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Outline

• General ideas about supervised learning
– (Not specific to biological domain)
– Training, generalization, overfitting
– Small bit of theory

• Cancer classification, gene signatures
– Lab preview: Nevins paper (Bild et al., Nature 

Medicine 2006, “Oncogenic pathways…”) as a 
concrete example

• SVMs in some (mathematical) detail



What is machine learning?

• “Statistics with more than 20 variables”
• “Intersection of computer science and 

statistics”
• Provisional definition: [R. Schapire]

– Machine learning studies how to automatically 
learn to make predictions based on past 
observations



Classification problems

• Classification:
– Learn to classify examples into a given set of 

categories (“classes”)
– Example of supervised learning (“labeled” training 

examples, i.e. known class labels)

(     , “7”)
(     , “5”)

(     , “2”)

…

“2”



ML vs. “Traditional Statistics”

• L. Breiman: “The two cultures”, Statistical 
Science, 2001

• “Data modeling culture” (Generative models)
– Assume probabilistic model of known form, 

not too many parameters (<50)
– Fit model to data
– Interpret model and parameters, make 

predictions after



ML vs “Traditional Statistics”

• “Algorithmic modeling culture” (Predictive 
models)
– Learn a prediction function from inputs to outputs, 

possibly many parameters (e.g. 102 - 106)
– Design algorithm to find good prediction function
– Primary goal: accurate predictions on new data, 

i.e. avoid overfitting, good generalization
– Interpret after, finding “truth” is not central goal 

(but some “truth” in accurate prediction rule?)
• “Never solve a more difficult problem than 

you need to” [V. Vapnik]



Example: Generative model
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Example: Prediction function
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Poorly behaved training data

Voice Pitch

Pr
ob

ab
ili

ty

mean1 mean2

N
o.

 o
f m

is
ta

ke
s

[Figure: Y. Freund]



Conditions for accurate learning

• Example: predict “good” vs. “bad”   [R. Schapire]



An example classifier

• Decision tree



Another possible classifier

• Perfectly classifies training data, makes 
mistakes on test set 

• Intuitively too complex



Yet another classifier

• Fails to fit from training data
• Overly simple



Complexity vs. accuracy

• Classifiers must be 
expressive enough to                   
capture “true” patterns 
in training data…

• …but if too complex, can overfit (learn noise or 
spurious patterns)

• Problem: Can’t tell best classifier from training error
• Controlling overfitting is central problem of ML



Conditions for accurate learning

• To learn an accurate classifier, need
– Enough training examples
– Good performance on training set
– Control over “complexity” (Occam’s razor)

• Measure complexity by:
– Minimum description length (number of bits 

needed to encode rule)
– Number of parameters
– VC dimension



Cancer classification

• Training data: expression data from 
different tumor types; few examples, 
high dimensional feature space

• Goals:
– (Accurately predict tumor type)
– Learn gene signature = smaller set of 

whose expression pattern discriminates 
between classes

• “Feature selection” problem



Oncogenic pathways

• [Nevins lab, Nature 2006]
• Training data: 

– Human cell cultures where specific oncogenic 
pathway has been activated vs. control cells (Myc, 
Ras, E2F3, etc)

• Prediction scores ↔ probability/confidence 
that pathway is activated in sample

• Test data:
– Mouse models for pathways
– Human cancer cell lines



Pathway signatures



Prediction in mouse models

• Rank tumors from mouse models using 
trained pathway vs control classifiers



Prediction scores as features
• Oncogenic pathway prediction 

scores used to represent 
tumors for clustering

• Pathway scores on cell lines 
correlate with response to 
inhibitors



Support vector machines

• SVMs are a family of algorithms for learning a 
linear classification rule from labeled training 
data

{(x1, y1), … , (xm, ym)}, yi = 1 or -1

• Well-motivated by learning theory
• Various properties of the SVM solution help 

avoid overfitting, even in very high 
dimensional feature spaces



Vector space preliminaries

• Inner product of two 
vectors:

<w,x> = Σg wg xg

• Hyperplane with 
normal vector w and 
bias b:

<w,x> + b = 0
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Linear classification rules
• SVMs consider only 

linear classifiers: 
fw,b(x) = 〈w, x〉 + b

• Leads to linear prediction 
rules:
hw,b(x) = sign(fw,b(x))

