SVM Lab: Supervised learning of
oncogenic pathway signatures

Steve Lianoglou, Xuejing Li, Christina Leslie

March 27, 2010

Department of Computational Biology
Memorial Sloan-Kettering Cancer Center

lianos@cbio.mskcc.org

Contents
I_Overviewl 1
[1.0.1 Sottware Requirements|. 2
2 Discovering Cancer Signatures| 2
2.1 SVM for Classification| 5
2.2 Cross Validation| 7
2.3 SVM for Gene Selection| 10
B_PCA] 12
4__Human vs Mousel 14
6_Trivial 16

1 Overview

This tutorial will present an approach that uses support vector machines
(SVMs) in order to construct “gene signatures” for different cancer pathways.
Conceptually, the approach outlined here approximates a study due to Bild
et al. (1), which trained binary classifiers on expression data from human cell
cultures expressing specific oncogenic activities versus control cells. They

then used these classifiers to make predictions in mouse model and human
tumor data as well as human cancer cells lines. We will be using a subset
of the same data, but our analysis will use standard SVM methods, where
theirs used a somewhat more involved Bayesian classifier based on probit
regression ().

The biological goal of this lab and the Bild et al. study is to learn an
expression signature that identifies an activated oncogenic pathway and then
to demonstrate the clinical relevance of classifiers based on these signatures.
The original paper discussed 5 oncogenic pathways, but we will restrict to the
3 pathways associated with the expression of the following 3 oncogenes: c-
Myec, activated H-Ras, and human E2F3. However, from a machine learning
point of view, there are also many interesting issues: how well defined is
a cancer signature? does a random set of high-variance genes perform as
well as SVM-extracted discriminative features? how stable is a feature set
learned from small samples? where in the analysis are we just demonstrating
the results of training vs. showing actual prediction performance on a test
set?

1.0.1 Software Requirements

We will be using a handful of freely available packages from the CRAN and
Bioconductor (4]) repositories. These packages include:

e 21071 (2)) for SVM classification

gplots for fancy heatmap plots

e scatterplot3d for 3d scatter plots

caret for machine learning utility functions

Optional affy (3) for general tools to deal with microarray data and
interfacing with biomart.

2 Discovering Cancer Signatures

Bild et al. have prepared a set of (ordinarily quiescent) primary mammary
epithelial cell cultures (HMECs) induced to express various oncogenic ac-
tivities that are typical of the activation/disregulation of several oncogenic
pathways. Ten replicate microarray experiments for each cell line were pro-
duced in order to identify their transcriptional activity. For the purposes of

this lab, we will only be concerning ourselves with four of these lines: (i)
GFP (control), (ii) MYC, (iii) Ras, and (iv) E2F3. We have RMA normal-
ized the data from these four cell lines together and made them available as
gfp.exp, myc.exp, ras.exp, e2f3.exp after loading the human.base data
object. Each of these datasets are presented as a 54,675 x 10 matrix: the
rows are probes (genes), and the columns are individual microarray experi-
ments. Let’s load the data:

> library(gplots)

> library(caret)

> load("human.base.clean.rda")
> load("human.affymap.rda")

The human.base.clean are the RMA normalized experiments for each
of the cell lines. Only probesets that match to known genes were kept. There
is an hmap object that was loaded from human.affymap that has a mapping
from affy probeset IDs to more recognizable gene symbols.

