
The Optimal Stopping Problem

Luce Skrabanek

28 September, 2021

1 Motivation

It is very useful in science to construct mathematical models of the systems that we are
investigating. As the complexity of these systems increases, it can often be difficult or
impractical to derive or locate in the literature exact mathematical solutions of our model
systems. While one option is to incorporate simplifying assumptions (such as that of
normality) that make analytical solutions tractable, an alternative approach is to more
directly simulate real world phenomena, and use numerical techniques to obtain solutions
and insights.

For example, we saw how a t-test (which uses an analytical solution based on the Stu-
dent’s t-distribution) can also be cast as a data shuffling problem, and solved by repeated
numerical (random or exhaustive) sampling of such shufflings via the randomization test.
Similarly, we’ve seen how simulations could be used to explore power calculations for two
groups with different means and different standard deviations, or to illustrate how the
Bonferroni and FDR multiple hypothesis corrections are controlling the error for our entire
experiment.

In this lecture, we’ll develop the tools that you can use to build and explore your own
models.

2 The Optimal Stopping Problem

Algorithms to Live By, by Brian Christian and Tom Griffiths, explores how people solve
all sorts of problems that are defined by a limited amount of time, space, information
or some combination of the above. The first chapter describes the so-called “secretary
problem”, also called the “optimal stopping problem”. Although its origins are obscured
by the mists of history, it was first described in print by Martin Gardner in his famous

1

The Optimal Stopping Problem

Mathematical Games column in a 1960 issue of Scientific American. We’ll frame it as a
“dating problem”.

2.1 Define the problem

Let’s first define the problem: We want to maximize our chance of finding our soul mate
in a limited pool of candidates. Each potential mate in the pool has a compatibility score,
and our goal is to find (and then propose to) the person in the pool with the highest score
for us. We can only ascertain a person’s compatibility score by dating them, and once we
move on to the next candidate, we can never go back to someone we’ve dated in the past.
So we need to decide if we want to propose to someone without knowing for sure if there
is a better match still to come.

We’ll attack this problem using a so-called “look then leap” strategy, whereby we’ll first
date a predetermined number of people just to gather data about the range of compatibility
scores. Once our data gathering phase is over, we’ll then continue to date the remaining
people from our pool until we find someone whose compatibility score is higher than any
we’ve seen in the data gathering phase, and commit to that person. In this model, if we
propose to somebody, they always accept, and if we reject them, we can never get them
back.

The question now becomes: how many potential mates should be included in the data
gathering phase, and how many should be left for the commitment phase?

In this model, there are two ways we can fail to meet our soul mate using this strategy:
a) we meet our soul mate during the data gathering phase, and end up moving on to date
others when we shouldn’t have, or b) we can commit too early in the commitment phase,
and never meet our soul mate. Note that in this model, success is binary and only occurs
if we commit to our optimal match; committing to the second-best match is considered a
failure, regardless of their numerical compatibility score. We’ll call this the “black-and-
white” approach. The optimal strategy requires finding the right balance between the two
phases, or deriving the optimal proportion of the population that we should sample before
committing.

2.2 A first model: “black-and-white”

It turns out that this problem does have a well-known analytical solution; the math (which
in its exact form is a Riemann approximation to an integral) says that the optimal pro-
portion of people we gather data on before switching to the commitment phase is 1/e (cf
Thomas Ferguson, Who Solved the Secretary Problem? Statistical Science, 4(3):282-289
(1989)). Let’s see if we can use simulations to verify this result.

© Copyright 2017, 2021 L Skrabanek, Weill Cornell Medicine page 2

The Optimal Stopping Problem

We first develop the code for one scenario. Say we have 100 people in our potential
candidate dating space, each with a score representing how good a match they are. The
person with the best score is our real soul mate.

population <- 100

score <- rnorm(population)

optimal_score <- max(score)

We date the first phase1 size of the group (note that we are rounding to the nearest whole
number) and note the maximum score in that group...

phase1_fraction <- 1/exp(1)

phase1_size <- round(population * phase1_fraction)

cutoff_score <- max(score[1:phase1_size])

Now select as your life partner the next date with a better score.

spouse_index <- phase1_size +

which(score[(phase1_size+1):population] > cutoff_score)[1]

spouse_score <- score[spouse_index]

Note that in the above code snippet, the which() function returns the indices of the
truncated array score[(phase1 size+1):population]. So, if your soul mate is found at
position phase1 size + 1 in the whole array, that will correspond to position 1 in the
truncated array; adding phase1 size to the result of the which() function accounts for
this shift.

We have successfully found our soul mate if the score of the match we found is the same
as the optimal score.

spouse_score == optimal_score

If you run this a few times, you’ll find that when our soul mate is encountered in the data
gathering phase, we don’t commit to anyone at all and the spouse score is NA, which
becomes an NA in our logical expression. We really want this to be recorded as FALSE, so
let’s set the score to the score of the final candidate if we haven’t found anybody else by
then.

if (is.na(spouse_index)) {
spouse_index <- population

}

We probably want to run this multiple times, so that we can see how many times, on
average, we find our soul mate. To do this, we’ll write a for loop to run the code 1000
times.

