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Cardiac arrhythmias

Sudden cardiac death:
~300,000 deaths/year

Ventricular tachycardia
- Rapid activation
- May impair pumping
- May degenerate to VF

Ventricular fibrillation
- Loss of synchronous 
  activation
- Syncope, death
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• How do cardiac arrhythmias initiate?
• How are they sustained?
• What can we do to prevent their occurrence?
• How can we terminate them?
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Initiation

Abnormal cellular electrical activity

Structural heterogeneity

Bill Stevenson, 
KITP seminar, 
2006.
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Fig. 6. Transmembrane potential or voltage from model of a small cluster of three embryonic chick
ventricular cells during spontaneous activity, and the corresponding histograms of the interbeat intervals
(IBI) obtained from 4000 s simulations without noise (left, σ = 0 pA), and with noise (right, σ =
10 pA). The conductance (gKs) of IKs is 1.7 nS (A), 1.6 nS (B), 1.59 nS (C) and 1.5 nS (D).

on the action potential upstroke) yields a single narrow peak (Fig. 6A (left)). When
a noise current with σ = 10 pA is added (right), the dispersion in the interbeat
interval increases, and early afterdepolarizations (arrow) are induced in only 0.2%
of the action potentials. Figure 6B shows that when gKs decreases to 1.6 nS in the
absence of noise (left), the repolarization time and IBI increases even further, but
no early afterdepolarizations are observed. When a noise current with σ = 10 pA
is added (Fig. 6B (right)), about a third of the action potentials are followed by
an early afterdepolarization, leading to a bimodal histogram of interbeat intervals.
The average interbeat interval between two consecutive action potentials (with-
out an intervening early afterdepolarization) is shorter than the noise-free value
(contrast histograms in Fig. 6B, left and right). Also, action potentials occurring
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Fig. 1.2 A typical action potential duration
(APD) restitution curve, generated with the
Shiferaw et al. model [54] of a ventricular
cell. To generate the APD restitution curve,
a train of action potentials are stimulated at
a constant pacing rate, followed by one pre-
mature stimulus. Thus, the diastolic interval

(DI) following the penultimate action poten-
tial is varied, and the duration of the resulting
action potential is plotted as a function of the
preceding DI. As the action potentials in the
insets demonstrate, APD shortens as DI is
shortened, leading to a restitution curve with
the general shape as shown.
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Fig. 1.3 Action potential duration bifurcation
diagram, generated with the Shiferaw et al.
model [54] in a one-dimensional cable. When
pacing at a relatively slow rate, identical ac-
tion potentials occur each time a stimulus is

applied (i.e., 1:1 behavior). However, increas-
ing the pacing rate causes the action potential
behavior to bifurcate, such that for every two
stimuli, two different action potentials occur
(i.e., 2:2 behavior).

given cell bifurcates to alternans is dependent upon the membrane currents
and intracellular regulatory mechanisms operating in that cell.

Our interest in alternans resides in the role of alternans as a precursor, or
even as a trigger event, for more complex and potentially fatal cardiac ar-
rhythmias. The details of the implications of APD alternans for ventricular
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Fig. 1.3 Action potential duration bifurcation
diagram, generated with the Shiferaw et al.
model [54] in a one-dimensional cable. When
pacing at a relatively slow rate, identical ac-
tion potentials occur each time a stimulus is

applied (i.e., 1:1 behavior). However, increas-
ing the pacing rate causes the action potential
behavior to bifurcate, such that for every two
stimuli, two different action potentials occur
(i.e., 2:2 behavior).

given cell bifurcates to alternans is dependent upon the membrane currents
and intracellular regulatory mechanisms operating in that cell.