> head (hmap)

affy gene ensembl
211942_x_at SNORD34 ENSG00000202503
208729_x_at HLA-H ENSG00000218492
228238_at SNORD81 ENSG00000200710
227517_s_at SNORD81 ENSG00000200710
204355_at MIRN1226 ENSG00000221585
210983_s_at MIRN25 ENSG00000207547

(o) G2 I~ GV I\ B o

Before we go any further, we may want to ask ourselves if there are any
obvious patterns in our data that we can pick out “by eye.” To try this, we
can cluster the genes based on their expression profiles across the datasets to
see if any visible patterns arise. We also want to check for “normalization”
issues, not in the sense of low-level normalization but the fact that we are
looking at quite different cell cultures. Let us start by looking at a random
sample of 1000 genes using unscaled expression values (you can do more, if
you’d like to exercise your computer a bit):

> set.seed(123)

> all.data <- cbind(gfp.exp, myc.exp, ras.exp, e2f3.exp)
> idxs <- sample(1:dim(gfp.exp)[1], 1000)

> heatmap(all.datalidxs,], scale = "none", Colv = NA)

OCCECCCCCCANNNNNNNNN
g CP000000 000

But let’s make this look more like a microarray.

> palette.gr.marray <- colorRampPalette(c("green", "black", "red")) (256)
> palette.two.colorRamp <- colorRampPalette(c("black", "red")) (256)
> heatmap.2(all.datalidxs,] - rowMeans(all.datalidxs,]),

scale = "row", dendrogram = '"none", trace = "none',

col = palette.gr.marray, symbreaks = TRUE, symkey = TRUE)

We used the set.seed call at first so that we all pick the same random
values for the idxs vector and our results can be comparable to each other.
Playing with different values of the scale parameter in the heatmap.2
function will show your data in different (perhaps surprising) ways. For
now, using “row” makes a bit more sense when you just want to visualize
your experiments against each other. Other possible values for scale can be

“none” or “col”. If you'd like to talk about the differences in these options,
please feel free to ask.

It seems as if we can identify some distinct block structure in our heatmap
(especially some genes in the ras experiments), but by and large, the myc,
e2f3 and gfp data sets don’t seem too different and it’s not clear what genes
are useful in identifying cancer cells vs. control. Here is where machine
learning steps into the picture.

2.1 SVM for Classification

In order to better isolate which genes we can use to classify one cancer from
another, we’ll build three separate SVM classifiers (one for each induced cell
type). Our goal is to build an SVM such that it will be able to label a given
microarray as coming from one of the three oncogenic-cells line or not. This
type of classifier is known as a binary classifier.

The SVM will use the expression of each of the p probes on the microar-
ray as a p-dimensional feature vector. Given that an SVM is a supervised
learning method, we need to split our data into a training set and a test-
ing set. We’ve put together the prep.data function that takes care of the
tedium of these details for you. Pass it the two datasets, and it’ll send you
back a list structure with them “bound” together in the $data slot, as well
as indices into the columns of the matrix that will be used for training and
testing ($train.idxs and $test.idxs, respectively). If you like, you can
also try to do this manually.

Let’s prepare the data so we can build an SVM. We will need to separate
our data into a training set, which we will build the model from, and a testing
set which we will use to verify how good our model can predict on new data:

> training <- cbind(gfp.exp[, 1:7], myc.exp[, 1:7])
> testing <- cbind(gfp.expl[, 8:10], myc.exp[, 8:10])

By default, the prep.data function will split the data in half: 5 arrays
of GFP and 5 arrays of Ras data are used for training, and another 5+5 are
held out to test the accuracy of the SVM. Given that we are starting with
54,675 such probes, and many of them may not vary too much, we can filter
out some “uninteresting” probes by removing those with low variance in our
training data. This process is referred to as “feature selection.” Below we
select the top 1000 genes based on their variance.

> train.variance <- apply(training, 1, var)
> most.varying <- order(train.variance, decreasing = TRUE)

> n.to.keep <- 1000
> train.d <- training[most.varying[1:n.to.keep],]

> test.d <- testing[most.varying[1:n.to.keep],]

Was this enough to help us distinguish which genes would be useful in a
gene signature? Let’s see:

> heatmap.2(cbind(train.d, test.d), scale

= "row", dendrogram = '"none",
trace = '"none", col = palette.gr.marray,
main = "MYC (variance) Gene Sig", symbreaks = TRUE,
symkey = TRUE)

