

© 2014-2021 L. Skrabanek, J. Banfelder, Weill Cornell Medical College Page 13 of 38

iv. Matrices IV DATA STRUCTURES

?USPersonalExpenditure

USPersonalExpenditure

2. Notice that the rows and columns of the matrix are named, using the categories and years as row
names and column names, respectively. You can access (and set) the row names and column names
using the rownames() and colnames() functions. There is a third function, dim(), which tells you
the number of rows and columns making up your matrix.

rownames(USPersonalExpenditure)

colnames(USPersonalExpenditure)

dim(USPersonalExpenditure)

These functions return vectors, which can be accessed with all the usual access methods.

3. Accessing (and assigning) elements of a matrix is analogous to accessing (and assigning) elements of
a vector, except that matrices need two indexing vectors, one for rows and one for columns.

4. Let’s say we wanted to see the Food and Tobacco expenditure for 1950:

USPersonalExpenditure[1, 3]

USPersonalExpenditure["Food and Tobacco", "1950"]

USPersonalExpenditure[1, "1950"]

5. To get this expenditure for several years, we pass a vector for the column index.

USPersonalExpenditure[1, c(5, 3, 1)]

USPersonalExpenditure["Food and Tobacco", c("1960", "1950", "1940")]

6. Omitting a row or column index implies that all of the elements are wanted along that dimension.

USPersonalExpenditure[1,]

USPersonalExpenditure["Food and Tobacco",]

USPersonalExpenditure["Food and Tobacco", , drop = FALSE]

USPersonalExpenditure[, c("1940","1950")]

USPersonalExpenditure[1:3, c("1940","1950")]

7. Observe that if your result is one-dimensional, it is by default returned as a vector. All the vector
operations you learned can be used on this output. If you don’t want this behavior, you can use the
drop=FALSE option, as was shown in the third example above.

sum(USPersonalExpenditure[, "1940"])

8. If you access an element of a matrix using only one index, R will treat the elements of the matrix as
a vector of stacked columns.

USPersonalExpenditure[1]

USPersonalExpenditure[2]

USPersonalExpenditure[7]

9. This is usually not the clearest way to access elements, but can be useful when you want to work
with all of the elements.

length(USPersonalExpenditure)

sum(USPersonalExpenditure)

10. There are a few ways to make a new matrix. The matrix() function takes as arguments a vector of all
the elements, and then some information about how many rows and columns there are. By default,
the matrix is filled in column order, but you can change this behaviour with the by.rows=TRUE

option.

© 2014-2021 L. Skrabanek, J. Banfelder, Weill Cornell Medical College Page 14 of 38

v. Lists IV DATA STRUCTURES

game1 <- matrix(c("X","","O","","X","O","","",""), ncol = 3)

game2 <- matrix(c("X","","O","","X","O","","",""), ncol = 3, byrow = TRUE)

Notes:

a. The elements of this matrix are characters. As with vectors, all elements in a matrix must be
of the same datatype.

b. In this matrix, the rows and columns are not named, and can only be accessed using numeric
indices.

11. Assignment of values is just like for vectors, except using two dimensions.

game1[3, 3] <- "X" # I win!!!!!

12. When making a fresh game, we can set the size in advance, and fill it in piecemeal. This is much
more e�cient than extending the matrix each time a new row or column is added.

new.game <- matrix(data = "", ncol = 3, nrow = 3)

13. We can assemble a matrix by combining vectors or matrices. They can be stacked by row or col-
umn, using the rbind() or cbind() functions, respectively. Here, we build a chess board from the
component pieces.

pieces <- c("rook", "knight", "bishop", "queen", "king", "bishop", "knight", "rook")

pawns <- rep("pawn", 8)

board <- rbind(pieces, pawns, matrix("", nrow = 4, ncol = 8), pawns, pieces)

rownames(board) <- 8:1

colnames(board) <- letters[1:8]

letters is a very handy built-in vector of all 26 lowercase letters. See the help for constants for a
few more handy built-ins.

14. Remember all of the elements in a matrix must be of the same data type. If you assign one element
of a di↵erent data type, R will convert (or coerce) elements as necessary.

USPersonalExpenditure["Personal Care", "1955"] <- "Unknown"

USPersonalExpenditure

All the numbers have been converted to characters. How should we have done this to avoid this
coercion?

rm(USPersonalExpenditure) # revert to built-in dataset

15. R coerces elements up the data type chain, only far enough to satisfy the rule that all elements
remain the same type. If you add an integer to a matrix of logicals, you’ll get a matrix of integers,
not characters, as in the example above.

