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Probability
7th grade classroom

5 feet
Tall

Short

1 2 3 4 5 6 7 8 9 10 11 12

P(Tall) = 6/12 = 0.5



Conditional Probability
7th Grade Classroom

5 feet
Tall

Short

1 2 3 4 5 6 7 8 9 10 11 12

Probability that the student is tall given that the student is female (Conditional Probability)

We expect P(Tall | Female) > P(Tall) without taking any measurements of this particular class.

P(Tall | Female) = 4/7



Joint Probability
7th Grade Classroom

5 feet
Tall

Short

1 2 3 4 5 6 7 8 9 10 11 12

Probability that the student is tall and that the student is female (Joint Probability)

P(Tall , Female) = P(Female) ∗ P(Tall | Female)
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Joint Probability
7th Grade Classroom

5 feet
Tall

Short

1 2 3 4 5 6 7 8 9 10 11 12

P(Tall , Female) = P(Female) · P(Tall | Female) 

OR, equivalently

P(Female , Tall) = P(Tall) · P(Female | Tall)

P(Tall , Female) = P(Female , Tall) 
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Deriving Bayes’ Rule
We have shown that:

P(Tall , Female) = P(Female) · P(Tall | Female)
P(Tall , Female) = P(Tall) · P(Female | Tall)

Therefore: 
P(Female) · P(Tall | Female) = P(Tall) · P(Female | Tall)

Or generally, for generic events A & B, we have

P(Tall | Female) =
P(Female | Tall) ·P(Tall) 

P(Female) 

P(A | B) =
P(B | A) ·P(A) 

P(B) 



Bayes’ Rule: Terminology

P(A | B) =
P(B | A) ·P(A) 

P(B) 

Prior ProbabilityPosterior Probability

Marginal Likelihood

Likelihood 



Applying Bayes’ Rule

Information:
• 1% of women in a given population have breast cancer
• If a woman has breast cancer, there is a 90% chance that a particular 

diagnostic test will return a positive result (10% false negative rate)
• If a woman does not have breast cancer, there is a 10% chance that 

this diagnostic test will return a positive result (10% false positive rate). 
Question:

What is the probability that a woman with a positive test result actually 
has cancer? 



Multiple Choice:
Which notation shows the probability that a woman with a positive test 
result actually has cancer? 

a.) P(Cancer | Positive Test)

b.) P(Cancer , Positive Test)

c.) P(Positive Test | Cancer)

d.) P(Positive Test ∩ Cancer)
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Applying Bayes’ Rule

• Information:
• 1% of women in a given population have breast cancer
• If a woman has breast cancer, there is a 90% chance that a particular 

diagnostic test will return a positive result (10% false negative rate)
• If a woman does not have breast cancer, there is a 10% chance that 

this diagnostic test will return a positive result (10% false positive rate). 

P(Positive) = P(True Positive) + P(False Positive)
P(Positive) = P(Positive | Cancer)· P(Cancer) + P(+ | Healthy)· P(Healthy)
P(Positive) = 0.9·0.01 + 0.1·(1-0.01)
P(Positive) = 0.108



Now we can complete Bayes’ Rule

P(Cancer | Positive) =
P(Positive | Cancer) ·P(Cancer)

P(Positive) 

P(Cancer | Positive) =
0.9·0.01

= 0.083
0.108

Posterior Probability=
Likelihood ·Prior Probability

Marginal Likelihood



How can we apply Bayes’ 
rule to estimating model 

parameters?



Frequentist Coin Flip: 20 Flips; 13 Heads

Objective:  Estimate the Coin’s Bias with a 95% Confidence Interval 

Conclusion: 
• Bias = 0.65
• 95% CI = (0.41, 0.85)



We know how to compute the probability 
of any particular data outcome



Computing the probability of getting the data 
that we observed at various values of the 
coin’s bias



Imagine we have a pool of 101 coins each 
with a different bias (0.00, 0.001, 0.002,…)

We can calculate the probability of each of the 101 coins being the one that we chose, 
given the data that we observed.

Probability of having chosen the fair coin:



Imagine we have a pool of 101 coins each 
with a different bias (0.00, 0.001, 0.002,…)

We can calculate the probability of each of the 101 coins being the one that we chose, 
given the data that we observed.

Probability of having chosen the fair coin:
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≅	0.0099



Bayesian Coin Flip: 20 Flips; 13 Heads

P(bias = x | 13 heads) =
P(13 heads | bias = x) ·P(bias = x) 

P(13 heads) 

Prior ProbabilityPosterior Probability

Evidence or Marginal Likelihood

Likelihood 

Objective:  Identify the bias (x) that yields the highest posterior probability. Given 13 heads were 
observed out of 20 flips 



Bayesian Coin Flip: Define Priors

Prior for each potential bias 
= 1/101 
≅ 0.0099



Marginal Likelihood
P(13 heads) 

= P(13 heads | bias = 0.00) · P(bias = 0.00) 
+ P(13 heads | bias = 0.01) · P(bias = 0.01) 
+ P(13 heads | bias = 0.02) · P(bias = 0.02) 
…  
+ P(13 heads | bias = 0.50) · P(bias = 0.50) 
…
+ P(13 heads | bias = 0.99) · P(bias = 0.99) 
+ P(13 heads | bias = 1.00) · P(bias = 1.00) 



Marginal Likelihood
P(13 heads) 

= P(13 heads | bias = 0.00) · P(bias = 0.00) 
+ P(13 heads | bias = 0.01) · P(bias = 0.01) 
+ P(13 heads | bias = 0.02) · P(bias = 0.02) 
…  
+ P(13 heads | bias = 0.50) · P(bias = 0.50) 
…
+ P(13 heads | bias = 0.99) · P(bias = 0.99) 
+ P(13 heads | bias = 1.00) · P(bias = 1.00) 



Marginal Likelihood
P(13 heads) 

= P(13 heads | bias = 0.00) · 0.0099
+ P(13 heads | bias = 0.01) · 0.0099 
+ P(13 heads | bias = 0.02) · 0.0099
…  
+ P(13 heads | bias = 0.50) · 0.0099
…
+ P(13 heads | bias = 0.99) · 0.0099 
+ P(13 heads | bias = 1.00) · 0.0099



Marginal Likelihood
P(13 heads) 

= P(13 heads | bias = 0.00) · 0.0099
+ P(13 heads | bias = 0.01) · 0.0099 
+ P(13 heads | bias = 0.02) · 0.0099
…  
+ P(13 heads | bias = 0.50) · 0.0099
…
+ P(13 heads | bias = 0.99) · 0.0099 
+ P(13 heads | bias = 1.00) · 0.0099



Marginal Likelihood
P(13 heads) 

= 0.0· 0.0099
+ 7.2e-22· 0.0099 
+ 5.5e-18 · 0.0099
…  
+ 0.07392883 · 0.0099
…
+ 6.8e-10· 0.0099 
+ 0.0· 0.0099

= 0.04714757



Marginal Likelihood

= 0.04714757



Bayesian Coin Flip: Likelihood



Posterior Probability

Recall Frequentist Conclusion: 
• Bias = 0.65
• 95% CI = (0.41, 0.85)



Summary: Flipping a Coin with No 
expectations of fairness

P(13 Heads) = 0.04714757

P(bias = x | 13 heads) =
P(13 heads | bias = x) ·P(bias = x) 

P(13 heads) 

=



Summary of Bayes’ method

Prior
probability 
distribution

Observe Data
Re-evaluate model / 
prior distribution

Data: 13 heads
in 20 coin flips

Posterior
probability 
distribution



What if I assume there is a good chance 
of the coin having a certain “bias”?

Prior
probability 
distribution

Observe Data
Re-evaluate model / 
prior distribution

Data: 13 heads
in 20 coin flips

Posterior
probability 
distribution

?



Our prior will reflect our assumption that 
our friend is honest



Our posterior probability distribution reflects a 
complex interplay between the prior and the 
data



What if I assume there is a good chance 
of the coin having a certain “bias”?

Prior
probability 
distribution

Observe Data
Re-evaluate model / 
prior distribution

Data: 13 heads
in 20 coin flips

Posterior
probability 
distribution

?



What if we collect more data?

Prior
probability 
distribution

Observe Data
Re-evaluate model / 
prior distribution

Data: 130 heads
in 200 coin flips

Posterior
probability 
distribution

?



Now in our posterior probability, the data 
“overwrites” our prior



When we collect more data, the data 
“overwrites” our prior

Prior
probability 
distribution

Observe Data
Re-evaluate model / 
prior distribution

Data: 130 heads
in 200 coin flips

Posterior
probability 
distribution

?



Another example – imagine there is a 
magic shop around the corner…



If we assume we are talking to a swindler, 
our posterior will reflect that 



If there is a magic shop around the corner, we 
conclude the coin may be biased

Prior
probability 
distribution

Observe Data
Re-evaluate model / 
prior distribution

Data: 6 heads
in 10 coin flips

Posterior
probability 
distribution

?



Conclusion 
Bayesian statistics
• Start with our understanding of how something works/ what is likely to happen
• We then update our belief based on our data
• Possible to perform multiple rounds of formulation of prior, evaluation of prior 

based on data and formulation of posterior.
• Does not rely on the notion of a finding “as or more inconsistent with our H0”

Frequentist approaches
• Do not assign probabilities to a hypothesis (no prior, posterior)
• Usually less computationally intensive
• Lower risk of bias
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