Color Key

150

MYC (variance) Gene Sig

Count

0

-2 0 2
Row Z-Score

Seems like a reasonable “cancer signature” already, doesn’t it? We can
see which genes we’re looking at like so:

> var.30 <- subset(hmap, affy %in), rownames (train.d) [1:20])$gene
> as.character(var.30)

[1] "RRP15" "HSPAT" "HSPAT" "HSPAG" "HSPAG" "S100A8"
(7] "MMP3" "MMP1" "KCNQ5" "Cl2orf24" "SLC6A15" "RARA"
[13] "MYyC" "PIGW" "CYyp2u1" "HSPA1A" "HSPA1A" "TMEMO7"
[19] "TMEMOT" "LAMP1" "TMEM33" "HSPA1B" "HSPA1B" "RRP15"

[25] "HSPAT" "HSPAT" "HSPAG" "HSPAG" "S100A8" "MMP3"
[31] "MMP1" "KCNQ5" "Cl20rf24" "SLC6A15" "RARA" "MYC"
[37] "PIGW" "CYp2u1" "HSPA1A" "HSPA1A" "TMEMO7" "TMEMOT"
[43] "LAMP1" "TMEM33" "HSPA1B" "HSPA1B"

Let’s see what the SVM can do.

We'll start by building the classifier by using the same 1000 most-varying
genes. Note that in the svm call below, we are passing in the transpose of our
training.data. The svm function expects each row to be an observation,
and the columns are the corresponding features.

> library(e1071)

> train.labels <- factor(c(rep("gfp", 7), rep("myc", 7)))

> test.labels <- factor(c(rep("gfp", 3), rep("myc", 3)))

> myc.model <- svm(t(train.d), train.labels, kernel = "linear",
scale = TRUE, type = "C-classification")

Having used some of our data to learn a myc.model, we can use it to
predict on the reaming left out data (aka testing data) to see how accurately
it can classify as GFP or MY C-induced. You'll see that the SVM can classify
such previously unseen data with 100% accuracy.

> myc.preds <- predict(myc.model, t(test.d))
> myc.acc <- sum(myc.preds == test.labels)/length(test.labels)
> cat("Testing accuracy: ", myc.acc * 100, "/\n", sep = "")

Testing accuracy: 1007

2.2 Cross Validation

Before we move on, we should probably try to verify how good our classifier
is by doing train/test cycles on different splits of our data. Maybe we got
lucky and the two experiments we held out weren’t difficult to classify. This
process is known as cross validation.

The createFolds function (from the caret library) takes a vector of

labels (for classification, the labels should be factors) and a value k. The
k parameter tells the function how many folds you want to create. The
function will return you a list that is k elements long, and each element
has the indices you should hold out for testing for that fold.

>
>
>
>
>

$°

svm.data <- cbind(gfp.exp, myc.exp)

svm.data <- svm.data[l:n.to.keep,]

svm.labels <- factor(c(rep("gfp", 10), rep("myc", 10)))
test.idxs <- createFolds(svm.labels, k = 5)

test.idxs

1

[1] 2 8 15 19

$ 2"
[1] 3 5 13 16

[1] 1 10 17 18

[11 4 7 12 14

[1] 6 9 11 20

We can now build 5 models on the different splits of the data to thor-

oughly test to further test how strong our classifier is.

>
>

CV <- 1list()
for (i in 1:length(test.idxs)) {
cat ("Performing cross validation fold:", i, "\n");
cat("... holding out experiments", paste(test.idxs[[i]],
collapse = ","), "\n");
holdout <- test.idxs[[i]];
train <- svm.data[, -holdout];
test <- svm.data[, holdout];
train.labels <- svm.labels[-holdout];
test.labels <- svm.labels[holdout];

model <- svm(t(train), train.labels, kernel = "linear", scale = TRUE,
type = "C-classification");
preds <- predict(model, t(test));

acc <- sum(preds == test.labels)/length(test.labels);
cat(sprintf(" Testing accuracy in fold Jd: %.2f%%\n", i,
myc.acc * 100));
CV[[i]] <- list(model = model, preds = preds);
}