Our interest in alternans resides in the role of alternans as a precursor, or
even as a trigger event, for more complex and potentially fatal cardiac ar-
rhythmias. The details of the implications of APD alternans for ventricular
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Cardiac arrhythmia mechanisms

thevirtualheart.org
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single channel

Multiscale phenomena

1 nm 10 nm 100 nm 1 µm 10 µm 100 µm 1 mm 1 cm 10 cm1 Å

10 µs 100 µs 1 ms 10 ms 100 ms 1 s 10 s 100 s

single cell tissue, organ

2 Introduction

1.1 Membrane noise

1.1.1 Single-channel noise

With the development of the patch-clamp technique it became possible to measure

the current flow across tiny patches of membrane, clamped at a fixed transmembrane

potential (91). An example is shown below.

i2
i
0

1 
pA

4 s

Figure 1.1: Single-channel current through mutant cystic fibrosis transmem-

brane conductance regulator (CFTR) channels. Channel openings are downward

deflections. Courtesy of John. W. Hanrahan. For more examples of single-

channel recordings see e.g. Ref. 60.

The current varies in a step-like manner between three different levels: 0, i,

and 2i. The interpretation is that the patch contains two identical ionic channels,

each of which can be either closed or open. Ions can diffuse through an open channel

with a fixed conductance (the single-channel conductance), but cannot go through

the channel when it is in its closed configuration. Thus, when both channels in

the patch are closed, no current is conducted (level 0), when one channel is open a

single-channel current i is conducted, and when both channels are open the current

is 2i.

The average time that a channel spends in a given state generally depends

8

Figure 5. APs from a broad range of simple and complex mathematical models
of cardiac cells (see [47], for a review of current cell models).

mouse ventricular [63], human atrial [64, 65], and canine atrial [66], as well as sinoatrial node
cells [48]. For convenience, we focus on the three-variable model described in [38] and its four-
variable extension [57] to analyze many of the phenomena presented here. Examples of a wide
range of model action potentials are shown in figure 5. APs have different shapes because of
the presence of different currents and variations in current densities in different species and
regions of the heart. Figure 6 shows two examples of Java applets [67] that depict the APs and
other variables of two different ionic models and also permit an interactive visualization of the
transmembrane currents.

2.2.3. Numerical integration. Integrating the above equations numerically can be challenging
because of the differences in time and space scales. As can be seen in figures 3–5, the
timescale of the AP upstroke is much smaller (about two orders of magnitude) than the
timescale of repolarization, and simulations may need to include tens of APs. Similarly, the
size of a computational cell is about two orders of magnitude smaller than the necessary
domain size. The difference in timescales has given rise to several advanced integration
techniques [38], [68]–[70]. However, because it is important to reproduce conduction velocities

New Journal of Physics 10 (2008) 125016 (http://www.njp.org/)
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Cardiac action potentials

Ca2+ K+

Na+

ICaINa IK

K+

Na+

Ca2+

Transmembrane 
potential:
If ionic 
distribution 
neutral, 
V= ? mV.
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Cardiac action potentials

Ca2+ K+

Na+

ICaINa IK

K+

Na+

Ca2+

Transmembrane 
potential:
If ionic 
distribution 
neutral, 
V= 0 mV.
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EK = RT
zF ln [K+]o

[K+]i
≈ −85mV

Cardiac action potentials

Ca2+ K+

Na+

ICaINa IK

K+

Na+

Ca2+

Cardiac cells 
rest at 
V≈−85 mV 
with some K 
channels 
open.
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Cardiac action potentials

Ca2+ K+

Na+

ICaINa IK

K+

Na+

Ca2+

Injection of a 
stimulus current 
initiates 
depolarization, 
which cause Na+ 
and Ca+ 
channels to 
open and further 
depolarize the 
membrane, 
V≈+20 mV

(ENa≈+50 mV, ECa≈+30 mV)
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Cardiac action potentials

Ca2+ K+

Na+

ICaINa
IK

K+

Na+

Ca2+

Na+ and Ca+ 
channels 
inactivate 
(close) with 
prolonged 
depolarization. 
K+ channels 
open and 
cause 
repolarization 
to V≈−85 mV.
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Cardiac action potentials

• Upstroke of ventricular AP 
is Na+ mediated.