NULL < raw < logical < integer < double < complex < character < list < expression

The same coercion strategy applies to vectors.

The next section introduces a data structure that allows mixed types.

v. Lists

Lists are similar to vectors, but with some di↵erences. Lists can hold data structures of di↵erent types,
and of di↵erent sizes. Each component in a list can be (optionally, but commonly) separately named (a list
in R is analogous to a hash or associative array in most other programming languages). In fact, one list

© 2014-2021 L. Skrabanek, J. Banfelder, Weill Cornell Medical College Page 15 of 38

v. Lists IV DATA STRUCTURES

can be a member of another list, allowing for deeply nested and arbitrarily complex data structures to be
modeled.

1. The results of many high-level analyses in R are packaged as lists. Let’s use R to fit a linear model
to some data.

(edu.spend <- unname(USPersonalExpenditure["Private Education",]))

(edu.yr <- seq(from = 0, to = 20, by = 5))

plot(edu.yr, edu.spend)

my.model <- lm(edu.spend ~ edu.yr)

my.model

summary(my.model)

abline(my.model)

plot(my.model)

The lm() function fits data to a linear model (i.e., performs a linear regression), and packages up
all of the results into an object we have named my.model. The my.model object is of class lm (linear
model), which is a special kind of list. You may have to rm() USPersonalExpediture from your
environment before running the above commands, if your object is still coerced into character strings
from the previous section.

2. Remember that we can look into any object using the str() function. Let’s do that now with our
linear model. Brace yourself!

str(my.model)

Take a moment to get a sense of what is packaged in the linear model object (but don’t stress over
the details).

Now look carefully at the very first line of the output and note that this object is a “List of 12”.
This object has 12 components, and many of those have sub-components (an element of a list can be
another list).

We’ll need to learn about lists so we can access the subcomponents of the model object; for example,
you’d probably want to extract the slope and intercept of the best-fit line from this object. Let’s
start with the basics. . .

3. Lists can be created using the list() function. When using the list() function, you can optionally
give names to the components (component names are called tags).

ad.mouse.colony <- list("9.1", FALSE)

ad.mouse.colony <- list(room = "9.1", bsl3 = FALSE)

Note that we have di↵erent data types in the same list (character, and logical). Note also the di↵erence
between the first and second attempt to model a mouse colony. In the first case, you need to know
what the position of each component is; in the second, each component is named (tagged) with the
tag we provided at creation.

4. We can add a component to an existing list

ad.mouse.colony$conditions <- list(bedding = "straw", light_hrs = 12)

ad.mouse.colony$count <- c(male = 10, female = 0)

ad.mouse.colony[["variants"]] <- c("APP695swe", "PS1-dE9")

Note that we have used two di↵erent notations to refer to components of a list.

5. There are several ways to refer to the components of a list; the di↵erences can be subtle, but important.

© 2014-2021 L. Skrabanek, J. Banfelder, Weill Cornell Medical College Page 16 of 38

v. Lists IV DATA STRUCTURES

The most straightforward way to refer to a single component is using the [[notation. You can always
provide an integer to access the component by position, or you can provide a character string if the
component is tagged.

For tagged components where the tag is a literal character string, you can use the $ notation. This
is less flexible, but looks clearer. Use this when you can.

6. Just as for vectors, to get the names of tagged components, use names().

names(ad.mouse.colony)

7. If you want to access multiple components, you can use the [notation, which takes the usual indexing
vector. Note that this will always return a list (this has to be so, because the components returned
could be of di↵erent datatypes).

Exercise:

a. What does this return?

ad.mouse.colony[[3]]

b. How about this?

ad.mouse.colony[[3]]$bedding

c. Why does this NOT work?

ad.mouse.colony[3]$bedding

d. How would you add a new element (say, temp = 36.5) to the conditions list?

8. To remove a component, assign it the value NULL.

ad.mouse.colony$bsl3 <- NULL

Note that this changes the index positions of all subsequent components (yet another reason to use
tags!)

