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1 Fitting a Michaelis-Menten Model to Myoglobin Binding
Data

A classic mathematical model for enzyme kinetics is the Michaelis-Menten equation:

V =
Vmax[S]

Km + [S]
(1)

Given data of V versus [S] for a particular enzyme and substrate, we can determine the
Michaelis-Menten parameters Vmax and Km using a regression procedure. Consider, for
example, the following data for the association of myoglobin and oxygen.

PO2 (torr) 1.1 1.5 1.6 2.3 3.4 5.3 7.5 8.4 14.1

[O2] (mL/dL) 1.49 1.79 1.79 2.11 2.83 3.42 3.79 3.97 4.08

We begin by entering the data into R and inspecting a basic plot.

myoglobin <- data.frame(s = c(1.1, 1.5, 1.6, 2.3, 3.4, 5.3, 7.5, 8.4, 14.1),

v = c(1.49, 1.79, 1.79, 2.11, 2.83, 3.42, 3.79, 3.97, 4.08))

plot(v ~ s, data = myoglobin, xlim = c(0, 15), ylim = c(0, 5))
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2.3 Quantitative Comparison of Models and ANOVA

Note that here we explicitly give limits for the ordinate and abscissa. In this case, allowing
R to choose axis limits results in a deceiving plot.

Next, we proceed with a non-linear regression in the normal fashion. Initial guesses for
Vmax and Km are based on a quick glance at the plot. Recall that Vmax is the maximal
reaction rate, and Km is the value of [S] at which half of Vmax is realized.

m0.myoglobin <- nls(v ~ Vmax * s / (Km + s),

start = list(Vmax = 4, Km = 2),

data = myoglobin)

summary(m0.myoglobin)

##

## Formula: v ~ Vmax * s/(Km + s)

##

## Parameters:

## Estimate Std. Error t value Pr(>|t|)

## Vmax 5.1171 0.1678 30.50 1.05e-08 ***

## Km 2.8282 0.2511 11.26 9.72e-06 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.1244 on 7 degrees of freedom

##

## Number of iterations to convergence: 3

## Achieved convergence tolerance: 6.607e-06

A plot of the curve predicted by the model is consistent with the observed data:

x <- 0:15; lines(x, predict(m0.myoglobin, newdata = data.frame(s = x)),

col = "blue", lwd = 2)
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We proceed with quality control plots of residuals vs. fitted values, and a QQ-plot of the
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2.3 Quantitative Comparison of Models and ANOVA

residuals. It is difficult to evaluate these plots with so few data points, and the best that
we can hope for is that we see nothing overtly wrong. For good measure, we also perform
a Shapiro test for normality of the residuals.

plot(residuals(m0.myoglobin) ~ predict(m0.myoglobin))

qqnorm(residuals(m0.myoglobin))

qqline(residuals(m0.myoglobin))

shapiro.test(residuals(m0.myoglobin))

##

## Shapiro-Wilk normality test

##

## data: residuals(m0.myoglobin)

## W = 0.8802, p-value = 0.1578
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Finally, we check the confidence intervals of the model parameters to ensure that they
include only physiologically feasible values, and that they are not too wide considering the
small amount of data we have to work with.

confint(m0.myoglobin)

## Waiting for profiling to be done...

## 2.5% 97.5%

## Vmax 4.74741 5.535155

## Km 2.29631 3.476112

In this case, we are reasonably happy with our results. Ideally, we’d like a bit more data
to rule out any systematic variation in the residuals and heteroscedasticity, but otherwise
we are satisfied with our fit.
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2 Fitting a Michaelis-Menten Model to Hemoglobin Binding
Data

We will now repeat this exercise for similar data taken for hemoglobin. The experimental
observations are:

PO2 (torr) 2 10 18 20 31 42 50 60 80 98

[O2] (mL/dL) 0.4 2.0 5.6 6.2 11.0 15.0 16.8 18.2 19.0 18.8

hemoglobin = data.frame(s = c( 2, 10, 18, 20, 31, 42, 50, 60, 80, 98),

v = c(0.4, 2.0, 5.6, 6.2, 11.0, 15.0, 16.8, 18.2, 19.0, 18.8))

plot(v ~ s, data = hemoglobin)
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The plot of the raw data already suggests a sigmoidal shape that may not be consistent
with our model. However, this could just be noise in the model, so we proceed objectively
with a similar fit as before.

m0.hemoglobin <- nls(v ~ Vmax * s / (Km + s),

start = list(Vmax = 19, Km = 40),

data = hemoglobin)

x <- 0:100; lines(x, predict(m0.hemoglobin, newdata = data.frame(s = x)),

col = "blue", lwd = 2)
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2.3 Quantitative Comparison of Models and ANOVA

Here we see that the model curve does not fit the data too well. While we could proceed
with our quality control plots, for current purposes we’ll stop here and reconsider the
model. It turns out that if you take into account that hemoglobin is a multimeric protein,
and assume that affinity for binding at different sites is not independent, you get a more
elaborate form of the Michaelis-Menten relationship, called the Hill model:

V =
Vmax[S]n

Kn
m + [S]n

(2)

The exponent, n, is called the Hill exponent, and is an indication of the degree of cooper-
ativity the system exhibits. If n > 1, the system is said to exhibit positive cooperativity;
if n < 1, the system exhibits negative cooperativity.

We also see that when n = 1, the model reduces to the Michaelis-Menten model. In other
words, the Michaelis-Menten model is a special case of the Hill model. This relationship
between the models is important, and has a specific term: the models are said to be
‘nested’.

We proceed to fit the Hill model to our data:

m1.hemoglobin <- nls(v ~ Vmax * s ^ n / (Km ^ n + s ^ n),

start = list(Vmax = 19, Km = 40, n = 1),

data = hemoglobin)

## Error in numericDeriv(form[[3L]], names(ind), env): Missing value or an

infinity produced when evaluating the model

m1.hemoglobin <- nls(v ~ Vmax * s ^ n / (Km ^ n + s ^ n),

start = list(Vmax = 19, Km = 25, n = 1),

data = hemoglobin)

summary(m1.hemoglobin)

##

## Formula: v ~ Vmax * s^n/(Km^n + s^n)

##

## Parameters:

## Estimate Std. Error t value Pr(>|t|)

## Vmax 20.3000 0.5683 35.72 3.50e-09 ***

## Km 27.5289 1.0494 26.23 2.99e-08 ***

## n 2.4347 0.1789 13.61 2.72e-06 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.4781 on 7 degrees of freedom

c© Copyright 2008, 2021 J Banfelder, Weill Cornell Medical College page 5



2.3 Quantitative Comparison of Models and ANOVA

##

## Number of iterations to convergence: 8

## Achieved convergence tolerance: 1.149e-06

Note that on our first attempt, the iterative numerical procedure failed to converge. A
more informed initial guess met with success. Getting such optimization to converge is
sometimes more art than science, and occasionally it is not possible. Some tips to aid in
convergence are:

1. Plot the curve predicted by the model at the initial guess, and adjust the parameters
“by hand” to get a decent starting guess.

2. Try fitting the model with one or more of the parameters fixed. Then use the opti-
mized values for the remaining parameters as starting points for a full optimization.

3. Make use of the trace=TRUE option in the nls function.

4. Try different algorithms; the nls function supports algorithm = "plinear" and
algorithm = "port".

Also note that nls is designed to work with real data that contain some noise. If your
data were generated from a function and all of the residuals were zero, nls would probably
fail. This is counter-intuitive, as you would expect most optimizations to perform well
when the error is zero. The reason for this is that R not only finds the best values for
the parameters, but also makes estimates of their uncertainty; some non-zero residuals are
necessary to avoid mathematical singularities.

We now plot the model-predicted curve, and inspect the confidence intervals of the param-
eters.

lines(x, predict(m1.hemoglobin, newdata = data.frame(s = x)),

col = "red", lwd = 2)

confint(m1.hemoglobin)

## Waiting for profiling to be done...

## 2.5% 97.5%

## Vmax 19.145095 21.788067

## Km 25.382860 30.265201

## n 2.046159 2.879289
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Everything seems reasonable so far. Additional checks on the model are left as an exer-
cise.

We should note here that the physiologically accepted value of the Hill constant for
hemoglobin is between 2.5 and 3.0.

3 A Return to Myoglobin

Given the success of our Hill model, and given that regular Michaelis-Menten kinetics are
a special case of the Hill model, one might wonder why we don’t just always use the Hill
model. After all, if the system does not demonstrate cooperativity, the regression will tell
us by reporting a Hill exponent of unity.

Let’s try this approach with our myoglobin data. Our initial guess is informed by our
previous run:

m1.myoglobin <- nls(v ~ Vmax * s ^ n / (Km ^ n + s ^ n),

start = list(Vmax = 5.1, Km = 2.8, n = 1),

data=myoglobin)

summary(m1.myoglobin)

##

## Formula: v ~ Vmax * s^n/(Km^n + s^n)

##

## Parameters:

## Estimate Std. Error t value Pr(>|t|)

## Vmax 4.7768 0.3532 13.523 1.01e-05 ***

## Km 2.4393 0.3860 6.319 0.000734 ***

## n 1.1398 0.1606 7.099 0.000392 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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##

## Residual standard error: 0.1252 on 6 degrees of freedom

##

## Number of iterations to convergence: 7

## Achieved convergence tolerance: 4.956e-06

Here we see that the three parameter model fits the data almost as well as the two-
parameter model. This can be quantified by looking the sum of the squares of the residuals
(the objective function of the implicit optimizations we are performing whenever we run
nls).

sum(residuals(m0.myoglobin) ^ 2)

## [1] 0.1083247

sum(residuals(m1.myoglobin) ^ 2)

## [1] 0.09411742

Inspecting the CIs for the parameters is informative as well:

confint(m1.myoglobin)

## Waiting for profiling to be done...

## 2.5% 97.5%

## Vmax 4.1971852 6.156505

## Km 1.8864886 4.542650

## n 0.7902735 1.532160

The first thing that you should notice is that the CI for the Hill exponent is quite wide;
we could have reasonably significant positive or negative cooperativity. Comparing the
CIs for the other parameters with those from the two-parameter model shows that the
uncertainty in the three-parameter model is significantly larger. This alone is a reason
for rejecting the three parameter model if we can; it will reduce the uncertainty in the
parameter CIs. However, a more compelling argument is that of maximum parsimony, or
Occam’s razor. Given a choice between two models, if we don’t have good evidence to
support the more complex model (such as the cooperative Hill model), we should prefer
the simpler one.

Another way of looking at the problem is to keep in mind here that we only have nine data
points for myoglobin. A two parameter model therefore has seven degrees of freedom, while
a three parameter model has six. This is not an insignificant change, and there is a real
possibility that the Hill model represents an over-fit of the limited available data.

While choosing between models is often a judgment call that should integrate all available
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scientific information, there are tools that help us in the decision. We will consider two,
the F-test and an interesting, non-statistical approach called AIC.

4 The F-test for Model Comparison

Using the F-test to compare two models follows the classical framework for statistical
testing. You state a null hypothesis, assume it is true, and then compute a p-value that gives
the probability of observing your data (or something more extreme) under that assumption.
If the probability is low enough, you reject the null hypothesis.

We know that the more complex model will always fit better because we have more param-
eters. If we start with the more complex model and remove a parameter, we expect that
the SSQ will go up. In fact, we can quantify this expected change in SSQ: if the simpler
model is the correct one, then we expect that the relative change in the SSQ should be
about equal to the relative change in the degrees of freedom. If the complex model is
correct, we expect the SSQ to change more than this amount.

The p-value computed by the F-test answers the question: assuming that the simpler model
is the correct one, what is the probability that we see a change in SSQ at least large as
the one we observed when we simplify the complex model. If this p-value is low, then we
reject the null hypothesis and accept the more complex model.

From a purely statistical point of view, if the p-value is above our pre-determined cutoff,
we could not make any conclusion. However, since either model is considered a viable
candidate for explaining our data, we apply the principle of maximum parsimony, and
accept the less complex model.

The F-test is intimately related with concepts from ANOVA. In fact, to perform an F-
test for model comparison in R, simply use the anova function, passing it two models
as parameters. We begin by comparing the classic Michaelis-Menten model with the Hill
model for our myoglobin data.

anova(m0.myoglobin, m1.myoglobin)

## Analysis of Variance Table

##

## Model 1: v ~ Vmax * s/(Km + s)

## Model 2: v ~ Vmax * s^n/(Km^n + s^n)

## Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F)

## 1 7 0.108325

## 2 6 0.094117 1 0.014207 0.9057 0.378

Note that in this case, the SSQ changed to 0.108 from 0.094, an increase of about 15%.
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The degrees of freedom changed to 7 from 6, an increase of about 17%. The F-value is
the ratio of these changes; since it is close to one, we don’t expect these changes to be
inconsistent with the null hypothesis. The magic (or, if you prefer, the mathematics) of
the F-test is that it can convert this F-value into a p-value which tells us how surprised
we are to see such an F-value assuming that the simpler model is correct. The reported
p-value, 0.38, is not less than our standard cutoff of 0.05; we are not surprised. Therefore,
we have no reason to reject the simpler Michaelis-Menten model. Invoking the principle of
maximum parsimony, we therefore accept this simpler model as the better explanation for
these data.

We now apply this test to the hemoglobin models:

anova(m0.hemoglobin, m1.hemoglobin)

## Analysis of Variance Table

##

## Model 1: v ~ Vmax * s/(Km + s)

## Model 2: v ~ Vmax * s^n/(Km^n + s^n)

## Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F)

## 1 8 25.5516

## 2 7 1.6002 1 23.951 104.78 1.834e-05 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Here, we see that the p-value is well below our pre-established cutoff. If the simpler model
were correct, we’d be quite surprised to see as large a change in SSQ as we did. Note that
SSQ went from 1.6 to 25.5, a nearly 1,500% increase, while the degrees of freedom changed
from 7 to 8, a roughly 14% increase.

It is very, very important to know that the F-test is only applicable for nested models,
and only when you are fitting them to the exact same data. You can’t compare unrelated
models with it (e.g., the power law and the asymptotic exponential models we investigated
in the previous session). And you can’t compare a transformed and non-transformed model
with it (the data are not the same).

5 Using AIC to Compare Models

The derivation for Akaike’s Information Criteria (AIC) is well beyond the scope of this
course. It involves information theory, maximum likelihood theory, and entropy. We can
get a rough feel for what the method is doing by looking at the resultant formula.
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AIC = n · ln
(

SSQ

n

)
+ 2 (P + 1) (3)

Here, n is the number of observations, and P is the number of model parameters in the
regression. We observe that the larger the SSQ, the higher the AIC will be. Also, the AIC
increases as we add parameters to the model. Therefore, we can conclude that lower AICs
are better. We can imagine that if we add a model parameter (increment P ), the SSQ will
go down. If the parameter was worth adding, the increase in the second term will be more
than offset by a decrease in the first term.

By itself, the AIC is meaningless. The astute observer will realize that the SSQ has units
of measure, and therefore there is an implicit standardization. We can therefore make the
numerical value of the AIC whatever we like by altering the units of SSQ (or the standard
value).

This ostensible shortcoming is overcome, however, when we look at the difference between
the AICs of two models:

∆AIC = n · ln
(

SSQB

SSQA

)
+ 2 (PB − PA) (4)

The problem of the units of SSQ goes away. In practice, however, we can compute our
AICs using consistent units, and select the model with the lower value.

A correction to AIC is necessary when n is not much greater than P . The corrected AIC
equation is:

AICC = AIC + 2
(P + 1) (P + 2)

n− P
(5)

We can use the AIC to compare any two models fitted to the same dataset. The models do
not need to be nested; this makes the use of AICs a very powerful technique for comparing
unrelated models.

R can compute AICs for us; unfortunately, it does not apply the above correction, so we
need to do that ourselves. Applying this methodology to our myoglobin models again
confirms that Michaelis-Menten kinetics is the preferred description.

n <- length(myoglobin$s)

p <- length(coefficients(m0.myoglobin))

AICC.m0.myoglobin <- AIC(m0.myoglobin) + 2 * (p + 1) * (p + 2) / (n - p)

p <- length(coefficients(m1.myoglobin))

AICC.m1.myoglobin <- AIC(m1.myoglobin) + 2 * (p + 1) * (p + 2) / (n - p)

c(michaelis.menten = AICC.m0.myoglobin, hill = AICC.m1.myoglobin)
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## michaelis.menten hill

## -4.8091556 -0.8363698

Similarly, we see that the Hill model is preferred for the hemoglobin data.

n <- length(hemoglobin$s)

p <- length(coefficients(m0.hemoglobin))

AICC.m0.hemoglobin <- AIC(m0.hemoglobin) + 2 * (p + 1) * (p + 2) / (n - p)

p <- length(coefficients(m1.hemoglobin))

AICC.m1.hemoglobin <- AIC(m1.hemoglobin) + 2 * (p + 1) * (p + 2) / (n - p)

c(michaelis.menten = AICC.m0.hemoglobin, hill = AICC.m1.hemoglobin)

## michaelis.menten hill

## 46.75993 23.76821

You are much more likely to see F-tests in the literature. Because these tests are based on
the classical statistical framework, many people feel more comfortable with them. How-
ever, comparison of AICs can be more powerful, especially when dealing with non-nested
models.

It turns out that the difference in AIC (or AICC) is related to the probability that one
model is correct relative to another. A difference of 6 corresponds to a 95% chance that
the lower scoring model is correct. Therefore, if a more complex model has a lower score
than a simpler model, but the difference is less than 6, you may still want to stick with the
simpler model, because the evidence in favor of the complex one is not overwhelming. Given
two non-nested models (perhaps with the same number of parameters), you might simply
choose the one with the lower AIC score, but appreciate that the difference between the
models is not ‘significant’. We were warned that some of this is more art than science.

6 Confidence Intervals with the F-Test [Optional]

An interesting application of the idea behind the F-test is that it can be used as an
alternative means of estimating the uncertainty in model parameters. The basic idea
is to use what we learned about F-tests to compare a model with zero parameters to our
best fit model.

Consider the Michaelis-Menten myoglobin model. The SSQ for this model is 0.108325. We
had n = 9 data points and P = 2 parameters, so we had DF = 7 degrees of freedom. Take
this as model A.

Now consider a hypothetical model with no parameters; we would have n = 9, P = 0, and
DF = 9. Take this as model B.

When we compare these two models, we compute the F statistic in the usual way:
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F =

(
SSQB−SSQA

SSQA

)
(
DFB−DFA

DFA

) (6)

It turns out that we can compute the critical F-value for a 95% CI using R. This comes
from the F-distribution, and is computed in R using the command: qf(0.95, P, n - P).
For our case Fcrit = 4.737. This means that if the F-value computed for a comparison
between models A and B is less than 4.737, we do not consider them to be significantly
different.

Setting F to Fcrit in the above equation allows us to compute SSQcrit. For the myoglobin
data, SSQcrit = 0.2549351. This means that any model (with all parameters fixed) where
SSQ < 0.2549351 is considered not significantly different from the best-fit model we have.
Given any choice of parameters, we can compute SSQ and compare to this value.

ssq.crit <- 0.2549351

ssq.myoglobin <- function(Vmax, Km) {
sum((Vmax * myoglobin$s / (Km + myoglobin$s) - myoglobin$v) ^ 2)

}
Vmax <- data.frame(Vmax = seq(2, 10, 0.02))

Km <- data.frame(Km = seq(1, 5, 0.02))

cases <- merge(Vmax, Km)

head(cases) # no pun intended here

## Vmax Km

## 1 2.00 1

## 2 2.02 1

## 3 2.04 1

## 4 2.06 1

## 5 2.08 1

## 6 2.10 1

cases$ssq <- mapply(ssq.myoglobin, cases$Vmax, cases$Km)

plot(Vmax ~ Km, data = subset(cases, ssq < ssq.crit), pch = ".")
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The resultant plot gives an envelope of values that are consistent with the best-fit model.
Compare this to the asymptotic CIs reported by confint:

coefficients(m0.myoglobin)

## Vmax Km

## 5.117063 2.828153

confint(m0.myoglobin)

## Waiting for profiling to be done...

## 2.5% 97.5%

## Vmax 4.74741 5.535155

## Km 2.29631 3.476112

lines(rep(coefficients(m0.myoglobin)[["Km"]], 2),

confint(m0.myoglobin, 'Vmax'),

col = "blue", lwd = 3)

## Waiting for profiling to be done...

lines(confint(m0.myoglobin, 'Km'),

rep(coefficients(m0.myoglobin)[["Vmax"]], 2),

col = "blue", lwd = 3)

## Waiting for profiling to be done...
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If you think about it, this plot makes sense. The combination of parameters Vmax/Km is
the initial slope of the Michaelis-Menten curve. Based on the data we have (look back at the
original plot), we have a pretty good idea of what that should be. However, determining
the maximum (plateau) of the curve is quite difficult from our data (this is notoriously
difficult experimentally; you need to go to very high values of [S]). To get Km, which is
the half-maximal concentration, we need a decent idea of Vmax. So while there is significant
uncertainty in both Km and Vmax, we do expect that they have a relationship (i.e., they
are not independent).

7 Fitting with Categorical Variables

In all of the model-fitting examples that we’ve looked at so far, we have only considered
cases where the explanatory variables were continuous. But in many cases, we work with
systems where some (or all) of the explanatory variables are categorical. For example, we
may want to investigate if any of a number of drugs have an effect on cognitive ability, as
measured by how long it takes to solve a puzzle. To explore this, we begin by generating
some simulated data.

control <- data.frame( t = rnorm(10, mean = 7, sd = 0.6),

group = factor("ctrl"))

drug_a <- data.frame( t = rnorm( 8, mean = 9, sd = 0.6),

group = factor("drgA"))

drug_b <- data.frame( t = rnorm( 9, mean = 7, sd = 0.6),

group = factor("drgB"))

drug_c <- data.frame( t = rnorm( 7, mean = 7, sd = 0.6),

group = factor("drgC"))

drug_d <- data.frame( t = rnorm( 8, mean = 11, sd = 0.6),

group = factor("drgD"))

d <- rbind(control, drug_a, drug_b, drug_c, drug_d)
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d[sample(nrow(d), 6), ] # sample 6 rows from the dataframe

## t group

## 22 5.966859 drgB

## 10 6.955673 ctrl

## 9 8.062409 ctrl

## 41 11.139252 drgD

## 1 7.157122 ctrl

## 39 11.606003 drgD

str(d)

## 'data.frame': 42 obs. of 2 variables:

## $ t : num 7.16 6.85 8.1 7.4 7.22 ...

## $ group: Factor w/ 5 levels "ctrl","drgA",..: 1 1 1 1 1 1 1 1 1 1 ...

As you can see, we’ve synthesized a dataset where drug A has a small effect, and drug D
has a large effect, while drugs B and C have no real effect at all. You’ll also note that the
number of subjects in each group isn’t the same, but the SDs are. Also note that the group
variable is a factor in R; this is critical to everything else we’re going to do, so always check
this before doing your analyses.

If we had just collected this data in the lab, the first thing we’d want to do is plot it. Note
that when R knows that a variable is categorical, this is trivial.

plot(t ~ group, data = d)

ctrl drgA drgB drgC drgD

6
7

8
9

10
11

group

t

One way to think about this experiment is that there is a model that can predict the
time to solve the puzzle as a function of the group that your subject was in. Using R’s
model formula syntax for linear models, this is expressed the same way as you would for a
numerical (continuous) predictor:
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m.drug <- lm(t ~ group, data = d)

But the result is very different looking, because the dependent variable (time, in this case)
is a function of a categorical variable.

summary(m.drug)

##

## Call:

## lm(formula = t ~ group, data = d)

##

## Residuals:

## Min 1Q Median 3Q Max

## -1.31494 -0.43685 0.03644 0.48370 0.91999

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 7.3367 0.1843 39.804 < 2e-16 ***

## groupdrgA 1.5658 0.2765 5.664 1.79e-06 ***

## groupdrgB -0.6923 0.2678 -2.585 0.0138 *

## groupdrgC -0.5506 0.2872 -1.917 0.0630 .

## groupdrgD 3.7364 0.2765 13.514 6.97e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.5829 on 37 degrees of freedom

## Multiple R-squared: 0.8998,Adjusted R-squared: 0.8889

## F-statistic: 83.04 on 4 and 37 DF, p-value: < 2.2e-16

When you fit a linear model like this, under the hood R creates a set of dummy variables,
one for each level of the factor; we’ll write these as xs. In this case the set of variables
might be written as xctrl, xA, xB, xC , and xD. For each datapoint, the x corresponding
to the group’s level is set to one, and all of the others are set to zero. It is as if the data
looked something like this

## t group x_ctrl x_A x_B x_C x_D

## 10 6.955673 ctrl 1 0 0 0 0

## 42 11.285075 drgD 0 0 0 0 1

## 23 6.927736 drgB 0 0 1 0 0

## 34 6.711829 drgC 0 0 0 1 0

## 25 6.906656 drgB 0 0 1 0 0

## 8 6.021768 ctrl 1 0 0 0 0
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## 15 9.486211 drgA 0 1 0 0 0

## 7 7.762736 ctrl 1 0 0 0 0

and then R fitted this to a linear model with the equation:

y = β + βAxA + βBxB + βCxC + βDxD + ε (7)

In this case, β is the mean of the control group, and βi is the difference in the means of
the group treated with drug i and the control group (i.e., it is an estimate of the effect of
drug i relative to the control).

8 Introduction to ANOVA as Method of Model Compari-
son

In the above section, we developed a model that allows the mean response for each group
to take on a different value. Such a model will have as many parameters as there are
levels in the group factor. We’ve seen that when models have lots of parameters, there is a
danger of overfitting, so we should ask ourselves if the data might be better explained by a
model where a single mean suffices to explain the data from all of the groups. Biologically
speaking, this would be a case where none of the drugs have an observable effect. Such a
model would have a trivially simple form of. . .

y = β + ε (8)

. . . and be computed with the command:

m.null <- lm(t ~ 1, data = d)

summary(m.null)

##

## Call:

## lm(formula = t ~ 1, data = d)

##

## Residuals:

## Min 1Q Median 3Q Max

## -2.4647 -1.2396 -0.7408 1.3418 3.5722

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)
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## (Intercept) 8.1065 0.2699 30.04 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 1.749 on 41 degrees of freedom

For this model, the optimal value of β is unsurprisingly the mean of all of the measurements
(or, alternatively, the mean of the one and only group for this simple model).

We can then use the anova() function to compare these two models. This answers the
question: Are the data better explained by a model where each drug might have an effect
(i.e. has its own mean), or one where the drugs are assumed to have no effect (all measure-
ments are sampled from a distribution with the same mean)? Of course the “drug” model
will have a lower SSQ than the “null” model, but the F-test performed by the anova()

function tells us if the reduction in the sum of squares is worth the added complexity of
the additional four parameters in the “drug” model.

anova(m.null, m.drug)

## Analysis of Variance Table

##

## Model 1: t ~ 1

## Model 2: t ~ group

## Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 41 125.41

## 2 37 12.57 4 112.84 83.038 < 2.2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

From the strong p-value here we can see that the null hypothesis that all group means
are the same has been squarely rejected, leading us to conclude that at least some of the
true means differ. This kind of test is often called an omnibus test, because it tests the
relationship between many means in a single test.

You should be aware that there is another way to get to the same result. This uses the
aov() function, which is a bit more direct, but doesn’t show you (or even compute) the
group means.

a <- aov(t ~ group, data = d)

summary(a)

## Df Sum Sq Mean Sq F value Pr(>F)

## group 4 112.84 28.21 83.04 <2e-16 ***

## Residuals 37 12.57 0.34
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## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

In either case, if you run an omnibus test and get a result that indicates that the more
complex model is preferred, your next questions will likely be along the lines of “OK,
so now that I am convinced that not all of the means are the same, can you tell me
which groups differ, and by how much?” You probably want to know which drugs have
a (statistically) significant effect relative to the control, and possibly which drugs are
(statistically) significantly better than others. Answering such questions is in the realm of
what are called post-tests (because you perform them after the omnibus test). There are
many procedures for post-tests, and the details depend on which comparisons you want to
make. As you hopefully appreciate by now, post-test procedures will account for multiple
hypothesis testing concerns.

One common post-testing procedure is known as Tukey’s Honest Significant Differences.
This computes 95% CIs for the differences between all groups. Tukey’s HSD procedure is
similar to a series of pairwise t-tests followed up by a multiple hypothesis testing correction,
but has the benefit of using all of the pooled variance information, making it a bit more
powerful.

R makes this particular procedure almost too easy if you’ve used the aov() function to
perform your ANOVA:

(tHSD <- TukeyHSD(a)) # remember, outer ()s to assign and print in one step

## Tukey multiple comparisons of means

## 95% family-wise confidence level

##

## Fit: aov(formula = t ~ group, data = d)

##

## $group

## diff lwr upr p adj

## drgA-ctrl 1.5658368 0.7732179 2.3584557 0.0000171

## drgB-ctrl -0.6923259 -1.4600917 0.0754398 0.0940236

## drgC-ctrl -0.5505516 -1.3740232 0.2729200 0.3266882

## drgD-ctrl 3.7363877 2.9437687 4.5290066 0.0000000

## drgB-drgA -2.2581627 -3.0701167 -1.4462088 0.0000000

## drgC-drgA -2.1163884 -2.9812066 -1.2515703 0.0000003

## drgD-drgA 2.1705509 1.3350571 3.0060446 0.0000001

## drgC-drgB 0.1417743 -0.7003242 0.9838728 0.9884934

## drgD-drgB 4.4287136 3.6167597 5.2406676 0.0000000

## drgD-drgC 4.2869393 3.4221211 5.1517575 0.0000000
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par(mar=c(5,8,2,1)) ; plot(tHSD, las=1) # horizontal x-axis labels

−2 0 2 4

drgD−drgC

drgD−drgB

drgC−drgB

drgD−drgA

drgC−drgA

drgB−drgA

drgD−ctrl

drgC−ctrl

drgB−ctrl

drgA−ctrl

95% family−wise confidence level

Differences in mean levels of group

It is important to remember that, so far, these plots and analyses only address statistical
significance. If, for example, you believe that differences in time to complete the cognitive
task of less than 2.5 are not biologically significant, then you might adorn the plot as
follows:

par(mar=c(5,8,2,1)) ; plot(tHSD, las=1) # horizontal x-axis labels

abline(v = c(-2.5, 2.5), col="red")
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Your interpretation might then be that although drug A has a statistically significant
effect relative to the control condition, it is not plausible that the difference is biologically
significant. Drug D, however, clearly has biologically significant activity relative to control.
Similarly, while we can see that while drug D has statistically significantly different activity
than drug A, we can’t tell if the difference is large enough to be considered biologically
significant.

There are other post-test procedures to choose from; for example if you’re only interested
in comparing each drug to the control condition, but not to each other, you might look at
Dunnett’s procedure. Often, in R, you’ll need to pull in addtional packages (and figure out
how to use them!) to get access to some of the more complex alternatives.
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8.1 Some cautions around ANOVA

There are three assumptions that go into an ANOVA analysis:

1. The data within each group is sampled from a normal distribution

2. The SDs of the groups are the same

3. The data are independent

Like many statistical tests we’ve covered, ANOVA is pretty robust to the first assumption.
As we’ve done before, unless your data are pathologically non-normal, you’re probably OK
on the first point.

Data independence is more a function of study design and sampling methods than of
statistical analysis. Other than to re-iterate that it is important to ensure that data
collected are indeed independent, we won’t discuss this further here.

The second assumption, that of equal SDs, is important because ANOVA is not particularly
robust to this assumption. As a rule of thumb, if the SD of one group is three or more
times that of another, you very well might have something to worry about. The effects are
magnified when the groups have substantially different ns, and especially so when the ns is
small (say less than 5 or 6 per group). The effect is manifested as a substantial departure
of the true Type I error rate from the α cutoff used. Depending on the particulars, this
could be an increase or a decrease in the deviation.

You can use the leveneTest() function in the car package to assess this.

library(car)

## Loading required package: carData

leveneTest(t ~ group, data = d)

## Levene's Test for Homogeneity of Variance (center = median)

## Df F value Pr(>F)

## group 4 1.4267 0.2444

## 37

The null hypothesis for the Levene test is that the variances of all the groups are the same.
Here we see that the p-value for the Levene test is above 0.05. Thus, we cannot reject H0; it
is plausible that the assumptions of equal variances across groups is true, and we probably
don’t need to worry about ANOVA problems due to unequal variances. In practice, one
usually performs a Levene test before running anova() or aov().
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8.2 Taking ANOVA further

In this example, we’ve looked at the simplest case of an ANOVA: a so-called one-way be-
tween subjects ANOVA. If you have two categorical explanatory variables, you can perform
a two-way ANOVA by using a model formula that looks something like y ~ a + b if you
want a model where the effects of each factor are independent and additive, or y ~ a * b

if you want a model where the factors interact.

Working with complex experiment designs in R can be challenging for the beginner, in
large part because it is difficult to find consistent, systematic guidance that isn’t replete
with technical language that you may not be familiar with. A good resource for learning
about complex designs is the software package Prism, published by GraphPad. Prism does
a good job of asking you how your data is structured, and guiding you to appropriate tests
and procedures based on your responses. It also does a excellent job of explaining what
different options mean in real-world, jargon-free terms, and offers sound but opinionated
advice. Performing a guided analysis in Prism, and then reproducing the results in R, is a
good way of both learning priniciples and building confidence that you’re using the tools
correctly, while still maintaining the benefits of reproducibility, automatability, scalability,
and the breadth of methods available in R. Plus, Prism is expensive, so you may not want
to assume that everyone you collaborate with will have access to it.

Finally, we point you to the excellent text “Designing Experiments and Analyzing Data,”
by Maxwell and Delaney, for a very complete yet readable review of the theory of ANOVA.
At over 1,000 pages, this book may appear intimidating, but is remarkably accessible.
In particular, this book develops ANOVA theory primarily based on a model comparison
approach, unlike most texts which emphasize almost exclusively a partioning of variance
approach. To my mind, the model comparison approach is more intuitive and generalizable
to complex designs. Be sure to pick up the third edition of this book; the second edition
(published in 2004) works examples in two other statisitcal programs (SAS and SPSS),
while the third edition includes examples in R.
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