• A prolonged inward Ca2+ 
current prolongs the AP 
(plateau).

• Ca2+ influx triggers 
additional Ca2+ release 
from the sarcoplasmic 
reticulum.

• Cytoplasmic Ca2+ produces 
muscle contraction.

• Cardiac cells have many 
different types of K+ 
channels.
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Iion = INa + IK + ICa

The membrane as an electrical circuit

mQ C V=

C mI dQ dt C dV dt= =

0C ionI I I= + =

Equation for capacitor:

Current across capacitor:

Charge conservation:

Hence, whereion mdV dt I C= −

g g g
CaNa K

CmE E ENa K Ca

V

Inside

Outside
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INa = gNa · m3 · h · j · (V − ENa)
ICa = gCa · d · f · (V − ECa)
IK = gK · n · (V − EK)

Examples of currents with 
voltage-gated conductances:

m, h, j, d, f, n 
represents the fraction 
of gates that are open
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x: fraction of gates that are open
1-x: fraction of gates that are closed
α(V): opening rate
β(V): closing rate

β(V)
x 1-x
α(V)

ODE for gating variable:

/ (1 )
( )
( ) /

x x

x x x

x

dx dt x x
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x x

α β

α β α

τ∞

= − −

= − + +
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Solution for constant V:
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The Hodgkin-Huxley model of the squid giant axon
88 Guevara

Stellate nerve with giant axon

Stellate ganglion

Figure 4.1. Anatomical location of the giant axon of the squid. Drawing by Tom
Inoué.

4.2.2 Measurement of the Transmembrane Potential

The large diameter of the axon (as large as 1000 µm) makes it possible to
insert an axial electrode directly into the axon (Figure 4.2A). By placing
another electrode in the fluid in the bath outside of the axon (Figure 4.2B),
the voltage difference across the axonal membrane (the transmembrane
potential or transmembrane voltage) can be measured. One can also
stimulate the axon to fire by injecting a current pulse with another set of
extracellular electrodes (Figure 4.2B), producing an action potential that
will propagate down the axon. This action potential can then be recorded
with the intracellular electrode (Figure 4.2C). Note the afterhyperpolar-
ization following the action potential. One can even roll the cytoplasm out
of the axon, cannulate the axon, and replace the cytoplasm with fluid of
a known composition (Figure 4.3). When the fluid has an ionic composi-
tion close enough to that of the cytoplasm, the action potential resembles
that recorded in the intact axon (Figure 4.2D). The cannulated, internally
perfused axon is the basic preparation that allowed electrophysiologists to
sort out the ionic basis of the action potential fifty years ago.

The advantage of the large size of the invertebrate axon is appreciated
when one contrasts it with a mammalian neuron from the central nervous
system (Figure 4.4). These neurons have axons that are very small; indeed,
the soma of the neuron in Figure 4.4, which is much larger than the axon,
is only on the order of 10 µm in diameter.

4.3 Basic Electrophysiology

4.3.1 Ionic Basis of the Action Potential

Figure 4.5 shows an action potential in the Hodgkin–Huxley model of the
squid axon. This is a four-dimensional system of ordinary differential equa-

The axon is giant, 
not the squid
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Stellate nerve with giant axon

Stellate ganglion

Figure 4.1. Anatomical location of the giant axon of the squid. Drawing by Tom
Inoué.

4.2.2 Measurement of the Transmembrane Potential

The large diameter of the axon (as large as 1000 µm) makes it possible to
insert an axial electrode directly into the axon (Figure 4.2A). By placing
another electrode in the fluid in the bath outside of the axon (Figure 4.2B),
the voltage difference across the axonal membrane (the transmembrane
potential or transmembrane voltage) can be measured. One can also
stimulate the axon to fire by injecting a current pulse with another set of
extracellular electrodes (Figure 4.2B), producing an action potential that
will propagate down the axon. This action potential can then be recorded
with the intracellular electrode (Figure 4.2C). Note the afterhyperpolar-
ization following the action potential. One can even roll the cytoplasm out
of the axon, cannulate the axon, and replace the cytoplasm with fluid of
a known composition (Figure 4.3). When the fluid has an ionic composi-
tion close enough to that of the cytoplasm, the action potential resembles
that recorded in the intact axon (Figure 4.2D). The cannulated, internally
perfused axon is the basic preparation that allowed electrophysiologists to
sort out the ionic basis of the action potential fifty years ago.

