
Quantitative	Understanding	in	Biology	
Module	III:	Linear	Difference	Equations	
Lecture	III:	A	First	Look	at	Eigenvectors	
In	our	work	on	linear	dynamic	systems,	we	have	shown	that	a	general,	two-variable	linear	system	can	be	
written	in	the	form…	

𝑥!!!
𝑦!!! =

𝑎!! 𝑎!"
𝑎!" 𝑎!!

𝑥!
𝑦! 	

This	system	can	be	solved	iteratively	when	the	initial	conditions	x0	and	y0	are	specified.	Such	a	system	is	
fully	described	by	six	parameters:	a11,	a12,	a21,	a22,	x0,	and	y0.	

More	generally,	and	more	compactly,	a	linear	system	of	arbitrary	size	can	be	written	in	vector	and	
matrix	notation	as…	

𝒙!!! = 𝑴 ∙ 𝒙!	 	 Initial	Conditions:	𝒙!	

If	this	system	has	p	state	variables,	then	M	is	a	p	x	p	matrix,	and	x	is	a	vector	of	length	p.	The	system	is	
defined	by	p2	+	p	=	p	(p	+	1)	parameters.	For	the	2	x	2	case,	p	=	2	and	there	are,	of	course,	six	
parameters.	

We	have	seen	that	the	general	solution	to	the	two-variable	system	can	be	written	as…	

𝑥!!! = 𝐴!𝜆!! + 𝐴!𝜆!!

𝑦!!! = 𝐵!𝜆!! + 𝐵!𝜆!!
	

Like	its	difference	equation	counterpart,	this	system	also	has	six	parameters:	A1,	A2,	B1,	B2,	λ1,	and	λ2.	
We’ve	seen	that	the	eigenvalues	(λs)	are	completely	specified	by	the	matrix	in	the	difference	equation	
representation	of	the	system.	

We	mentioned	in	passing	that	the	As	and	Bs	would	be	dependent	on	the	initial	conditions	of	the	system;	
we’ll	be	digging	a	bit	deeper	into	these	As	and	Bs	now.	

It	is	important	to	realize	that	there	is	no	more	information	in	the	difference	equation	representation	of	a	
system	and	its	corresponding	solution	in	terms	of	As,	Bs,	and	λs.	Anything	you	might	want	to	know	
about	the	system	can	be	answered	by	either	representation.	The	answers	to	some	questions	you	might	
have	(e.g.,	what	is	the	long-term	behavior	of	the	system)	might	be	more	obvious	when	the	system	is	
written	on	one	form	or	the	other,	but	this	is	a	matter	of	convenience	of	interpretation,	not	new	
information.	The	fact	that	both	systems	are	fully	defined	by	six	parameters	is	an	indication	that	there	is	
no	new	information	in	the	second	representation.	
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Further	reasoning	along	these	lines	tells	us	that	the	As	and	Bs	in	the	above	solution	cannot	be	
determined	by	the	initial	conditions	alone.	After	all,	the	initial	conditions	represent	two	‘pieces’	of	
information	about	the	whole	system,	while	the	As	and	Bs	together	hold	four	‘pieces’	of	information.	The	
extra	two	pieces	of	information	needed	to	determine	the	As	and	Bs	are,	not	surprisingly,	found	in	the	
matrix	M	(there	is	no	other	place	where	this	information	could	come	from,	after	all).	

From	our	two	variable	linear	system	you	can	show	that	the	ratio	A1/B1	is	solely	determined	by	the	
elements	of	M.	We	won’t	derive	this	conclusion	here,	but	you	can	consult	a	text	on	linear	algebra	if	you	
want	a	proof.	Similarly,	the	ratio	A2/B2	is	also	fixed	solely	by	the	matrix	M.	Those	two	ratios	use	up	all	of	
the	information	in	M,	and	the	rest	of	the	system	is	defined	by	the	initial	conditions.	

Now,	if	A1/B1	is	fixed	to	a	value	determined	by	M,	then	the	direction	of	the	vector	
𝐴!
𝐵!

	is	fixed.	Here	the	

term	‘direction’	doesn’t	include	a	sign,	so	(2,	2)	is	said	to	point	in	the	same	direction	as	(-2,	-2).	We’ll	call	
this	vector	v1,	and	since	we	really	know	about	it	is	its	direction,	we’ll	(arbitrarily	choose	to	write	it	such	
that	its	magnitude,	or	norm,	is	one.	In	other	words,	for	our	two	variable	system,	the	vector	v1	really	only	
has	one	‘piece’	of	information	embedded	in	it,	which	is	its	direction.	

If	we	apply	analogous	reasoning	in	defining	v2	to	embody	information	about	the	direction	of	the	vector	
𝐴!
𝐵!

,	then	we	can	write	the	solution	to	our	two	variable	linear	system	of	difference	equations	as…	

𝑥!
𝑦! = 𝑘!𝒗!𝜆!! + 𝑘!𝒗!𝜆!!	