Performing cross validation fold: 1
. holding out experiments 2,8,15,19
Testing accuracy in fold 1: 100.00%
Performing cross validation fold: 2
. holding out experiments 3,5,13,16
Testing accuracy in fold 2: 100.00%
Performing cross validation fold: 3
. holding out experiments 1,10,17,18
Testing accuracy in fold 3: 100.00%
Performing cross validation fold: 4
. holding out experiments 4,7,12,14
Testing accuracy in fold 4: 100.00%
Performing cross validation fold: 5
. holding out experiments 6,9,11,20
Testing accuracy in fold 5: 100.00%

[Note: A more idiomatic way to write the code above would be to replace
the for loop with a call to lapply]

Looks like our classifier is quite good: we have 100% accuracy over all
folds! How many support vectors are we using to get these predictions?

> for (i in 1:length(CV)) {
cat("Fold", i, "has ", CV[[i]]$model$tot.nSV, "support vectors (out of",
ncol (svm.data) - length(test.idxs[[i]]), "examples)\n")
}

Fold 1 has 16 support vectors (out of 16 examples)
Fold 2 has 16 support vectors (out of 16 examples)
Fold 3 has 16 support vectors (out of 16 examples)
Fold 4 has 16 support vectors (out of 16 examples)
Fold 5 has 16 support vectors (out of 16 examples)

2.3 SVM for Gene Selection

We have seen how we can build a classifier for our separate cell-lines, but
how does this help us get a better gene signature? We can first recover the
examples that constitute the support vectors (and therefore define our w
vector) from our data like so (we're simply listing the first 10 genes):

> myc.model$SV[, 1:10]

gfp.
gfp.
gfp.
myc.
myc.
myc.
myc.

gtp.
gfp.
gfp.
myc.
myc.
myc.
myc.

The following formula allows us to recover the w

~N OO0 WN

N o RO WN

X213418_at X202431_s_at

.0621492
.9214670
.9634217
0.9936407
0.8985204
1.0149401
0.6207995

.0203452
.0351475 1
.9568695
.9404194 0.
.95662283
.96525563
.8627204

X204475_at
.534639008
.491024734

0.286374303

007766504
.0756313842
.345146160
.470589692

X205828_at
-0.2562175
1.3565050
0.1153886
0.2286362
-1.0582481
-0.4324595
-0.2832602

X202581_at
.6304133
. 2740430
.1690274
1.0406577
0.8523852
1.1771333
0.0070395

X200800_s_at X202917_s_at X212281_s_at
.4027830 .25311035 .2365600
.5843035 1.17104609 .5022089
.2326418 0.45218405 .6377080
0.9435978 0.18055037 1.1754115
0.7641054 .32665991 0.7531746
0.9783827 0.05903693 1.1106306
0.4999018 .25100778 0.1508851

N
i=1

X200799_at
.53906816
.44039857
.43738817
0.95238667
0.74361497
1.00040628
0.07380023

vector (which defines
the decision boundary), where « gives us the weights of our features:

(1)

N is the number of support vectors in our model, « is the weight of
the support vector, y is the class label of the support vector, and & is the
expression values of the probes for a given array in the training set. We can
translate this expression into R rather easily by using matrix multiplication.
myc.model$coefs gives us the value of our a’s. Once we have our weight
vector w, we can then sort our features by their weights and pick the top M
that we want to use as a signature.