The advantage of the large size of the invertebrate axon is appreciated
when one contrasts it with a mammalian neuron from the central nervous
system (Figure 4.4). These neurons have axons that are very small; indeed,
the soma of the neuron in Figure 4.4, which is much larger than the axon,
is only on the order of 10 µm in diameter.

4.3 Basic Electrophysiology

4.3.1 Ionic Basis of the Action Potential

Figure 4.5 shows an action potential in the Hodgkin–Huxley model of the
squid axon. This is a four-dimensional system of ordinary differential equa-
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Figure 4.2. (A) Giant axon of the squid with internal electrode. Panel A from
Hodgkin and Keynes (1956). (B) Axon with intracellularly placed electrode,
ground electrode, and pair of stimulus electrodes. Panel B from Hille (2001).
(C) Action potential recorded from intact axon. Panel C from Baker, Hodgkin,
and Shaw (1961). (D) Action potential recorded from perfused axon. Panel D
from Baker, Hodgkin, and Shaw (1961). Rubber-coveredrollerAxoplasmRubber pad
Figure 4.3. Cannulated, perfused giant axon of the squid. From Nicholls, Martin,
Wallace, and Fuchs (2001).

tions that describes the three main currents underlying the action potential
in the squid axon. Figure 4.5 also shows the time course of the conductance
of the two major currents during the action potential. The fast inward
sodium current (INa) is the current responsible for generating the upstroke
of the action potential, while the potassium current (IK) repolarizes the
membrane. The leakage current (IL), which is not shown in Figure 4.5, is
much smaller than the two other currents. One should be aware that other
neurons can have many more currents than the three used in the classic
Hodgkin–Huxley description.

4.3.2 Single-Channel Recording

The two major currents mentioned above (INa and IK) are currents that
pass across the cellular membrane through two different types of channels

Action potential recordings from squid giant axon
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Full Hodgkin-Huxley model

4. Dynamics of Excitable Cells 103
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Figure 4.17. Time course of m, m3, h, and m3h in the Hodgkin–Huxley model.

ordinary differential equations,

dV

dt
= − 1

C
[(ḡNam

3h(V − ENa) + ḡKn4(V − EK)

+ ḡL(V − EL) + Istim],
dm

dt
= αm(1 − m) − βmm, (4.25)

dh

dt
= αh(1 − h) − βhh,

dn

dt
= αn(1 − n) − βnn,

where

ḡNa = 120 mS cm−2, ḡK = 36 mS cm−2, ḡL = 0.3 mS cm−2,

and

ENa = +55 mV, EK = −72 mV, EL = −49.387 mV, C = 1 µF cm−2.

Here Istim is the total stimulus current, which might be a periodic pulse
train or a constant (“bias”) current. The voltage-dependent rate constants

104 Guevara

are given by

αm = 0.1(V + 35)/(1− exp(−(V + 35)/10)),
βm = 4 exp(−(V + 60)/18),
αh = 0.07 exp(−(V + 60)/20), (4.26)
βh = 1/(exp(−(V + 30)/10) + 1),
αn = 0.01(V + 50)/(1− exp(−(V + 50)/10)),
βn = 0.125 exp(−(V + 60)/80).

Note that these equations are not the same as in the original papers of
Hodgkin and Huxley, since the modern-day convention of the inside of
the membrane being negative to the outside of membrane during rest is
used above, and the voltage is the actual transmembrane potential, not its
deviation from the resting potential.