The	really	profound	point	here	is	that	both	the	vs	and	the	λs	are	determined	solely	by	the	matrix	M,	
while	the	k’s	embody	information	about	the	initial	conditions.	We	say	that	each	eigenvalue	(λi)	have	a	
corresponding	eigenvector	(vi).	These	eigenpairs	come	only	from	the	matrix	defining	the	system,	and	
not	from	the	initial	conditions.	

This	solution	can	be	generalized	beyond	a	two	parameter	system.	It	is	written	as…	

𝒙! = 𝑘!𝑣!𝜆!! = 𝑘!𝒗!𝜆!! + 𝑘!𝒗!𝜆!! + 𝑘!𝒗!𝜆!! +⋯	

Note	that	for	a	three	parameter	system,	each	eigenvector	represents	two	‘pieces’	of	information.	You	
can	specify	the	direction	of	a	vector	is	3D	space	with	only	two	numbers	(e.g.,	latitude	and	longitude).	So	
the	three	eigenvalues	represent	three	‘pieces’	of	information	and	three	eigenvectors	represent	six	
‘pieces’	of	information.	These	are	solely	determined	by	the	nine	values	in	the	3	x	3	matrix	in	the	
difference	equation	formulation.	The	three	ks	in	the	solution	will	be	determined	with	the	addition	
specification	of	the	three	initial	conditions	of	the	system.	

Inspecting	the	solution	above,	you	can	see	that	the	fact	that	the	eigenvectors	are	determined	solely	by	
M	has	profound	implications.	Most	importantly,	the	eigenvector	corresponding	to	the	dominant	
eigenvalue	will	give	you	the	long	term	ratio	of	the	state	variables	in	the	system.	This	long-term	ratio	is	
determined	solely	by	the	matrix,	not	the	initial	conditions.	More	generally,	you	can	think	of	the	
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evolution	or	trajectory	of	a	dynamical	system	as	a	linear	combination	of	these	characteristic	vectors,	
where	the	weights	vary	over	time	with	a	growth	or	decay	governed	by	their	corresponding	eigenvalues.	

Some	Worked	Examples	
Typically,	eigenvalues	and	eigenvectors	are	computed	numerically	using	a	computer.	This	is	essential	for	
systems	with	large	matrices.	In	MATLAB,	these	are	computed	together	using	commands	as	shown	in	the	
following	example:	

>> alpha = 0.07; 
>> beta = 0.05; 
>> gamma = 25; 
>> M = [alpha * gamma, beta * (1 - alpha); gamma, 0] 
 
M = 
 
    1.7500    0.0465 
   25.0000         0 
 
>> [V,D] = eig(M) 
 
V = 
 
    0.0902   -0.0205 
    0.9959    0.9998 
 
 
D = 
 
    2.2636         0 
         0   -0.5136 
	

Notice	that	two	matrices,	V	and	D,	are	defined	at	once	when	you	use	this	syntax.	The	diagonal	elements	
of	the	matrix	D	contain	the	eigenvalues,	and	each	column	of	the	matrix	V	is	the	corresponding	
eigenvector.	In	the	example	above,	which	revisits	our	plants	and	seeds	model	from	the	first	lecture	in	

this	section,	the	dominant	eigenvalue	is	2.2636,	and	the	corresponding	eigenvector	is	 0.09020.9959 .	We	

know	from	the	eigenvalue	that	our	model	population	of	annual	plants	and	seeds	will	grow	in	an	
unbounded	fashion,	and	we	now	know	by	inspecting	the	eigenvector	that,	in	the	long	term,	the	ratio	of	
seeds	to	plants	will	be	11:1	(0.9959	/	0.0902	=	11.04).	

Let’s	revisit	our	model	of	molecular	evolution	of	nucleotide	sequences.	In	the	simplest	model,	where	all	
possible	mutations	are	equally	likely,	the	eigenvalues	and	eigenvectors	are	computed	as	follows…	
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>> a = 0.01; 
>> M = [ 1-3*a a a a; a 1-3*a a a; a a 1-3*a a; a a a 1-3*a] 
 
M = 
 
    0.9700    0.0100    0.0100    0.0100 
    0.0100    0.9700    0.0100    0.0100 
    0.0100    0.0100    0.9700    0.0100 
    0.0100    0.0100    0.0100    0.9700 
 
>> [V,D] = eig(M) 
 
V = 
 
    0.3770   -0.7570    0.1866    0.5000 
   -0.8445   -0.0443    0.1866    0.5000 
    0.3668    0.6286    0.4693    0.5000 
    0.1007    0.1727   -0.8426    0.5000 
 
 
D = 
 
    0.9600         0         0         0 
         0    0.9600         0         0 
         0         0    0.9600         0 
         0         0         0    1.0000 
	