10

X1565358_at
0.81867017
0.05268465

.39933452

0.31815946

.42130920

.30115112

.63766172

> myc.weight.vector <- t(myc.model$coefs) J*J, myc.model$SV
> myc.widxs <- order (abs(myc.weight.vector), decreasing = TRUE)

The myc.widxs vector now has the indices into the rows (probes) of our
data that have the highest “weights”. We can use these ordered features as
our gene signature and examine what the myc-signature looks like using the
top 300 features:

> heatmap.2(cbind(train.d, test.d)[myc.widxs[1:300], 1, scale = "row",
dendrogram = "none", trace = "none", col = palette.gr.marray,
main = "MYC Gene Signature (SVM)", symbreaks = TRUE,
symkey = TRUE)

> svm.30 <- subset(hmap, affy Jinj, rownames (train.d) [myc.widxs[1:30]])

> svm.30 <- as.character (svm.308gene)

Color Key

MYC Gene Signature (SVM)

Count
0 40 80

-3 -1 1 3
Row Z-Score

HTONOOUNTMONO®OMST NGO
£8838£88884708498984¢¢
PO POOPROE 2 EEEEEEEE

11

You’ll find that the top 30 genes we found from filtering with the variance
across the data are not the same as the top 30 genes the SVM found:

> intersect(var.30, svm.30)
[1] "HSPA7" "HSPA6" "MYC"

Is one better than the other? You can try to do GO enrichment testing
for both sets of genes and see if we can find an “easy” answer to that question.
Although this is out of the scope of this lab, please ask if you’d like help to
do this GO analysis in R.

3 PCA

Principal Component Analysis (PCA) is a useful statistical technique for
identifying patterns in data of high dimension. PCA expresses the data
with principal components to highlight similarities and differences in the
data.

After identifying gene signature sets for all three cancer cell lines, we hope
to classify cancer samples using those gene signatures. The gene expression
values of each signature are extracted from all cancer samples and then
PCA is performed on samples to explore similarities and differences between
samples. To find out how samples are separated after PCA, we display
samples in respect to the first three components in a 3D scatterplot.

In order to do this, we’ll need our SVM gene signature. The previous
section has hopefully showed you that you can build an SVM that’s accurate,
and we tested as best we could to ensure that we aren’t overfitting our data.
Now that we want to use this technique for further downstream analysis,
let’s use all of the data we have available. So now we’re going to build a
MYC gene signature by using an SVM to predict MYC vs. not-MYC (ie.
myc vs (gfp, ras, e2{3)).

> myc.data <- cbind(myc.exp, gfp.exp, ras.exp, e2f3.exp)

> myc.labels <- c(rep("Myc", 10),
rep("notMyc", ncol(myc.data) - 10))

> myc.labels <- factor (myc.labels)

> big.model <- svm(t(myc.data), myc.labels, kernel = "linear",
scale = TRUE, type = "C-classification")

> big.weight.vector <- t(big.model$coefs) J*}, big.model$SV

> big.widxs <- order (abs(big.weight.vector), decreasing = TRUE)

12

> svm.big.30 <- subset (hmap, affy J/inj, rownames (myc.data) [big.widxs[1:30]])
> svm.big.30 <- as.character(svm.big.30$gene)

Are there any overlapping genes in our gene signature between this model
trained from all the data vs. the gene signature from before?

> intersect(svm.big.30, svm.30)

[1] "TFB2M" "HSPAT7" "HSPAG" "SLC12A8" "MYC" "SLC19A1" "ARNTL"
[8] "SLC1A3" "TAF4B"

Now that we have our super MYC gene signature, let’s extract the top
1000 genes as its gene signature. We’ll do PCA on our the genes that define
our signature, and see what this data our samples look like when we project
it down to the top 3 dimensions after PCA.

library(scatterplot3d)

myc.sig.idxs <- big.widxs[1:1000]

myc.sig.data <- myc.datal[myc.sig.idxs,]

pca <- prcomp(t(myc.sig.data))

loadings <- pca$x[, 1:3]

s.colors <- c(rep("red", sum(myc.labels == "Myc")),

rep("blue", sum(myc.labels != "Myc")))

> scatterplot3d(loadings[, 2], loadings[, 3], loadings[, 1],
color = s.colors, xlab = "PC 2", ylab = "PC 3",
zlab = "PC 1", grid = TRUE, box = TRUE,
main = "Where is Waldo/MYC?")

