Bayesian Methods

Quantitative Understanding in Biology

Thursday, 30 September 2021
Lecture Notes by Jason Banfelder
Slide Compilation and Demonstratives by Noemi Linden
Based on slides from Ariana Clerkin

STATISTICALLY SPEAKING, IF YOU PICK UPA SEASHELL AND DON'T HOLD IT TO YOUR EAR, YOU CAN PROBABLY HEAR THE OCEAN.

Probability

$7^{\text {th }}$ grade classroom

Conditional Probability $7^{\text {th }}$ Grade Classroom

Probability that the student is tall given that the student is female (Conditional Probability)
We expect P (Tall | Female) $>P($ Tall $)$ without taking any measurements of this particular class.

Joint Probability $7^{\text {th }}$ Grade Classroom

Probability that the student is tall and that the student is female (Joint Probability)

$$
\frac{7}{12} * \frac{4}{7}=\frac{4}{12}=\frac{1}{3}
$$

Joint Probability $7^{\text {th }}$ Grade Classroom

```
##,
OR, equivalently
\[
\mathbf{P}(\text { Female }, \text { Tall })=P(\text { Tall }) \cdot P(\text { Female | Tall })=\frac{6}{12} * \frac{4}{6}=\frac{4}{12}=\frac{1}{3}
\]
P(Tall , Female) \(=\mathrm{P}(\) Female , Tall)
```


Deriving Bayes' Rule

We have shown that:

$$
\begin{aligned}
& P(\text { Tall }, \text { Female })=P(\text { Female }) \cdot P(\text { Tall } \mid \text { Female }) \\
& P(\text { Tall }, \text { Female })=P(\text { Tall }) \cdot P(\text { Female } \mid \text { Tall })
\end{aligned}
$$

Therefore:

$$
\begin{aligned}
& P(\text { Female }) \cdot P(\text { Tall } \mid \text { Female })=P(\text { Tall }) \cdot P(\text { Female } \mid \text { Tall }) \\
& P(\text { Tall } \mid \text { Female })=\frac{P(\text { Female } \mid \text { Tall }) \cdot P(\text { Tall })}{P(\text { Female })}
\end{aligned}
$$

Or generally, for generic events $A \& B$, we have

$$
P(A \mid B)=\frac{P(B \mid A) \cdot P(A)}{P(B)}
$$

Bayes' Rule: Terminology

Likelihood
Posterior Probability \quad Prior Probability

Applying Bayes' Rule

Information:

- 1% of women in a given population have breast cancer
- If a woman has breast cancer, there is a 90% chance that a particular diagnostic test will return a positive result (10% false negative rate)
- If a woman does not have breast cancer, there is a 10% chance that this diagnostic test will return a positive result (10% false positive rate).

Question:

What is the probability that a woman with a positive test result actually has cancer?

Multiple Choice:

Which notation shows the probability that a woman with a positive test result actually has cancer?
a.) P(Cancer | Positive Test)
b.) P(Cancer , Positive Test)
c.) $P($ Positive Test | Cancer)
d.) P (Positive Test \cap Cancer)

Applying Bayes' Rule

- Information:

- 1% of women in a given population have breast cancer
- If a woman has breast cancer, there is a 90% chance that a particular diagnostic test will return a positive result (10\% false negative rate)
- If a woman does not have breast cancer, there is a 10% chance that this diagnostic test will return a positive result (10% false positive rate).

$$
\mathrm{P}(\text { Cancer } \mid \text { Positive })=\frac{\mathrm{P}(\text { Positive } \mid \text { Cancer }) \cdot \mathrm{P}(\text { Cancer })}{\mathrm{P}(\text { Positive })}
$$

Applying Bayes' Rule

- Information:
- 1% of women in a given population have breast cancer
- If a woman has breast cancer, there is a 90% chance that a particular diagnostic test will return a positive result (10\% false negative rate)
- If a woman does not have breast cancer, there is a 10% chance that this diagnostic test will return a positive result (10% false positive rate).
0.01
$P($ Cancer \mid Positive $)=\frac{P(\text { Positive } \mid \text { Cancer }) \cdot P(\text { Cancer })}{P(\text { Positive })}$

Applying Bayes' Rule

- Information:

- 1% of women in a given population have breast cancer
- If a woman has breast cancer, there is a 90% chance that a particular diagnostic test will return a positive result (10\% false negative rate)
- If a woman does not have breast cancer, there is a 10% chance that this diagnostic test will return a positive result (10% false positive rate).

$$
P(\text { Cancer } \mid \text { Positive })=\frac{P(\text { Positive } \mid \text { Cancer }) \cdot P(\text { Cancer })}{P(\text { Positive })}
$$

Applying Bayes' Rule

- Information:

- 1% of women in a given population have breast cancer
- If a woman has breast cancer, there is a 90% chance that a particular diagnostic test will return a positive result (10\% false negative rate)
- If a woman does not have breast cancer, there is a 10% chance that this diagnostic test will return a positive result (10% false positive rate).

$$
P(\text { Cancer } \mid \text { Positive })=\frac{P(\text { Positive } \mid \text { Cancer }) \cdot P(\text { Cancer })}{P(\text { Positive })}
$$

Applying Bayes' Rule

- Information:

- 1% of women in a given population have breast cancer
- If a woman has breast cancer, there is a 90% chance that a particular diagnostic test will return a positive result (10\% false negative rate)
- If a woman does not have breast cancer, there is a 10% chance that this diagnostic test will return a positive result (10\% false positive rate).
$P($ Positive $)=P($ True Positive $)+P($ False Positive $)$
$P($ Positive $)=P($ Positive \mid Cancer $) \cdot P($ Cancer $)+P(+\mid$ Healthy $) \cdot P($ Healthy $)$
$P($ Positive $)=0.9 \cdot 0.01+0.1 \cdot(1-0.01)$
$P($ Positive $)=0.108$

Now we can complete Bayes' Rule

$P($ Cancer \mid Positive $)=\frac{P(\text { Positive } \mid \text { Cancer }) \cdot P(\text { Cancer })}{P(\text { Positive })}$
$P($ Cancer \mid Positive $)=\frac{0.9 \cdot 0.01}{0.108}=0.083$

How can we apply Bayes' rule to estimating model parameters?

Frequentist Coin Flip: 20 Flips; 13 Heads

Objective: Estimate the Coin's Bias with a 95\% Confidence Interval

```
binom.test(13, 20)
##
## Exact binomial test
##
## data: 13 and 20
## number of successes = 13, number of trials = 20, p-value =
## 0.2632
## alternative hypothesis: true probability of success is not equal to 0.5
## 95 percent confidence interval:
## 0.4078115 0.8460908
## sample estimates:
## probability of success
## 0.65
Conclusion:
- Bias \(=0.65\)
- \(95 \% \mathrm{Cl}=(0.41,0.85)\)
```


We know how to compute the probability of any particular data outcome

```
dbinom(13, size = 20, prob = 0.5)
## [1] 0.07392883
dbinom(13, size = 20, prob = 0.25)
## [1] 0.0001541923
```


Computing the probability of getting the data that we observed at various values of the coin's bias

```
coin.bias <- seq(from = 0, to = 1, by = 0.01)
likelihood <- dbinom(13, 20, prob = coin.bias)
barplot(likelihood, names.arg = coin.bias, ylab = "likelihood")
```


Imagine we have a pool of 101 coins each with a different bias ($0.00,0.001,0.002, \ldots$)

We can calculate the probability of each of the 101 coins being the one that we chose, given the data that we observed.

Probability of having chosen the fair coin:

$$
P\left(M_{0.50} \mid D_{13}\right)=\frac{P\left(D_{13} \mid M_{0.50}\right) \cdot P\left(M_{0.50}\right)}{P\left(D_{13}\right)}
$$

Imagine we have a pool of 101 coins each with a different bias ($0.00,0.001,0.002, \ldots$)

We can calculate the probability of each of the 101 coins being the one that we chose, given the data that we observed.

$$
\operatorname{dbinom}(13, \text { size }=20, \text { prob }=0.5) \quad \frac{1}{1001} \cong 0.0099
$$

\#\# [1] 0.07392883
Probability of having chosen the fair coin:

Bayesian Coin Flip: 20 Flips; 13 Heads

Objective: Identify the bias (x) that yields the highest posterior probability. Given 13 heads were observed out of 20 flips