9. All objects can have arbitrary additional attributes, which can be used to store metadata about the
object, which are stored as a named list (with unique names). Attributes can be accessed individually
with attr() or all at once (as a list) with attributes().

x <- c(0, 1, 1, 2, 3, 5, 8, 13, 21)

attr(x, "description") <- "Fibonacci sequence"

attr(x, "description")

attributes(x)

str(attributes(x))

10. Remember our linear model?

Exercise:

a. Can you extract the slope and intercept of the best-fit line?

b. Can you extract the value of R2 reported by the summary() function we used? Hint: save the

result of this function, and look into its structure.

© 2014-2021 L. Skrabanek, J. Banfelder, Weill Cornell Medical College Page 17 of 38

vi. Data frames IV DATA STRUCTURES

vi. Data frames

Data frames are two-dimensional data structures like matrices, but, unlike matrices, they can contain
multiple di↵erent data types. You can think of a data frame as a list of vectors, where all the vector
lengths are the same. Data frames are commonly used to represent tabular data.

1. When we were learning about vectors, we used several parallel vectors, each with length 50 to represent
information about US states. The collection of vectors really belongs together, and a data frame is
the tool for doing this.

state.db <- data.frame(state.name, state.abb, state.area, state.center,

stringsAsFactors = FALSE)

state.db

The data.frame() function combines the four data sets into a single data frame. Note that the first
three data sets are vectors (two character, one numeric), but the last data set is a list with two
components.

Note the stringsAsFactors = FALSE argument. Some of the vectors that we are using are character
vectors, but will be automatically converted to factors if this option is not set. Since we will want to
work with our character data as vectors, not as factors, we want to set this argument to FALSE.

2. In addition to the str() function, you can glean useful information about a data frame (and other
data structures) using the summary() and head() functions.

summary(state.db)

head(state.db)

3. Data frames have a split personality. They behave both like a tagged list of vectors, and like a matrix!
This gives you many options for accessing elements. Fortunately, you know them all already!

When accessing a single column, the list notation is preferred.

state.db$state.abb

state.db[["state.abb"]]

state.db[[2]]

When accessing multiple columns or a subset of rows, the matrix notation is used (rows and columns
are given indexing vectors).

state.db[, 1:2]

state.db[41:50, 1:2]

state.db[c(50, 1), c("state.abb", "x", "y")]

state.db[order(state.db$state.area)[1:5],]

state.db[order(state.db$state.area),][1:5,]

The last two examples produce the same output; which is more e�cient?

4. As with matrices, the rows can be given names as well. This makes picking out specific rows less
error-prone. Column names are accessed with the names() or colnames() functions.

rownames(state.db) <- state.abb

state.db[c("NY", "NJ", "CT", "RI"), c("x", "y")]

names(state.db) <- c("name", "abb", "area", "long", "lat")

Note that if you only fetch data from one column, you’ll get a vector back. If you want a one-column
data frame, use the drop = FALSE option.

© 2014-2021 L. Skrabanek, J. Banfelder, Weill Cornell Medical College Page 18 of 38

vi. Data frames IV DATA STRUCTURES

5. You can add a new column the same way you would add one to a list.

state.db$division <- state.division # Remember, this is a factor

state.db$z.size <- (state.db$area - mean(state.db$area))/sd(state.db$area)

state.db[, "z.size", drop = FALSE]

6. Remember that you can pass logical vectors as indices.

state.db[state.db$area < median(state.db$area), "name"]

state.db[state.db$area < median(state.db$area), "name", drop = FALSE]

coastal <- state.db[state.db$division %in%

c("New England", "Middle Atlantic", "South Atlantic", "Pacific"),]

7. Another way to select data from a data frame is using the subset() function. You can choose rows
based on a logical expression and can choose columns with the select option. With this function,
we only have to type the dataset name once.

subset(state.db, area < median(area), select = name)

coastal <- subset(state.db, division %in%

c("New England", "Middle Atlantic", "South Atlantic", "Pacific"))

The logical condition is optional, and you can specify columns to omit instead of columns to include.

subset(state.db, select = c(name, abb))

subset(state.db, select = -c(long, lat))

8. Many tools in R work naturally with data frames. For example, visualizing the size distribution of
state within each division could not be easier once the data is in a well-designed data frame.

plot(area ~ division, data = state.db)

plot(log(area) ~ division, data = state.db)

plot(lat ~ long, data = state.db)

text(lat ~ long, data = state.db, rownames(state.db))

Here we are using R’s function notation. Read the first argument in the first plot() example as “area
as a function of division”.