> legend("bottomright", c("Myc", "notMyc"),

text.col = c("red", "blue"))

>
>
>
>
>
>

13

Where is Waldo/MYC?

o
o]
00
o &
o
o
S - Cpooo0
o
n
?
o o
o © (92
— ° ° - € O
o
o P 4
o 2
o 0
T -2
o -4
7 -6
) Myc
S : . . -10 notMyc
-10 -5 0 5 10
PC 2

Go ahead and try this approach to create PCA plots for your RAS and
E2F3 signatures. You might want to try doing this PCA analysis using a
gene signature you get from simply taking the top 1000 most varying genes
across your data to see how it compares.

4 Human vs Mouse

To demonstrate the clinical relevance of these classifiers, we show that clas-
sifiers trained to recognize oncogenic pathways in human cell culture data
can also accurately classify tumor data from related mouse models. Note
here that the microarray platforms for human and mouse data are necessar-
ily different. Following Bild et al., we restrict to probes for genes common

14

to mouse and human and use this reduced feature set for SVM training [ﬂ

We'’ve curated the human and mouse datasets for you into expression
matrices so that each row in the matrix is for a gene that is “in” both human
and mouse, and are for affy probesets that have “easy” mappings back to
genes. The rows of the mouse and human experiment data are also in
the same order (important!). This data is in the common.data.clean data
package.

> load("common.data.clean.rda")

Let’s rebuild our myc vs. all classifier on the human data and see how
well we can predict the expression of our myc expression set.

> human.data <- cbind(human.myc.exp, human.gfp.exp, human.ras.exp,
human.e2f3. exp)

> human.labels <- c(rep("Myc", 10),

rep("notMyc", ncol (human.data) - 10))

> human.labels <- factor (human.labels)

> human.model <- svm(t(human.data), human.labels, kernel = "linear",
scale = TRUE, type = "C-classification")

> human.weight.vector <- t(human.model$coefs) 7*J, human.model$SV

> o.weights <- order (abs(human.weight.vector), decreasing = TRUE)

> human.30 <- subset (hmap, affy 7inj, rownames (human.data) [o.weights[1:30]])

> human.30 <- as.character (human.30$gene)

Now that we’ve trained the human myc classifier, let’s see if our human
myc classifier can predict which experiments in our mouse data come from
“myc-like” mouse cancer models.

> mouse.data <- cbind(mouse.myc.exp, mouse.her2.exp, mouse.ras.exp,
mouse.rbnull.exp, mouse.wt.exp)
> mouse.labels <- c(rep("Myc", 5),
rep("notMyc", ncol(mouse.data) - 5))
> mouse.labels <- factor(mouse.labels)

There are two Inf values in our data, we need to do something with
these, else our svm will choke. Let’s set them to the mean value of all of the
expression levels we have.

! The authors provide a tool to map human affymetrix probes to the homologous
probes on the mouse affymetrix chip. You can also do this yourself using the bioconductor
package annotationTools. The vignette for this package shows you how to do that.

15

> inf.data <- is.infinite(mouse.data)
> mouse.data[inf.data] <- mean(mouse.data[!inf.data])
> preds <- predict(human.model, t(mouse.data))

> acc <- sum(preds == mouse.labels)/length(mouse.labels)
> cat ("SVM Accuracy: ", acc * 100, "/\n", sep = "")

SVM Accuracy: 100%

Instead of doing “pure” classification, the svm function has a probabil-
ity parameter that up until now has defaulted to FALSE. We can set it to
FALSE and recover score that reflects the probability of an example being in
one class or another.