Bayesian Coin Flip: Define Priors

```
prior.probability <- numeric(101)
prior.probability[0:101] <- 1
# Normalize; since it is a PDF, sum must be 1.0
prior.probability <- prior.probability / (sum(prior.probability))
barplot(prior.probability, names.arg = coin.bias,xlab = "Coin Bias (x)", ylab = "P(bias = x)",ylim = c(0,0.02), m
ain = "Prior Probability Density Funciton: Biases Equally Likely", col ="#85C0F9")
```


Marginal Likelihood

```
P(13 heads)
    = P(13 heads | bias = 0.00) P P(bias = 0.00)
    +P(13 heads | bias = 0.01) }\cdot\textrm{P}(\mathrm{ bias = 0.01)
    +P(13 heads | bias = 0.02)}\cdot\textrm{P}(\mathrm{ bias = 0.02)
    +P(13 heads | bias = 0.50) P P(bias = 0.50)
    +P(13 heads | bias = 0.99)}\cdot\textrm{P}(\mathrm{ bias = 0.99)
    +P(13 heads | bias = 1.00) }\cdot\textrm{P}(\mathrm{ bias = 1.00)
```


Marginal Likelihood

```
P(13 heads)
    = P(13 heads | bias = 0.00) }\textrm{P}(\mathrm{ bias = 0.00)
    +P(13 heads | bias = 0.01)}\cdot\textrm{P}(\mathrm{ bias = 0.01)
    +P(13 heads | bias = 0.02) }P(\mathrm{ Pias = 0.02)
    +P(13 heads | bias = 0.50) P P(bias = 0.50)
    +P(13 heads | bias = 0.99) · P(bias = 0.99)
    +P(13 heads | bias = 1.00) }\cdot\textrm{P}(\mathrm{ bias = 1.00)
```


Marginal Likelihood

```
P(13 heads)
    = P(13 heads | bias = 0.00) 0.0099
    +P(13 heads | bias = 0.01)}0.0.009
    +P(13 heads | bias = 0.02)}\cdot0.009
    +P(13 heads | bias = 0.50)}0.0.009
    +P(13 heads | bias = 0.99)}\cdot0.009
    +P(13 heads | bias = 1.00) }0.009
```


Marginal Likelihood


```
P(13 heads)
    = P(13 heads | bias = 0.00) 0.0099
    +P(13 heads | bias = 0.01) 0.0099
    +P(13 heads | bias = 0.02)}\cdot0.009
    +P(13 heads | bias = 0.50) 0.0099
    +P(13 heads | bias = 0.99) }0.009
    +P(13 heads | bias = 1.00) }0.009
```


Marginal Likelihood


```
P(13 heads)
    = 0.0.0.0099
    + 7.2e-22\cdot0.0099
    + 5.5e-18\cdot0.0099
    +0.07392883 0.0099
    +6.8e-10\cdot0.0099
    + 0.0\cdot0.0099
```

 coin bias
$=0.04714757$

Marginal Likelihood


```
coin.bias <- seq(from = 0, to = 1, by = 0.01)
```

```
(p.d13 <- sum(dbinom(13, 20, coin.bias) * (1 / 101)))
```

```
## [1] 0.04714757
```

$=0.04714757$

Bayesian Coin Flip: Likelihood

```
coin.bias <- seq(from \(=0\), to \(=1\), by \(=0.01\) )
```

likelihood <- dbinom(13, 20, prob = coin.bias)
barplot(likelihood, names.arg = coin.bias, ylab = "Likelihood: P(13 Heads | bias = x)", xlab = "Coin Bias (x)", c ol = "\#A95AAl") \#Color-blindess friendly purple

Posterior Probability

posterior.probability <- dbinom(13, 20, coin.bias) * (1 / 101) / p.d13 sum(posterior.probability)
\#\# [1] 1
barplot(posterior.probability, names.arg = coin.bias, xlab = "Coin Bias (x)", y lab = "Posterior Probability: P(bias = x | 13 Heads)", main = "Posterior Probab ility Density Function: 13/20 Heads Observed")

Recall Frequentist Conclusion:

- Bias = 0.65
- $95 \% \mathrm{Cl}=(0.41,0.85)$

Posterior Probability Density Function: 13/20 Heads Observed

Summary: Flipping a Coin with No expectations of fairness

$$
P(\text { bias }=x \mid 13 \text { heads })=\frac{P(13 \text { heads } \mid \text { bias }=x) \cdot P(\text { bias }=x)}{P(13 \text { heads })}
$$

Summary of Bayes' method

Observe Data

Re-evaluate model / prior distribution

Data: 13 heads
in 20 coin flips

Posterior

probability
distribution

What if I assume there is a good chance of the coin having a certain "bias"?