9. Exercise:

a. Can you add Puerto Rico to our data frame? [abb = “PR”, area = 3515 sq mi, long = -66.1,
lat = 18.45, division = “South Atlantic”]

b. How about Greenland? [abb = “GL”, area = 836330 sq mi, long = -51.73, lat = 64.17, division
= “Arctic Circle”]

10. In most cases in the lab, you won’t be typing the data in by hand but rather importing it. R provides
tools for importing a variety of text file formats. If you receive data in Excel format, you’ll want to
save it as tab-delimited or CSV (comma separated values) text. The read.delim() or read.csv()
functions can then be used to import the data into a data frame. Of course, you should also tell your
colleagues that R is the preferred tool for data wrangling!

We have prepared an Excel file for you to import.

a. Go to http://chagall.med.cornell.edu/Rcourse/ and download the Ablation.xlsx file into
your project folder.

b. Open the file using Microsoft Excel and save it in CSV format. You can quit Excel now!

© 2014-2021 L. Skrabanek, J. Banfelder, Weill Cornell Medical College Page 19 of 38

vi. Data frames IV DATA STRUCTURES

c. Return to RStudio.

d. Use the Files tab (bottom right) to take a look at the .csv file.

e. Import the data into a data frame:

ablation <- read.csv("Ablation.csv", header = TRUE, stringsAsFactors = TRUE)

Note that we explicitly asked that strings be converted to factors. In cases where you are
importing string data, you would want to set this to FALSE, and after import, convert appropriate
columns to factors.

f. Rename the SCORE column to be consistent with the other column names.

names(ablation)[names(ablation) == "SCORE"] <- "Score"

Note that we did not use names(ablation)[6] <- "Score". Why do you think that is?

There is another more general import function, read.table(), that gives you exquisite control over
how to import your data. One of the defaults of this function is header = FALSE. For this reason, we
suggest that you always explicitly use the header option (you don’t want to accidentally miss your
first data point).

11. If your uninitiated colleagues insist on an Excel-compatible format, you can also export a data frame
using write.csv().

write.table(ablation, file = "ablation.txt",

quote = FALSE, col.names = NA,

sep = "\t")

write.table(ablation, file = "ablation.txt",

quote = FALSE, row.names = FALSE,

sep = "\t")

© 2014-2021 L. Skrabanek, J. Banfelder, Weill Cornell Medical College Page 20 of 38

V MISCELLANEOUS

V Miscellaneous

i. User-defined functions

Although R has a wide array of in-built functions, as well as many other functions that can be accessed
via third party packages (more on that later), we can also create our own functions, using function(). We
define not only the arguments, or inputs, to the function, but also what it does, and what it returns.

1. Within the body of a function, all of the input arguments become variables that you can use, including
passing them to other functions.

mySummary <- function(x) {

my.mean <- mean(x)

my.sd <- sd(x)

list(mean = my.mean, sd = my.sd)

}

mySummary(rnorm(100))

Here, our function, called mySummary, takes a single argument called x. This function assumes that
x is a numeric vector, and computes the mean and standard deviation of that vector. The function
returns a list with two tagged components; the return value of a function is the last expression
evaluated in the function body. The code executed by our function is enclosed in curly braces {}.

2. We can also create functions which can have multiple arguments, and default values for arguments.

raiseNumber <- function(x, power = 1) {

x ^ power

}

raiseNumber(10)

raiseNumber(10, 3)

ii. Loops

Computers are very good at dealing with repetitive tasks. Often we would like to perform a task for some
number of objects, or a certain number of times. While we could just repeat the same command over and
over again, changing one parameter each time, a better and less error-prone way is to write a loop.

Here we will look at using a ‘for‘ loop, which takes some number of elements and runs a series of commands
for each element. The ‘for‘ loop starts by assigning the first element to a user-defined variable, and executing
the statements in the body of the code. Then, if there are more elements, it goes back to step 1, assigns
the next element to the variable, and so on, until there are no more elements, at which point it exits the
‘for‘ loop and goes on to the next statement. Note that we pre-allocate the size of the vector that we store
our results in, and fill in as we go.

num_iterations <- 100

my_means <- numeric(length = num_iterations)

for (i in 1:num_iterations) {

x <- rnorm(10000)

my_means[i] <- mean(x)

}

hist(my_means)

© 2014-2021 L. Skrabanek, J. Banfelder, Weill Cornell Medical College Page 21 of 38