• Decision boundary is a 
hyperplane

• Prediction score fw,b(x) 
interpreted as 
“confidence” in prediction
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• Assume linearly 
separable training 

data
• Margin of example = 

distance to separating 
hyperplane

• Margin of training set = min margin of 
examples

• Choose (unique) hyperplane that 
maximizes the margin

• Prediction score for test example  f(x) ~ 
signed distance of x to hyperplane

Support vector machines

• test



Geometric margin

• Consider training data S 
and a particular linear 
classifier fw,b 

• If ||w|| = 1, then the 
geometric margin of training 
data for fw,b is 
γS = MinS yi (〈w, xi〉 + b)
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Maximal margin classifier

• Hard margin SVM: 
given training data S, 
find linear classifier fw,b 
with maximal geometric 
margin γS

• Solve optimization 
problem to find w and b 
that give maximal 
margin solution
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Hard margin SVMs

• Equivalently, enforce a 
functional margin ≥ 1 for 
every training vector, and 
minimize ||w||

• Primal problem:
Minimize 

½ <w,w>
subject to

yi (<w,xi> + b) ≥ 1 
for all training vectors xi
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Non-separable case

• If training data is not linearly separable, 
can:
– Penalize each example by the amount it 

violates the margin (“soft margin SVM”)
– Map examples to a higher dimensional 

space where data is separable
– Combination of above 2 solutions



Soft margin SVMs

• Introduce slack 
variable ξi to 
represent margin 
violation for training 
vector xi

• Now constraint 
becomes:
yi(<w,xi>+b) ≥ 1- ξi
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Soft margin SVMs

• Primal optimization problem becomes:
Minimize

½ <w,w> + C Σi ξi    (“1-norm”) ← LIBSVM
or

½ <w,w> + C Σi ξi
2  (“2-norm”) ← SVM-light

subject to
yi(<w,xi>+b) ≥ 1- ξi , ξi ≥ 0

• C: “trade-off” parameter



Regularization viewpoint
• Trade-off optimization problem (1-norm soft 

margin): minimize

||w||2 + C Σi (1 - yi fw,b(xi))+

– (1 - y f(x))+: “hinge loss”, penalty for margin 
violation

– ||w||2: “regularization term”; intuitively, prevents 
overfitting by constraining w



Properties of SVM solution

• Introduce dual variable (“weight”) αi for each 
constraint, i.e. for each training example

• Solve dual optimization problem to find αi 
– Convex quadratic problem → unique solution, 

good algorithms
• w = Σi αi yi xi

– Normal vector is linear combination of support 
vectors, i.e. training vectors with αi >0



Support vectors
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• If xi has margin > 1, 
αi = 0

1-norm SVM: two 
kinds of support 
vectors

• If xi has margin = 1, 
0 < αi < C

• If xi has margin < 1, 
αi = C



Feature selection

• How to extract a “cancer signature”?
• Simplest feature selection: filter on 

training data
– E.g. Apply t-test or Fisher’s criterion to find 

genes that discriminate between classes
– Train SVM on reduced feature set

• Usually better to use results of training 
to select features



Ranking features

• Normal vector w = Σi αi yi xi gives direction in 
which prediction scores change

• Rank features by |wg| to get most significant 
components

• Recursive feature elimination (RFE): 
iteratively
– Throw out bottom half of genes ranked by |wg| 
– Retrain SVM on remaining genes

Induces ranking on all genes



Kernel trick
• Idea: map to higher dimensional feature space
• Only need kernel values: K(x1,x2) = Φ(x1) • Φ(x2) to 

solve dual optimization problem
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Examples of kernels
• Large margin non-linear decision boundaries
• Not needed with expression data

Degree 2 polynomial Radial basis

K x,z( )= x • z + C( )2 K x,z( )= exp −
x − z 2

σ 2
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Discussion issues for paper
• How well-defined is a cancer signature?

– How stable is feature selection on small data set?
– Empirical validation of gene set, number of genes?

• Which analyses are purely training data 
results, which show prediction performance?

• Significance of prediction performance?
– Traditional ML does not assert significance via a p-

value but comparison against other methods
– Can compare to a baseline method, e.g. single 

oncogene expression level



Be careful!

• Potti et al., Nature Medicine 2006: Similar analysis to 
predict response to chemotherapy, based on NCI 60 cell 
line data 

• Coombed et al., Nature Medicine 2007: “Bioinformatics 
forensics”, unable to reproduce results
– Mislabeling of samples (+ vs -)
– Off-by-one indexing error, wrong genes in signature
– No separation of training and test for feature reduction 

(“metagene”), not strictly inductive learning

• Summary: poor computational practices and (probably) 
overfitting lead to erroneous results
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