Here	you	can	see	that	all	of	the	values	of	the	state	variables	(the	probabilities)	in	the	eigenvector	
corresponding	to	the	dominant	eigenvalue	are	equal.	Note	that	when	MATLAB	computes	eigenvectors,	
the	norm	is	one,	whereas	for	a	Markov	model	we	need	to	renormalize	so	that	the	sum	is	one…	

>> V(:,4)/sum(V(:,4)) 
 
ans = 
 
    0.2500 
    0.2500 
    0.2500 
    0.2500 
	

Exercise:	Consider	a	model	where	a	pair	of	forward	and	reverse	mutation	rates	is	not	equal.	Can	you	
explain	these	results…	
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>> M = [ 1-4*a a a a; 2*a 1-3*a a a; a a 1-3*a a; a a a 1-3*a] 
 
M = 
 
    0.9600    0.0100    0.0100    0.0100 
    0.0200    0.9700    0.0100    0.0100 
    0.0100    0.0100    0.9700    0.0100 
    0.0100    0.0100    0.0100    0.9700 
 
>> sum(M) 
 
ans = 
 
     1     1     1     1 
 
>> [V,D] = eig(M) 
 
V = 
 
   -0.3961   -0.7071    0.0000    0.0000 
   -0.5941    0.7071    0.8165   -0.0020 
   -0.4951    0.0000   -0.4082   -0.7061 
   -0.4951    0.0000   -0.4082    0.7081 
 
 
D = 
 
    1.0000         0         0         0 
         0    0.9500         0         0 
         0         0    0.9600         0 
         0         0         0    0.9600 
 
>> V(:,1)/sum(V(:,1)) 
 
ans = 
 
    0.2000 
    0.3000 
    0.2500 
    0.2500 
	

Let’s	revisit	one	more	model	we	looked	at	briefly	in	the	second	lecture.	We	saw	that	a	system	with	the	

matrix	M	=	
0.8 −0.05 −0.05
0.05 1 0
0 0.05 1

	exhibited	a	long-term	decay	with	a	periodic	behavior.	A	3D	plot	of	

the	trajectory	of	the	system	(see	notes	from	previous	lecture)	showed	that	after	a	short	time,	the	
system	spiraled	in	a	plane.	You	can	understand	this	behavior	a	bit	better	when	you	look	at	the	
eigenvalues	and	eigenvectors.	
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>> M = [0.8 -0.05 -0.05; 0.05 1.0 0; 0 0.05 1.0] 
 
M = 
 
    0.8000   -0.0500   -0.0500 
    0.0500    1.0000         0 
         0    0.0500    1.0000 
 
>> [V,D] = eig(M) 
 
V = 
 
   0.9650            -0.2114 - 0.0845i  -0.2114 + 0.0845i 
  -0.2535            -0.0839 + 0.4362i  -0.0839 - 0.4362i 
   0.0666             0.8665             0.8665           
 
 
D = 
 
   0.8097                  0                  0           
        0             0.9952 + 0.0252i        0           
        0                  0             0.9952 - 0.0252i 
	

Note	here	that	when	eigenvalues	are	complex,	the	terms	in	the	corresponding	eigenvectors	are	also	
complex,	and	also	come	in	complex-conjugate	pairs.	This	occurs	in	such	a	way	that	the	end	result	will	
always	be	real	numbers.	While	an	intuitive	interpretation	of	complex	eigenvectors	may	be	illusive,	you	
can	see	from	the	results	above	is	that	the	norm	of	the	real	eigenvalue	is	much	smaller	than	those	of	the	
complex	eigenvalues.	This	tells	us	that	after	a	short	time,	the	first	eigenvector	will	have	little	weight	
(because	0.8097n	will	diminish	more	quickly	than	the	others),	and	we’ll	be	effectively	left	with	a	system	
described	by	the	remaining	two	eigenpairs.	Since	a	linear	combination	of	any	two	vectors	define	a	plane,	
we	can	deduce	that	this	system	will	be	confined	to	a	plane	after	the	first	term	dies	away,	and	that	we	
should	see	rotation	in	the	plane	because	the	remaining	eigenpairs	are	complex.	

One	Last	Note	
For	completeness,	we	need	to	note	that	there	is	a	case	we	don’t	consider	in	this	course.	If	you	see	two	
identical	eigenvalues,	the	mathematics	and	general	form	of	the	solutions	are	different.	We	don’t	worry	
about	this	because,	in	many	cases,	the	parameters	in	the	matrix	M	are	not	known	exactly,	and	to	
obtaining	perfectly	equal	eigenvalues	for	a	general	matrix	is	very	unlikely.	However,	in	some	cases	
nature	arranges	thing	just	so,	and	the	structure	of	the	matrix	may	dictate	equal	eigenvalues.	If	you	run	
into	such	a	case,	you’ll	need	to	refer	to	a	text	to	learn	how	to	handle	it.	