> human.model.probs <- svm(t(human.data), human.labels, kernel = "linear",
scale = TRUE, type = "C-classification",
probability = TRUE)
> mouse.probs <- predict(human.model.probs, t(mouse.data), probability = TRUE)
> prob.order <- order(attr(mouse.probs, "probabilities")[, "Myc"],
decreasing = TRUE)
> experiment.labels <- c(rep("Myc", ncol(mouse.myc.exp)),
rep("Her2", ncol(mouse.her2.exp)),
rep("Ras", ncol(mouse.ras.exp)),
rep("RbNull", ncol(mouse.rbnull.exp)),
rep("WT", ncol(mouse.wt.exp)))
> experiment.labels[prob.order]

[1] "Myc" "Myc" "Myc" "Myc" "Myc" "Ras" "Ras" "Ras"

[9] "Her2" "RbNull" "RbNull" "WT" "RbNull" "WT" "WT" "RbNull"
[17] "RbNull" "Her2" "Her2" "WT" "Her2" "WT" "WT" "RbNull"
[25] "Her2" "Her2" "WT" "Her2"

It might be interesting to note that even though our classifier has never
seen data from RbNull or Her2 models, they somehow get “grouped to-
gether”, anyway.

5 Trivia

The genes in normal microarray data are sill somehow “raw” in that they
are listed with they affymetrix probe set IDs. At some point you might like
to figure out what genes they actually refer to, eg. that probeset 231640_at
on the affymetrix hgul33plus2 array is probing the expression of k-RAS.

16

is

We can get a list of these mappings from the ensembl database, which
accessible from within bioconductor itself, too. In order to query the

database, we’ll need to use the biomaRt package.

>
>
>
>
>

library(biomaRt)
hmart <- useMart("ensembl", dataset = "hsapiens_gene_ensembl")
haffy.ids <- rownames (gfp.exp)

want <- c("affy_hg ul33_plus_2", "hgnc_symbol", "ensembl_gene_id")
hmap.2 <- getBM(attributes = want, filters = "affy_hg ul33_plus_2",

value = haffy.ids, mart = hmart)

References

1]

Andrea H. Bild, Guang Yao, Jeffrey T. Chang, Quanli Wang, Anil Potti,
Dawn Chasse, Mary-Beth Joshi, David Harpole, Johnathan M. Lan-
caster, Andrew Berchuck, Jeffrey R. Olson, Holly K. Dressman, Mike
West, and Joseph R. Nevins. Oncogenic pathway signatures in human
cancers as a guide to targeted therapies. Nature, 439, 2006.

Evgenia Dimitriadou, Kurt Hornik, Friedrich Leisch, David Meyer, ,
and Andreas Weingessel. e1071: Misc Functions of the Department of
Statistics (e1071), TU Wien, 2008. R package version 1.5-18.

Laurent Gautier, Leslie Cope, Benjamin M. Bolstad, and Rafael A.
Irizarry. affy—analysis of affymetrix genechip data at the probe level.
Bioinformatics, 20(3):307-315, 2004.

Robert C Gentleman, Vincent J. Carey, Douglas M. Bates, Ben Bol-
stad, Marcel Dettling, Sandrine Dudoit, Byron Ellis, Laurent Gautier,
Yongchao Ge, Jeff Gentry, Kurt Hornik, Torsten Hothorn, Wolfgang Hu-
ber, Stefano Iacus, Rafael Irizarry, Friedrich Leisch, Cheng Li, Martin
Maechler, Anthony J. Rossini, Gunther Sawitzki, Colin Smith, Gordon
Smyth, Luke Tierney, Jean Y. H. Yang, and Jianhua Zhang. Bioconduc-
tor: Open software development for computational biology and bioinfor-
matics. Genome Biology, 5:R80, 2004.

Mike West, Carrie Blanchette, Holly Dressman, Erich Huang, Seiichi
Ishida, Rainer Spang, Harry Zuzan, Jr. Olson, John A., Jeffrey R. Marks,
and Joseph R. Nevins. Predicting the clinical status of human breast

cancer by using gene expression profiles. Proceedings of the National
Academy of Sciences, 98(20):11462-11467, 2001.

17

	Overview
	Software Requirements

	Discovering Cancer Signatures
	SVM for Classification
	Cross Validation
	SVM for Gene Selection

	PCA
	Human vs Mouse
	Trivia