Figure 4.18 shows m, h, and n during the action potential. It is clear
that INa activates more quickly than IK, which is a consequence of τm

being smaller than τn (see Figures 4.13B and 4.16B).

4.5.6 The FitzHugh–Nagumo Equations

The full Hodgkin–Huxley equations are a four-dimensional system of ordi-
nary differential equations. It is thus difficult to obtain a visual picture of
trajectories in this system. In the 1940s, Bonhoeffer, who had been conduct-
ing experiments on the passivated iron wire analogue of nerve conduction,
realized that one could think of basic electrophysiological properties such
as excitability, refractoriness, accommodation, and automaticity in terms
of a simple two-dimensional system that had a phase portrait very simi-
lar to the van der Pol oscillator (see, e.g., Figures 8 and 9 in Bonhoeffer
1948). Later, FitzHugh wrote down a modified form of the van der Pol
equations to approximate Bonhoeffer’s system, calling these equations the
Bonhoeffer–van der Pol equations (FitzHugh 1961). FitzHugh also realized
that in the Hodgkin–Huxley equations, the variables V and m tracked each
other during an action potential, so that one could be expressed as an al-
gebraic function of the other (this also holds true for h and n). At about
the same time as this work of FitzHugh, Nagumo et al. were working on
electronic analogues of nerve transmission, and came up with essentially
the same equations. These equations thus tend to be currently known as
the FitzHugh–Nagumo equations and are given by

dx

dt
= c

(
x − x3

3
+ y + S(t)

)
,

dy

dt
= − (x − a + by)

c
, (4.27)

where x is a variable (replacing variables V and m in the Hodgkin–Huxley
system) representing transmembrane potential and excitability, while y is
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Multiscale phenomena

single channel single cell tissue, organ

1 nm 10 nm 100 nm 1 µm 10 µm 100 µm 1 mm 1 cm 10 cm1 Å

10 µs 100 µs 1 ms 10 ms 100 ms 1 s 10 s 100 s

2 Introduction

1.1 Membrane noise

1.1.1 Single-channel noise

With the development of the patch-clamp technique it became possible to measure

the current flow across tiny patches of membrane, clamped at a fixed transmembrane

potential (91). An example is shown below.

i2
i
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1 
pA

4 s

Figure 1.1: Single-channel current through mutant cystic fibrosis transmem-

brane conductance regulator (CFTR) channels. Channel openings are downward

deflections. Courtesy of John. W. Hanrahan. For more examples of single-

channel recordings see e.g. Ref. 60.

The current varies in a step-like manner between three different levels: 0, i,

and 2i. The interpretation is that the patch contains two identical ionic channels,

each of which can be either closed or open. Ions can diffuse through an open channel

with a fixed conductance (the single-channel conductance), but cannot go through

the channel when it is in its closed configuration. Thus, when both channels in

the patch are closed, no current is conducted (level 0), when one channel is open a

single-channel current i is conducted, and when both channels are open the current

is 2i.

The average time that a channel spends in a given state generally depends

8

Figure 5. APs from a broad range of simple and complex mathematical models
of cardiac cells (see [47], for a review of current cell models).

mouse ventricular [63], human atrial [64, 65], and canine atrial [66], as well as sinoatrial node
cells [48]. For convenience, we focus on the three-variable model described in [38] and its four-
variable extension [57] to analyze many of the phenomena presented here. Examples of a wide
range of model action potentials are shown in figure 5. APs have different shapes because of
the presence of different currents and variations in current densities in different species and
regions of the heart. Figure 6 shows two examples of Java applets [67] that depict the APs and
other variables of two different ionic models and also permit an interactive visualization of the
transmembrane currents.

2.2.3. Numerical integration. Integrating the above equations numerically can be challenging
because of the differences in time and space scales. As can be seen in figures 3–5, the
timescale of the AP upstroke is much smaller (about two orders of magnitude) than the
timescale of repolarization, and simulations may need to include tens of APs. Similarly, the
size of a computational cell is about two orders of magnitude smaller than the necessary
domain size. The difference in timescales has given rise to several advanced integration
techniques [38], [68]–[70]. However, because it is important to reproduce conduction velocities

New Journal of Physics 10 (2008) 125016 (http://www.njp.org/)
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Single-channel modeling: Markov model
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• May be based on channel structure
• Gates not necessarily independent
• May reproduce experimental data better than HH
• Integration time step usually small
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Three-dimensional virtual cardiac tissue

Virtual cells coupled by Ohmic resistances (gap junctions)
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Why use computational modeling for cardiac 
electrophysiology?
• Rodent cardiac myocytes have fundamentally different 

channel expression levels (especially repolarizing 
currents). Therefore, transgenic models are not always 
appropriate.

• Modeling allows one to monitor each component 
simultaneously – not possible in experiments.

• Dynamics can be observed at resolutions that are 
unattainable experimentally or clinically.

• It is often faster and cheaper to do so.

Nerbonne. 
Trends Cardiovasc. Med. 
2004.

Human Murine
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Cardiac ionic model surge

• Surge in development 
of cell models

• 66 in total (at CellML)
• Different species, 

regions, pathologies
• Multiple models for 

the same species/
region/condition

2005-2009

2000-2004

1995-1999

1990-1994

1980’s
1970’s1960’s
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Kurata et al. (2002) AJP 283, H2074-2101.

Five different rabbit SAN models

Different models, different action potential shapes and duration 
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Four different human ventricular cell models

Simulated epicardial APs for the different
ionic models.Experimental epicardial AP.

(M. Näbauer et al.,
Circulation 1996).

AP shapes are different
(qualitatively and
quantitatively).

Minimal

Cherry, KITP seminar 2006
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Why do different models of the same species and 
regions disagree?

• Some models are simply better than others:
– Uses better data
– Uses more data from particular species/region

• The models are equally good/bad:
– Differences reflect electrophysiological

heterogeneity
– Differences reflect different age, sex, etc.
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Other modeling considerations

• Models are validated for specific conditions. They may 
not be valid for your numerical experiments (fast rates, 
temperature, concentrations, drugs, age, sex).

• A model can give a “right” result for the wrong reason.
• The more complicated the model (more variables and 

parameters), the more realistically it may behave. 
However,

• the more complicated the model, the harder it is to pin-
point cause-and-effect relationships and the more 
components may be wrong.

• Math instead of mice vs. insights from math/physics

dx
dt

= f(x, t)

30



Multiscale modeling example: single-channel noise

Unitary events add 
up to give the 
macroscopic 
current.

Excised patch

Whole cell       

31



Multiscale modeling example: single-channel noise

3.5 Results: stochastic single-channel population model 155
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Single channel noise ➞ irregularity of beating

2 Introduction

1.1 Membrane noise

1.1.1 Single-channel noise

With the development of the patch-clamp technique it became possible to measure

the current flow across tiny patches of membrane, clamped at a fixed transmembrane

potential (91). An example is shown below.

i2
i
0

1 
pA

4 s

Figure 1.1: Single-channel current through mutant cystic fibrosis transmem-

brane conductance regulator (CFTR) channels. Channel openings are downward

deflections. Courtesy of John. W. Hanrahan. For more examples of single-

channel recordings see e.g. Ref. 60.

The current varies in a step-like manner between three different levels: 0, i,

and 2i. The interpretation is that the patch contains two identical ionic channels,

each of which can be either closed or open. Ions can diffuse through an open channel

with a fixed conductance (the single-channel conductance), but cannot go through

the channel when it is in its closed configuration. Thus, when both channels in

the patch are closed, no current is conducted (level 0), when one channel is open a

single-channel current i is conducted, and when both channels are open the current

is 2i.