Prior
probability
distribution

Observe Data
Re-evaluate model / prior distribution

Posterior
 probability
 distribution

Data: 13 heads
in 20 coin flips

Our prior will reflect our assumption that our friend is honest

```
prior.probability <- numeric(101)
prior.probability[0:101] <- 1
prior.probability[48:54] <- 3
prior.probability[50:52] <- 5
prior.probability[51] <- 7
# Normalize; since it is a PDF, sum must be 1.0
prior.probability <- prior.probability / (sum(prior.probability))
barplot(prior.probability, names.arg = coin.bias)
```


Our posterior probability distribution reflects a complex interplay between the prior and the data

```
posterior.probability <-
    dbinom(13, 20, coin.bias) * prior.probability / p.d13
barplot(posterior.probability, names.arg = coin.bias)
```


What if I assume there is a good chance of the coin having a certain "bias"?

Prior
probability
distribution

Observe Data
Re-evaluate model / prior distribution

Posterior

probability
distribution

Data: 13 heads
in 20 coin flips

What if we collect more data?

Prior

probability
distribution

Observe Data

Re-evaluate model / prior distribution

Data: $\mathbf{1 3 0}$ heads
in 200 coin flips

Posterior
 probability
 distribution

?

Now in our posterior probability, the data "overwrites" our prior

```
p.d130 <- sum(dbinom(130, 200, coin.bias) * prior.probability)
posterior.probability <-
    dbinom(130, 200, coin.bias) * prior.probability / p.d130
barplot(posterior.probability, names.arg = coin.bias)
```


When we collect more data, the data "overwrites" our prior

Prior

probability
distribution

Observe Data
Re-evaluate model / prior distribution

Data: 130 heads in $\mathbf{2 0 0}$ coin flips

Posterior
 probability
 distribution

Another example - imagine there is a magic shop around the corner...

```
prior.probability <- numeric(101)
prior.probability[0:101] <- 1
prior.probability[48:54] <- 3
prior.probability[73:78] <- 3
# Normalize; since it is a PDF, sum must be 1.0
prior.probability <- prior.probability / (sum(prior.probability))
barplot(prior.probability, names.arg = coin.bias)
```


If we assume we are talking to a swindler, our posterior will reflect that

```
(p.d6 <- sum(dbinom(6, 10, coin.bias) * prior.probability))
## [1] 0.1083962
posterior.probability <- dbinom(6, 10, coin.bias) * prior.probability / p.d6
barplot(posterior.probability, names.arg = coin.bias)
```


If there is a magic shop around the corner, we conclude the coin may be biased

Observe Data
Re-evaluate model / prior distribution

Posterior
 probability
 distribution

Data: 6 heads
in 10 coin flips

Conclusion

Bayesian statistics

- Start with our understanding of how something works/ what is likely to happen
- We then update our belief based on our data
- Possible to perform multiple rounds of formulation of prior, evaluation of prior based on data and formulation of posterior.
- Does not rely on the notion of a finding "as or more inconsistent with our H_{0} "

Frequentist approaches

- Do not assign probabilities to a hypothesis (no prior, posterior)
- Usually less computationally intensive
- Lower risk of bias

References

- Banfelder, J. Quantitative Understanding in Biology 1.7 Bayesian Methods (https://physiology.med.cornell.edu/people/banfelder/qbio/lecture notes/1.7 bayesian.pdf)
- Orloff, J. and Bloom, J."Comparison of frequentist and Bayesian inference." 2014 (https://ocw.mit.edu/courses/mathematics/18-05-introduction-to-probability-and-statistics-spring2014/readings/MIT18 05S14 Reading20.pdf)

Further interesting materials on this topic:

- Kruschke, J. "Doing Bayesian Data Analysis"
- https://boyangzhao.github.io/posts/vaccine_efficacy bayesian (advanced blog post about how Bayesian statistics were used to determine COVID-19 vaccine efficacy)
- https://youtu.be/9TDjifpGj-k (fun crash course on the basics of Bayesian statistics)

DID THE SUN JUST EXPLODE?

(TTS NGHT, SO WERE NOT SURE.)

FREQUENTIST STATISTCIAN:

BAYESIAN STATISTICAN:

