Bayesian Methods

Quantitative Understanding in Biology

1 October 2020
Lecture Notes by Jason Banfelder
Slide Compilation and Demonstratives by Ariana Clerkin

Introduction: Frequentist vs. Bayesian

DID THE SUN JUST EXPLODE?
THIS NEUTRINO DETECTOR MEASURES WHEITHER THE SUN HAS GONE NOVA.

THEN, TRROUS TWO DICE. IF THEY BOTH COME UP SIX ITUES TOUS OTHERWISE, TTTELS THE TRUITH.
LET'S TRY.
DETECTOR! HAS THE
SUN GONE NOVA?

Probability

$7^{\text {th }}$ grade classroom

Conditional Probability $7^{\text {th }}$ Grade Classroom

Probability that the student is Tall given that the student is Female (Conditional Probability)
We expect $P($ Tall | Female $)>P($ Tall $)$ without taking any measurements of this particular class.
This interplay goes both ways: generally $\mathrm{P}($ Female \mid Tall $)>P($ Female $)$

Joint Probability $7^{\text {th }}$ Grade Classroom

Probability that the student is Tall and that the student is Female (Joint Probability)

$$
4 / 12=7 / 12 \cdot 4 / 7
$$

Joint Probability $7^{\text {th }}$ Grade Classroom

Deriving Bayes' Rule

We have shown that:

$$
\begin{aligned}
& P(\text { Tall }, \text { Female })=P(\text { Female }) \cdot P(\text { Tall } \mid \text { Female }) \\
& P(\text { Tall }, \text { Female })=P(\text { Tall }) \cdot P(\text { Female } \mid \text { Tall })
\end{aligned}
$$

Therefore:

$$
\begin{aligned}
& P(\text { Female }) \cdot P(\text { Tall } \mid \text { Female })=P(\text { Tall }) \cdot P(\text { Female } \mid \text { Tall }) \\
& P(\text { Tall } \mid \text { Female })=\frac{P(\text { Female } \mid \text { Tall }) \cdot P(\text { Tall })}{P(\text { Female })}
\end{aligned}
$$

Or generally, for generic events $A \& B$, we have

$$
P(A \mid B)=\frac{P(B \mid A) \cdot P(A)}{P(B)}
$$

Bayes' Rule: Terminology

Likelihood

Applying Bayes' Rule

Information:

- 1% of women in a given population have breast cancer
- If a woman has breast cancer, there is a 90% chance that a particular diagnostic test will return a positive result (10% false negative rate)
- If a woman does not have breast cancer, there is a 10% chance that this diagnostic test will return a positive result (10% false positive rate).

Question:

What is the probability that a woman with a positive test result actually has cancer?

Multiple Choice:

Which notation shows the probability that a woman with a positive test result actually has cancer?
a.) P(Cancer | Positive Test)
b.) P(Cancer , Positive Test)
c.) $P($ Positive Test | Cancer)
d.) P (Positive Test \cap Cancer)

Applying Bayes' Rule

- Information:

- 1% of women in a given population have breast cancer
- If a woman has breast cancer, there is a 90% chance that a particular diagnostic test will return a positive result (10\% false negative rate)
- If a woman does not have breast cancer, there is a 10% chance that this diagnostic test will return a positive result (10% false positive rate).

$$
\mathrm{P}(\text { Cancer } \mid \text { Positive })=\frac{\mathrm{P}(\text { Positive } \mid \text { Cancer }) \cdot \mathrm{P}(\text { Cancer })}{\mathrm{P}(\text { Positive })}
$$

Applying Bayes' Rule

- Information:
- 1% of women in a given population have breast cancer
- If a woman has breast cancer, there is a 90% chance that a particular diagnostic test will return a positive result (10\% false negative rate)
- If a woman does not have breast cancer, there is a 10% chance that this diagnostic test will return a positive result (10% false positive rate).
0.01
$P($ Cancer \mid Positive $)=\frac{P(\text { Positive } \mid \text { Cancer }) \cdot P(\text { Cancer })}{P(\text { Positive })}$

Applying Bayes' Rule

- Information:

- 1% of women in a given population have breast cancer
- If a woman has breast cancer, there is a 90% chance that a particular diagnostic test will return a positive result (10\% false negative rate)
- If a woman does not have breast cancer, there is a 10% chance that this diagnostic test will return a positive result (10% false positive rate).

$$
P(\text { Cancer } \mid \text { Positive })=\frac{P(\text { Positive } \mid \text { Cancer }) \cdot P(\text { Cancer })}{P(\text { Positive })}
$$

Applying Bayes' Rule

- Information:

- 1% of women in a given population have breast cancer
- If a woman has breast cancer, there is a 90% chance that a particular diagnostic test will return a positive result (10\% false negative rate)
- If a woman does not have breast cancer, there is a 10% chance that this diagnostic test will return a positive result (10% false positive rate).

$$
P(\text { Cancer } \mid \text { Positive })=\frac{P(\text { Positive } \mid \text { Cancer }) \cdot P(\text { Cancer })}{P(\text { Positive })}
$$

Applying Bayes' Rule

- Information:

- 1% of women in a given population have breast cancer
- If a woman has breast cancer, there is a 90% chance that a particular diagnostic test will return a positive result (10\% false negative rate)
- If a woman does not have breast cancer, there is a 10% chance that this diagnostic test will return a positive result (10\% false positive rate).
$P($ Positive $)=P($ True Positive $)+P($ False Positive $)$
$P($ Positive $)=P($ Positive \mid Cancer $) \cdot P($ Cancer $)+P(+\mid$ Healthy $) \cdot P($ Healthy $)$
$P($ Positive $)=0.9 \cdot 0.01+0.1 \cdot(1-0.01)$
$P($ Positive $)=0.108$

Now we can complete Bayes' Rule

$P($ Cancer \mid Positive $)=\frac{P(\text { Positive } \mid \text { Cancer }) \cdot P(\text { Cancer })}{P(\text { Positive })}$
$P($ Cancer \mid Positive $)=\frac{0.9 \cdot 0.01}{0.108}=0.083$

Frequentist Coin Flip: 20 Flips; 13 Heads

Objective: Estimate the Coin's Bias with a 95\% Confidence Interval

```
binom.test(13, 20)
##
## Exact binomial test
##
## data: 13 and 20
## number of successes = 13, number of trials = 20, p-value =
## 0.2632
## alternative hypothesis: true probability of success is not equal to 0.5
## 95 percent confidence interval:
## 0.4078115 0.8460908
## sample estimates:
## probability of success
## 0.65
Conclusion:
- Bias \(=0.65\)
- \(95 \% \mathrm{Cl}=(0.41,0.85)\)
```


Bayesian Coin Flip: 20 Flips; 13 Heads

Objective: Identify the bias (x) that yields the highest posterior probability. Given 13 heads were observed out of 20 flips

Bayesian Coin Flip: Define Priors

```
prior.probability <- numeric(101)
prior.probability[0:101] <- 1
# Normalize; since it is a PDF, sum must be 1.0
prior.probability <- prior.probability / (sum(prior.probability))
barplot(prior.probability, names.arg = coin.bias,xlab = "Coin Bias (x)", ylab = "P(bias = x)",ylim = c(0,0.02), m
ain = "Prior Probability Density Funciton: Biases Equally Likely", col ="#85C0F9")
```


Bayesian Coin Flip: Likelihood

```
coin.bias <- seq(from \(=0\), to \(=1\), by \(=0.01\) )
```

likelihood <- dbinom(13, 20, prob = coin.bias)
barplot(likelihood, names.arg = coin.bias, ylab = "Likelihood: P(13 Heads | bias = x)", xlab = "Coin Bias (x)", c ol = "\#A95AA1") \#Color-blindess friendly purple

Marginal Likelihood

```
P(13 heads)
    = P(13 heads | bias = 0.00) P P(bias = 0.00)
    +P(13 heads | bias = 0.01) }\cdot\textrm{P}(\mathrm{ bias = 0.01)
    +P(13 heads | bias = 0.02)}\cdot\textrm{P}(\mathrm{ bias = 0.02)
    +P(13 heads | bias = 0.50) P P(bias = 0.50)
    +P(13 heads | bias = 0.99)}\cdot\textrm{P}(\mathrm{ bias = 0.99)
    +P(13 heads | bias = 1.00) }\cdot\textrm{P}(\mathrm{ bias = 1.00)
```


Marginal Likelihood

```
P(13 heads)
    = P(13 heads | bias = 0.00) }\textrm{P}(\mathrm{ bias = 0.00)
    +P(13 heads | bias = 0.01)}\cdot\textrm{P}(\mathrm{ bias = 0.01)
    +P(13 heads | bias = 0.02) }P(\mathrm{ Pias = 0.02)
    +P(13 heads | bias = 0.50) P P(bias = 0.50)
    +P(13 heads | bias = 0.99) · P(bias = 0.99)
    +P(13 heads | bias = 1.00) }\cdot\textrm{P}(\mathrm{ bias = 1.00)
```


Marginal Likelihood

```
P(13 heads)
    = P(13 heads | bias = 0.00) 0.0099
    +P(13 heads | bias = 0.01)}0.0.009
    +P(13 heads | bias = 0.02)}\cdot0.009
    +P(13 heads | bias = 0.50)}0.0.009
    +P(13 heads | bias = 0.99)}\cdot0.009
    +P(13 heads | bias = 1.00) }0.009
```


Marginal Likelihood

```
P(13 heads)
    = P(13 heads | bias = 0.00) 0.0099
    +P(13 heads | bias = 0.01) 0.0099
    +P(13 heads | bias = 0.02)}\cdot0.009
    +P(13 heads | bias = 0.50) 0.0099
    +P(13 heads | bias = 0.99)}00.009
    +P(13 heads | bias = 1.00) }0.009
```


Marginal Likelihood

```
P(13 heads)
    = 0.0\cdot0.0099
    + 7.2e-22\cdot0.0099
    + 5.5e-18\cdot0.0099
    +0.07392883 0.0099
    +6.8e-10\cdot0.0099
    + 0.0\cdot0.0099
= 0.04714757
```


Marginal Likelihood

```
(p.d13 <- sum(dbinom(13, 20, coin.bias) * (1 / 101)))
```

\#\# [1] 0.04714757
$=0.04714757$

Posterior Probability

posterior.probability <- dbinom(13, 20, coin.bias) * (1 / 101) / p.d13 sum(posterior.probability)
\#\# [1] 1
barplot(posterior.probability, names.arg = coin.bias, xlab = "Coin Bias (x)", y lab $=$ "Posterior Probability: $P(b i a s=x \mid 13$ Heads)", main = "Posterior Probab ility Density Function: 13/20 Heads Observed")

Posterior Probability Density Function: 13/20 Heads Observed

Recall Frequentist Conclusion:

- Bias = 0.65
- $95 \% \mathrm{Cl}=(0.41,0.85)$

Summary: Flipping a Coin with No expectations of fairness

$$
P(\text { bias }=x \mid 13 \text { heads })=\frac{P(13 \text { heads } \mid \text { bias }=x) \cdot P(\text { bias }=x)}{P(13 \text { heads })}
$$

Going Further

Doing Bayesian Data Analysis

A Tutorial with R, JAGS, and Stan