© Copyright 2017, 2021 L Skrabanek, Weill Cornell Medicine page 3

The Optimal Stopping Problem

num_iterations <- 1000

vector to store result of each simulation

is_soulmate <- logical(length = num_iterations)

Explicitly state the size of the total, and sampling phase, pools

population <- 100

phase1_fraction <- 1/exp(1)

phase1_size <- round(population * phase1_fraction)

for (case_idx in 1:num_iterations) {
scores of potential mates

score <- rnorm(population)

score of soul mate

optimal_score <- max(score)

maximum score in gathering phase

cutoff_score <- max(score[1:phase1_size])

now select as your life partner the next date with a better score

spouse_index <- phase1_size +

which(score[(phase1_size+1):population] > cutoff_score)[1]

pick the last one if nobody better came along before then

if (is.na(spouse_index)) {
spouse_index <- population

}

is_soulmate[case_idx] <- (score[spouse_index] == optimal_score)

}

and calculate the mean of all the results (where the mean is just the sum of all the TRUEs,
divided by the total number of trials):

mean(is_soulmate)

[1] 0.381

We can see that the mean turns out to be approximately 0.37, or we find our soul mate 37%
of the time, if we sample 1/e of the population before committing to somebody. . . which is
coincidentally also the proportion of the sample we date before committing.

We probably want to explore this simulation a bit. What happens if we change the fraction
of the population that we sample before switching to the commitment phase? Does the

© Copyright 2017, 2021 L Skrabanek, Weill Cornell Medicine page 4

The Optimal Stopping Problem

size of the candidate pool make a difference? We can answer questions such as these by
casting our code as a function, and then varying the parameters it is called with.

simulate_dating <- function(population = 1000,

phase1_fraction = 1 / exp(1),

num_iterations = 1) {
is_soulmate <- logical(length = num_iterations)

phase1_size <- round(population * phase1_fraction)

for (case_idx in 1:num_iterations) {
scores of potential mates

score <- rnorm(population)

optimal_score <- max(score)

we date the first phase1_size people

and note the maximum score in that group

cutoff_score <- max(score[1:phase1_size])

now select as your life partner the next date with a better score

spouse_index <- phase1_size +

which(score[(phase1_size+1):population] > cutoff_score)[1]

pick the last one if nobody better came along before then

if (is.na(spouse_index)) {
spouse_index <- population

}

is_soulmate[case_idx] <- (score[spouse_index] == optimal_score)

}

mean(is_soulmate)

}

Note here that we have assigned default values to all of the function’s arguments. This
way, when using the function, we only have to specify the arguments that differ.

Now we can call this function inside of another for loop.

phase1_fractions <- seq(0.05, 0.95, 0.02)

means <- numeric(length = length(phase1_fractions))

for (idx in 1:length(phase1_fractions)) {
means[idx] <- simulate_dating(population = 100,

© Copyright 2017, 2021 L Skrabanek, Weill Cornell Medicine page 5

The Optimal Stopping Problem

phase1_fraction = phase1_fractions[idx],

num_iterations = 1000)

}
plot(means ~ phase1_fractions)

0.2 0.4 0.6 0.8

0.
05

0.
15

0.
25

0.
35

phase1_fractions

m
ea

ns

phase1_fractions[which.max(means)]

[1] 0.41

There is definitely a pattern, but the graph is a bit bumpy, so let’s recompute this distri-
bution with more iterations to get a smoother curve.

phase1_fractions <- seq(0.05, 0.95, 0.02)

means <- numeric(length = length(phase1_fractions))

for (idx in 1:length(phase1_fractions)) {
means[idx] <- simulate_dating(population = 100,

phase1_fraction = phase1_fractions[idx],

num_iterations = 10000)

}
plot(means ~ phase1_fractions)

0.2 0.4 0.6 0.8

0.
05

0.
15

0.
25

0.
35

phase1_fractions

m
ea

ns

© Copyright 2017, 2021 L Skrabanek, Weill Cornell Medicine page 6

The Optimal Stopping Problem

phase1_fractions[which.max(means)]

[1] 0.33

The phase1 fraction that corresponds to the peak of the graph is around 0.30-0.40. . . ,
confirming the analytical solution of 1/e!

The optimal strategy gives us a 37% chance of finding our soul mate. However, this also
implies a 63% failure rate (given our current definition of success)!

2.3 Exploring an alternative model: “shades-of-gray”

Let’s consider an alternative model with a less stringent definition of “success”. Instead
of defining success as finding our soul mate, and pairing up with anybody else as failure,
we might consider the score of the person that we ultimately pair off with as a numerical
measure of the success of our endeavor. In other words, committing to somebody with a
relatively high score is still considered a pretty good outcome, even if it wasn’t the optimal
one. So with this approach, the metric that we seek to optimize is not the probability of
matching with one’s soulmate, but rather to maximize the average expected score of the
person we match with. We’ll refer to this as the “shades-of-gray” approach.

