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1 The Binomial Distribution

Consider a series of n repeated, independent yes/no experiments (these are known as
Bernoulli trials), each of which has a probability p of being ‘successful’. The binomial
distribution gives the probability of observing exactly k successes.

In R, the dbinom function will compute this probability for you: dbinom(k, n, p)

Note that the binomial distribution is a discrete distribution. That is, it only makes sense
for integer values of k. You can’t ask: what is the probability of observing 4.3 heads in ten
coin tosses. Also note that the binomial distribution has two parameters: n and p.

We can print and plot the probabilities of observing k heads in ten flips of a fair coin:

x <- 0:10

dbinom(x, size = 10, prob = 0.5)

## [1] 0.0009765625 0.0097656250 0.0439453125 0.1171875000 0.2050781250

## [6] 0.2460937500 0.2050781250 0.1171875000 0.0439453125 0.0097656250

## [11] 0.0009765625

barplot(dbinom(x, size = 10, prob = 0.5), names.arg = x)
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0 1 2 3 4 5 6 7 8 9

0.
00

0.
10

0.
20

Note that we have chosen to represent the probability density function (PDF) with a bar
plot, and not a line plot. This emphasizes the discrete nature of the probability density
function.

In the literature, you will often see reference to ‘successful’ and ‘unsuccessful’ Bernoulli
trials. This implies that one outcome is worse than the other, which is not always the case.
In the case of heads vs. tails, or blue vs. brown eyes, it is not clear which outcome is
considered a ‘success’. While most would consider death to be the ‘unsuccessful’ outcome,
in the case of, say, cancer treatment, cell death (of cancer cells) would be considered
successful. The bottom line is to be sure you convey (or understand) what you mean by a
successful outcome, and recognize that the label is arbitrary.

We can also compute and plot cumulative probabilities. This is useful for answering ques-
tions such as: What is the probability of observing more than seven heads in ten tosses of
a fair coin? This is computed here:

1 - pbinom(7, size = 10, prob = 0.5)

## [1] 0.0546875

To see why the above command gives the answer we are looking for, consider that pbinom(7,
10, 0.5) yields the probability of observing 0. . . 7 heads. Subtracting that from one thus
gives the probability of all other cases; i.e., 8. . . 10 heads.

We can, of course, also generate a plot of the cumulative density function:

barplot(pbinom(x, 10, 0.5), names.arg = x)
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Note that, by default, the pbinom function reports the probability for k ≤ x (the first
argument). When working with discrete density functions, be careful about off-by-one
errors. You can verify your answer for the above problem by summing the PDF:

sum(dbinom(8:10, 10, 0.5))

## [1] 0.0546875

We can also use R to generate random values that follow a distribution:

rbinom(50, 10, 0.5)

## [1] 5 5 5 3 8 3 6 5 6 7 7 2 7 4 2 4 8 6 5 3 7 5 3 6 3 5 6 5 6 1 4 5 7 5

## [35] 3 8 3 5 4 7 6 4 2 3 5 6 3 5 5 4

hist(rbinom(1000000, 10, 0.5), breaks = seq(-0.5, 10.5, by = 1))

Histogram of rbinom(1e+06, 10, 0.5)

rbinom(1e+06, 10, 0.5)
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Note how the binning was specified in the above example.

A histogram of a large quantity of random data from a distribution will look a lot like
a plot of the density function from that distribution, except that the density function is
normalized.

The above distribution roughly resembles a normal distribution. This is not always the
case for a binomial distribution:
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x <- 0:10; barplot(dbinom(x, 10, 0.2), names.arg = x)
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The peak for this distribution is not surprising; there are 10 trials where each have a 20%
chance of success, so we expect a peak at around 2.

Consider 100 trials, with each having a probability of success of 2%. We still expect a peak
at around 2.

x <- 0:10; barplot(dbinom(x, 100, 0.02), names.arg = x)
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Note that we choose to only plot the first eleven bars (k = 0 . . . 10). We could plot out to
100, but, in this case, the probably of observing more than 10 successes is quite small. In
fact, we know how to compute this:

1 - pbinom(10, 100, 0.02)

## [1] 5.646028e-06
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2 The Poisson Distribution

Let’s plot the binomial distribution where n increases while n · p is constant. We’ll learn a
little more about plotting in R as we go. If you are using R Studio, this is a great time to
open up an R Script window. . .

Attempt #1:

x <- 0:10

par(mfrow = c(1, 4))

barplot(dbinom(x, 10, 0.2), names.arg = x)

barplot(dbinom(x, 100, 0.02), names.arg = x)

barplot(dbinom(x, 1000, 0.002), names.arg = x)

barplot(dbinom(x, 10000, 0.0002), names.arg = x)
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Nice! We can make a panel of plots with R; this is a useful way to compare plots. But in
this case the axes are not uniform, and the plots should be labeled.

Attempt #2:
par(mfrow = c(1, 4))

n <- 10; barplot(dbinom(x, n, 2/n), names.arg = x, ylim = c(0, 0.35), main = paste("n = ", n))

n <- 100; barplot(dbinom(x, n, 2/n), names.arg = x, ylim = c(0, 0.35), main = paste("n = ", n))

n <- 1000; barplot(dbinom(x, n, 2/n), names.arg = x, ylim = c(0, 0.35), main = paste("n = ", n))

n <- 10000; barplot(dbinom(x, n, 2/n), names.arg = x, ylim = c(0, 0.35), main = paste("n = ", n))
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Computers are good at repetitive tasks; lets get R to do the repetitive work:

Attempt #3:
par(mfrow = c(1, 4))

for (n in c(10, 100, 1000, 10000)) {
barplot(dbinom(x, n, 2/n), names.arg = x, ylim = c(0, 0.35), main = paste("n = ", n))

}
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Finally, we reset our plotting parameter so we get single plots instead of panels.

par(mfrow = c(1, 1))

We can observe that as n increases, the distribution converges. This is, in fact, the Poisson
distribution. It has only one parameter, often denoted in the literature as λ, which is the
average number of successes observed in a particular interval of interest.

The Poisson distribution is very useful. It is used to model count data per unit time
(or length, or area, or whatever). Once you have measured λ, you can use the Poisson
distribution to compute the probability of observing a specific number of events in a given
interval. You don’t ever have to know what the underlying probability of your event is, or
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how many times your event of interest did not happen.

The Poisson distribution is sometimes referred to as the distribution of “rare events”. This
is because p (the probability of a single Bernoulli trial being successful) is usually very,
very small. This is counterbalanced by the fact that there are many, many opportunities
for that event to happen so, overall, the event is not that rare.

Some examples of processes modeled by the Poisson distribution are: ticks of a radiation
counter, mutations of a DNA sequence, lightning strikes, and neuronal spike trains.

Example: An average of four babies are born each night on a particular maternity ward.
(A) What is the probability that the intern on call will be able to sleep through the night?
(B) What is the probability that the intern will be swamped (defined as more than six
births to be attended to)?

For part (A), we simply evaluate the Poisson distribution for the case where k = 0, and
λ = 4:

dpois(0, 4)

## [1] 0.01831564

For part (B), we will use the cumulative distribution function:

1 - ppois(6, 4)

## [1] 0.110674

With a 1.8% chance of getting a good night’s sleep and an 11% chance of getting swamped,
things don’t look too good for our intern.

Exercise: Add one more plot to the panel you made above, showing the Poisson distribu-
tion for λ = 2.

Note that, like the binomial distribution, the Poission distribution is also discrete. It does
not make sense to ask what the probability of 3.7 births on the ward is. However, λ does
not need to be an integer; it is fine if the average number of births on the ward is 4.1 per
night (our intern’s life is just a little bit tougher then).

As you have probably figured out by now, R has a set of functions for each standard
probability distribution. Functions prefixed by d report the probability density function;
those prefixed with a p report the cumulative distribution function, and those with an r

generate random samples from the underlying distribution:

rpois(50, 0.25)

## [1] 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0

## [35] 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
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3 The Geometric Distribution

The geometric distribution models the waiting time between successes of Bernoulli trials,
each with probability p. They tend to have long tails.

x <- 0:20

barplot(dgeom(x, 0.25), names.arg = x)
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Again, we also have a cumulative density function. . .

barplot(pgeom(x, 0.25), names.arg = x)
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. . . and a means of generating random values from the distribution:

rgeom(10, 0.25)

## [1] 8 3 4 0 0 0 1 2 1 6

Note that the distribution is defined as the number of (discrete) trials between successful
outcomes. This implies that the distribution is defined for x = 0. In fact, the value of the
distribution at x=0 should be obvious. . .

In addition to the d, p, and r functions, R has a quantile function for each distribu-
tion.
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Example: Assuming two heterozygotic parents and classical Mendelian inheritance, how
many offspring would you have to breed to be 95% sure that at least one will express a
recessive phenotype?

The answer is (to me, at least) surprisingly high. . .

qgeom(0.95, 0.25) + 1

## [1] 11

We need to add one in the computation above because the last breeding is successful, and
the geometric distribution is expressed in terms of the number of unsuccessful trials before
a successful one. The relatively high answer is not that unexpected when you recall that
this distribution does have long tails.

There is another way to reason this problem, and verify the result. We know that the
probability of each offspring not expressing the recessive phenotype is 0.75. So, for example,
the probability of not having any offspring that express the desired recessive phenotype if
two are bred is 0.752 = 0.5625. For three offspring, the result is 0.753 = 0.4218. To solve
our problem, we need to increase our exponent until the resulting probability is less than
1 − 95% = 0.05.

x <- 0:15; cbind(x, y = 0.75 ^ x)

## x y

## [1,] 0 1.00000000

## [2,] 1 0.75000000

## [3,] 2 0.56250000

## [4,] 3 0.42187500

## [5,] 4 0.31640625

## [6,] 5 0.23730469

## [7,] 6 0.17797852

## [8,] 7 0.13348389

## [9,] 8 0.10011292

## [10,] 9 0.07508469

## [11,] 10 0.05631351

## [12,] 11 0.04223514

## [13,] 12 0.03167635

## [14,] 13 0.02375726

## [15,] 14 0.01781795

## [16,] 15 0.01336346
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4 The Uniform Distribution

This is the first continuous distribution we consider in this section. It has two parameters,
a minimum and a maximum of a range. The idea behind the uniform distribution is trivial:
any value (not just integers) between the minimum and maximum is equally likely to be
found in a sample from this population.

curve(dunif(x, 0, 10), -0.3, 10.3, ylim = c(-0.005, 0.105))
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A plot of the probability density function for the uniform distribution looks like a plateau.
Note that the PDF is normalized, so that the area under the curve is unity. Also note that
the plot that R produces is an approximation; the edges of the plateau should be perfectly
vertical.

For continuous distributions we plot curves, not bars.

The probability of observing a particular value from a continuous distribution is essentially
zero. The chances of observing, say, exactly 5.000000000000000000000000 (with infinitely
many zeros) from the above distribution is nil. However, you can compute the probability
of observing a number within a range, say between 4.99 and 5.01. This is the area under
the density curve between these limits, or, alternatively, the integral of the probability
density function from the lower limit to the upper limit.

5 The Exponential Distribution

The exponential distribution is a continuous form of the geometric distribution. It has
one parameter, which is the reciprocal of the expected value (i.e., the average rate of the
event). This is usually written as 1/λ. Consider a neuron that spikes, on average, at 10Hz.
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curve(dexp(x, rate = 10), 0, 0.5)

curve(pexp(x, rate = 10), 0, 0.5)
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Like its discrete counterpart, the exponential distribution is used to model waiting times.
While the geometric distribution models time as discrete steps, or attempts of a Bernoulli
trial, the exponential distribution models waiting times as a continuous variable.