While the underlying math for the analytical solution for this optimization is perhaps
very different, modifying our simulation to reflect this different objective is straightfor-
ward.

Numeric vector to store score of match

spouse_scores <- numeric(length = num_iterations)

Record compatibility score of the matched person

spouse_scores[case_idx] <- score[spouse_index]

Note that spouse scores now holds the numeric compatibility value, not a TRUE/FALSE.

Here, our goal is to find the proportion of the population that needs to be sampled to
maximize the expected score of the person we match with. As the simulation below demon-
strates, the optimal fraction of the population that we should sample before we switch to
a commitment phase is now much lower!

simulate_dating_2 <- function(population = 1000,

phase1_fraction = 1 / exp(1),

num_iterations = 1) {
spouse_scores <- numeric(length = num_iterations)

phase1_size <- round(population * phase1_fraction)

© Copyright 2017, 2021 L Skrabanek, Weill Cornell Medicine page 7

The Optimal Stopping Problem

for (case_idx in 1:num_iterations) {
scores of potential mates

score <- rnorm(population)

we date the first phase1.size people

and note the maximum score in that group

cutoff_score <- max(score[1:phase1_size])

optimal_score <- max(score)

now select as your life partner the next date with a better score

spouse_index <- phase1_size +

which(score[(phase1_size+1):population] > cutoff_score)[1]

if (is.na(spouse_index)) {
spouse_index <- population

}

spouse_scores[case_idx] <- score[spouse_index]

}

mean(spouse_scores)

}

phase1_fractions <- seq(0.05, 0.95, 0.02)

means <- numeric(length = length(phase1_fractions))

for (idx in 1:length(phase1_fractions)) {
means[idx] <- simulate_dating_2(population = 100,

phase1_fraction = phase1_fractions[idx],

num_iterations = 10000)

}
plot(means ~ phase1_fractions)

© Copyright 2017, 2021 L Skrabanek, Weill Cornell Medicine page 8

The Optimal Stopping Problem

0.2 0.4 0.6 0.8

0.
5

1.
0

1.
5

phase1_fractions

m
ea

ns
phase1_fractions[which.max(means)]

[1] 0.15

So, depending on your preferred criterion for “success”, the optimal proportion of the
population that is in the sampling phase will differ.

There are other riffs and improvements on our model that we could imagine. For example,
a previous assumption was that once you reject somebody, their feelings are irreversibly
hurt and you can never go back to them. However, with a few more lines of code, you
could simulate the situation where you would be able to select any of the last three people
(for example) that you saw.

© Copyright 2017, 2021 L Skrabanek, Weill Cornell Medicine page 9

The Optimal Stopping Problem

3 Group Project

Part I

One of the advantages of using a simulation to model your system is that you have access
to all the information about the system.

Modify the “shades-of-gray” simulation to return the vector of the numerical compatibility
scores of the match from each iteration. Prepare a histogram of the scores obtained when
using the optimal phase1 fraction value for the “shades-of-gray” approach (˜15%), and
a second histogram of the scores obtained when using the optimal phase1 fraction value
for the “black-and-white” approach (˜37%). Plot the two histograms side-by-side, with the
same scales and binning.

Can you identify the sources of each peak in the bi-modal distributions?

Do these histograms give you any insight as to why the “shades-of-gray” approach has
a shorter optimal gathering phase than the “black-and-white” approach? Does this new
information influence which metric of “success” you might adopt or recommend?

Part II

The simulation we described in class assumes that the candidates come from a normal
distribution, with a standard deviation of 1. For each of the two approaches, does the
optimal stopping point change if the standard deviation is different? What about if the
distribution is different, e.g., a uniform distribution? Can you reason out why?

Part III

One of the assumptions in the classic statement of this problem is that the candidate will
always accept when you propose to them. How would you change the model to include
the possibility of rejection? Do you think that a constant probability of rejection is a good
model? It may be that if you find somebody very compatible, chances are good that they
like you a lot too, and vice versa. How might you model the case where the chance of
rejection is inversely proportional to how much you like them?

Part IV: Extra credit

Extend the model in any way you think might be fun or interesting! For example, a group
of 100 people are all trying to get paired up. What would be the objective function? Total
happiness? Or would you try to maximize individual’s happiness?

© Copyright 2017, 2021 L Skrabanek, Weill Cornell Medicine page 10

The Optimal Stopping Problem

Logistics

Answers are due by 11:59 PM on Friday, 8th October, 2021. E-mail your solution to
jbanfelder@rockefeller.edu, las2017@med.cornell.edu, and nll4001@med.cornell.edu

This Problem Set must be completed in groups of two or three. Please submit only one
write-up per group.

Your submission should be generated using R Markdown. Include the code needed to
reproduce your results and generate any figures in your writeup, as well as the compiled
HTML file.

© Copyright 2017, 2021 L Skrabanek, Weill Cornell Medicine page 11

	Motivation
	The Optimal Stopping Problem
	Define the problem
	A first model: ``black-and-white"
	Exploring an alternative model: ``shades-of-gray"

	Group Project