‘Time’, in this context, can be any interval between events, and is sometimes actually a
length or other variable (for example, your event could be passing a red house along a road).
You will occasionally see the distance between mutated nucleotides along a chromosome
modeled with an exponential distribution. Very strictly speaking, this should be modeled
with a geometric distribution, since the positions are discrete. The exponential distribution
is not a bad approximation for this.

As with all of the distributions we have surveyed that are derived from Bernoulli trials, there
is an important assumption that the trials are independent. From the description above,
one might näıvely imagine that you could model wake/sleep intervals as an exponential
distribution (we are waiting a continuous amount of time for an event, falling asleep, to
take place). However, this is probably not a good model, because we tend not to fall asleep
just after getting up; the events are not independent. (This might, however, be a good
model for wake/sleep intervals for cats!)

6 The Normal Distribution

Almost everyone is familiar with the shape of the normal distribution; it is the famous bell
curve. Formally, it has two parameters, the mean and the standard deviation.

curve(dnorm(x, mean = 0, sd = 1), -4, 4)
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One very important result, and one of the few numerical facts that should be memorized,
is that 95% of the area under the normal probability distribution function lies within the
interval x± 1.96 · SD.

Using R, we can add lines to our plot above to demarcate this region:

lines(c(-1.96, -1.96), c(0, dnorm(-1.96)))

lines(c(+1.96, +1.96), c(0, dnorm(+1.96)))
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In the lines functions above, the first vector is a list of x-coordinates; the second is a list
of y-coordinates.

We can also produce plots with shaded regions:

x <- seq(-4, 4, 0.01)

y <- dnorm(x)

plot(x, y, type = "l")

polygon(c(-1.96, x[x >= -1.96 & x <= 1.96], 1.96),

c( 0, y[x >= -1.96 & x <= 1.96], 0),

col = "red")
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We can also recover the 95% interval using the cumulative distribution function:

pnorm(1.96) - pnorm(-1.96)

## [1] 0.9500042

And, of course, we have our quantile function. You should be able to trivially predict
the results of the expressions below. Once you think you know the result, run them and
confirm your understanding.

qnorm(0.5); qnorm(0.025); qnorm(0.975)

7 Statistical Tests, the Normal Distribution, and the Cen-
tral Limit Theorem

Many statistical tests are derived under the assumption that the data follow a normal
distribution.

Most biological data do not strictly follow a normal distribution. In particular, to be
strictly true, you must be able to admit, albeit at very low probabilities, any real value,
including arbitrarily large positive and negative numbers. Also, any discrete distribution
cannot, by definition, be normal.

The central limit theorem, a cornerstone of statistical theory, resolves this apparent conflict.
It states that the distribution of estimated means of a population based on repeated, finite
samples, will approximate a normal distribution. The amazing thing about the central
limit theorem is that this works even if the underlying distribution is not normal. In fact,
even if it is pathologically not normal, the central limit theorem still holds. Since much
statistical testing involves comparing means (we will spend the next two sessions doing
this), we have some hope of our statistics being valid.

Another way of thinking about the central limit theorem is that it tells us that the SEM
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is a valid indication of how well we know the true mean of the underlying population,
even if the sample mean and SD are not a good representation of the distribution of the
population.

It also turns out that a measurement subject to noise from several random sources (of
approximately the same magnitude) will approximate a normal distribution, even if the
sources of the underlying noise are not normal.

If your data are not normally distributed, you have a few choices:

• Use statistical tests anyway; many are quite robust and work well, even for moderately
non-normal distributions of data. However, some are not, and you may want to
research the robustness of a particular method before using it.

• Transform your data so they are normally distributed. Logarthmic transformations
are often helpful (especially when dealing with sizes of organisms or colonies). You
may find some justification for doing this by considering the underlying physical
process. Do be careful to take due account of units of measure if you do this, as it is
mathematically incorrect to take a logarithm of a quantity that is not dimensionless.

• Use a non-parametric test. These are usually based on rank-order of data, rather
than the actual numerical values themselves. Non-parametric tests are usually sub-
stantially less powerful than their parametric counterparts. This means that you
have a higher chance of your analysis being inconclusive, and may need to increase
n in your experimental design to get good results.

• Use tests specifically designed for a particular non-normal distribution. These can
be difficult to find and apply correctly. We’ll see one common example in the next
session, but, in general, it may be wise to work with a professional statistician if you
need to go down this road.

8 Assessing Normality

Since most statistical tests can be applied if the data are ‘close to normal’, we need a way
of assessing this. The waters are somewhat murky, but there are a few options:

• You can plot histograms and density functions and visually inspect them.

We have seen some problems with histograms in an earlier session. The arbitrariness
in the binning makes them more than occasionally misleading. Adding a density
plot can help, but there is still another underlying problem: our brains are not that
good at distinguishing a normal distribution (one that follows a Gaussian curve) from
other generally bell shaped distributions.
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• You can perform formal statistical tests for normality.

This is less useful than you would initially expect. They are often inconclusive for
small n, as there is simply not enough information to make any kind of determination.
Furthermore, for large n, the test usually concludes that the distribution of the data
is not normal (because most biological data actually are not), even when it is close
enough to normal for other tests to work. These tests can be a useful tool, however,
in automated pipelines when you can’t practically inspect all your data and you need
to find a few needles in a haystack.

• You can evaluate normality using QQ plots.

This is a favorite of statisticians. QQ plots (or quantile-quantile plots) transform
your data in such a way that if your data are normally distributed, the points will
fall close to a straight line. Since our visual system is very good at assessing linearity,
with a little training, we can often perform better at distinguishing normal from
non-normal distributions using QQ plots than with histograms or density functions.

9 Formal Tests for Normality

R provides two functions that can be used to test for normality. shapiro.test and ks.test

perform the Shapiro test and the Kolmogorov-Smirnov tests, respectively. Neither one is
considered to be that good any more, although the Kolmogorov-Smirnov test used to be
common, and many people are familiar with it. You may want to download and install the
nortest package for some more modern options.

For our purposes, QQ plots (described below) are a better means of assessing normality, but
we will take this opportunity to have a first look at formal statistical hypothesis testing.
We’ll cover the principles in more detail in later sessions, so just consider this a light
introduction.

Formal statistical testing begins by formulating a null hypothesis; this is often written as
H0. In our case:

H0: The data being tested were sampled from a normally distributed population.

Next, we compute a p-value. The p-value answers this question (and only this question,
and no other):

Assuming that the null hypothesis is true, what is the probability of seeing a distribution
as far or further from normality as your sampled test data?

If the p-value is small (say< 0.05 for 95% certainty), then we reason that the null hypothesis
is unlikely to be true. This is a qualified form of reductio ad absurdum.
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If the p-value is not low we can’t conclude anything about the null hypothesis. The test is
inconclusive. The data could have come from a normal distribution, or the null hypothesis
could have been false. We have no idea. In other words, these tests can only rule out
normality, but can never confirm it.

To perform the Kolmogorov-Smirnov test in R. . .

x <- rnorm(100)

ks.test(x, "pnorm", mean = mean(x), sd = sd(x))

##

## One-sample Kolmogorov-Smirnov test

##

## data: x

## D = 0.077243, p-value = 0.5896

## alternative hypothesis: two-sided

x <- rexp(100)

ks.test(x, "pnorm", mean = mean(x), sd = sd(x))

##

## One-sample Kolmogorov-Smirnov test

##

## data: x

## D = 0.1876, p-value = 0.001754

## alternative hypothesis: two-sided

For now, just look at the p-values. Note that ks.test can be used to test against other
distributions.

When we run the KS test in these examples, it is important to understand that we are
testing against a specific distribution with a specified mean and SD. You can, for example,
generate data from a normal distribution with a mean of 0.1, and then test it against the
default, standard distribution where the mean is zero and the SD is unity. As we may
expect, for small n it is difficult to rule out the null hypothesis, whereas for large n, it is
possible:

ks.test(rnorm(20, mean = 0.1), "pnorm")

##

## One-sample Kolmogorov-Smirnov test

##

## data: rnorm(20, mean = 0.1)

## D = 0.17581, p-value = 0.5109

## alternative hypothesis: two-sided
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ks.test(rnorm(100000, mean = 0.1), "pnorm")

##

## One-sample Kolmogorov-Smirnov test

##

## data: rnorm(1e+05, mean = 0.1)

## D = 0.040389, p-value < 2.2e-16

## alternative hypothesis: two-sided

10 QQ Plots

Consider a sample of 100 values. We begin by computing and plotting a quantile for each
value in the distribution.

sampled_points <- rnorm(100)

(x_values <- ((1:100) - 0.5) / 100) # wrap an assignment in () to print

## [1] 0.005 0.015 0.025 0.035 0.045 0.055 0.065 0.075 0.085 0.095 0.105

## [12] 0.115 0.125 0.135 0.145 0.155 0.165 0.175 0.185 0.195 0.205 0.215

## [23] 0.225 0.235 0.245 0.255 0.265 0.275 0.285 0.295 0.305 0.315 0.325

## [34] 0.335 0.345 0.355 0.365 0.375 0.385 0.395 0.405 0.415 0.425 0.435

## [45] 0.445 0.455 0.465 0.475 0.485 0.495 0.505 0.515 0.525 0.535 0.545

## [56] 0.555 0.565 0.575 0.585 0.595 0.605 0.615 0.625 0.635 0.645 0.655

## [67] 0.665 0.675 0.685 0.695 0.705 0.715 0.725 0.735 0.745 0.755 0.765

## [78] 0.775 0.785 0.795 0.805 0.815 0.825 0.835 0.845 0.855 0.865 0.875

## [89] 0.885 0.895 0.905 0.915 0.925 0.935 0.945 0.955 0.965 0.975 0.985

## [100] 0.995

y_values <- qnorm(x_values)

plot(y_values)
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1.2 PDFs and the Normal Distribution

This sigmoid shape is characteristic of the Gaussian distribution. Reading from the plot,
this says that, if the data we have were indeed sampled from a normal distribution, we
should expect the smallest value to be about -2.6. We can see this numerically as well:

y_values[1]

## [1] -2.575829

Similarly, the 20th value (in rank order) should be around -0.86:

y_values[20]

## [1] -0.8596174

Now, if we plot the expected values against the actual values, we expect a more or less
straight line.

plot(y_values, sort(sampled_points))
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If your data are from a normal distribution, but with a different mean and/or SD, you will
get a straight line with a different slope or intercept. If your data are not from a normal
distribution, you will observe systematic departures from a straight line.

Especially for non-large n, due to sampling variability, you will see some squiggle in the
data, even if it is sampled from a normal distribution. A common technique for assessing
normality is to prepare a panel of eight or ten QQ plots. One is plotted with your data,
and the others with random samples from the normal distribution of the same size as your
data set. If the panel with your data stands out, you can conclude that it is probably not
normal.

Note that QQ plots are not limited to testing for normality. You can test against any
postulated distribution, and can even plot two distributions against each other.

If you are testing for normality, R has two built-in functions that streamline the pro-
cess:
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1.2 PDFs and the Normal Distribution

qqnorm(sampled_points); qqline(sampled_points)
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11 Exercises

This exercise emphasizes that, when n is small, it is difficult to assess whether or not
observed data comes from a normal distribution.

Generate 10 points from a uniform distribution sampled from values between
0 and 10.

Compute the mean and the standard deviation of the data points that you just
generated.

Generate seven more datasets of 10 points each, sampled from the normal dis-
tribution with the mean and standard deviation that you just computed.

Make a panel of eight QQ plots of the eight datasets you’ve generated to assess
if the data looks like it is derived from the normal distribution.

Repeat all of the steps above, except this time each dataset should include 400
points.

You should find that, when there are few points in each dataset, none of the QQ plots
are substantially qualitatively different from the other. When there are many points
in each dataset, we see that the non-normal data deviates systematically from the
expected straight line at the upper and lower bounds of the range.
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