The average time that a channel spends in a given state generally depends
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Multiscale modeling example: atrial fibrillation maintenance

M. Allessie et al. / Cardiovascular Research 54 (2002) 230–246 231

(Fig. 1). This observation of tachycardia-induced electrical different types of AF were first distinguished by Wells et

remodeling creating a substrate for persistent AF, led to the al. [7] based on difference in morphology of bipolar

concept that ‘Atrial Fibrillation Begets Atrial Fibrillation’ fibrillation electrograms and later by Konings et al. by

[1]. different degrees of complexities in high density maps of

The higher susceptibility to AF was explained by a AF [8]. Due to the shortening in wavelength, now multiple

shortening of the wavelength of the atrial impulse [3,4]. wavelets were wandering under the mapping electrode

When the wavelength is short, small regions of intra-atrial (type III AF). This higher degree of spatial dissociation

conduction block may already serve as a site for initiation lowers the chance that the fibrillation waves will all die

of reentry, thus increasing the vulnerability for AF. A short out, making it less likely that AF will self-terminate.

wavelength is also expected to increase the stability of AF Shortly after the demonstration of tachycardia-induced

because it allows more reentering wavelets to coexist in electrical remodeling, the ionic mechanisms underlying

the available surface area of the atria. This is illustrated in this arrhythmogenic process have been elucidated by a

the right part of Fig. 1, showing high density maps number of elegant and convincing studies [9–13]. Action

(diameter 4 cm, 240 electrodes) from the free wall of the potential recordings and patch clamp experiments in

right atrium during paroxysmal (top) and persistent AF isolated atrial cells from animal models and patients in

(bottom) [5]. Whereas during control (no remodeling) the chronic AF showed a consistent pattern. The most im-

right atrium was activated by broad fibrillation waves (type portant impact of AF on the ion channels was a marked
21

I AF), after electrical remodeling the fibrillation waves reduction in the L-type Ca current. This explains the

were much more disorganized (type III AF) [6]. These shortening of the atrial action potential and the loss of the

Fig. 1. Left: prolongation of the duration of episodes of electrically induced AF in the goat as a result of electrical remodeling (from Wijffels et al. [1]).

Right: high density mapping of the free wall of the right atrium of a goat during acutely induced (top) and persistent AF (bottom). The mapping array

(diameter 4 cm) contained 240 electrodes with an interelectrode distance of 2.25 mm. Isochrones are drawn every 10 ms. The direction of propagation is

indicated by arrows (from Konings et al. [5]).

Wijffels et al., 
Circulation, 1995.

“AF begets AF”
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Ionic and structural remodeling

Multiscale modeling example: AF maintenance
M. Courtemanche et al. / Cardiovascular Research 42 (1999) 477 –489 481

presents corresponding experimental data (right panel)
taken from the measurements of Boutjidir et al. [9].
Although rate-adaptation of the model NAP is consistent
with some experimental data [14,17], the model typically
exhibits a smaller decrease in APD at faster rates ($ 390
Hz) compared to other experimental recordings (e.g. Refs.
[9,16]). However, a comparison of rate-adaptation in the
model NAP and AFAP confirms that the model reproduces
qualitatively important features of AF-induced remodeling

Fig. 3. Comparison of model APs (left) with experimentally recorded observed in experimental preparations, namely the overallAPs from tissue samples of patients (right). In each panel, both NAP
decrease in APD and the reduced extent of rate-adaptation.(solid line) and AFAP (dashed line) morphologies are compared. Ex-
The changes in APD that accompany changes in stimula-perimental data is adapted from Boutjidir et al. [9].
tion period in the model AFAP are quite similar to the
experimental data of Boutjidir et al., but the model NAP

APs with only one of I (lower left), I (lower right), or exhibits less of a decrease in APD with decreasingto Kur
I (upper right) currents altered in the same way as in stimulation period compared to the experimental data.Ca,L
the AFAP. The effects of individual current abnormalities
on the NAP reveal that I reduction plays the major role 3.3. Potassium channel blockade in model NAP andCa,L
in the observed change between the model NAP and AFAP
AFAP, reproducing the triangular morphology and ab-
breviation of the AP typical of AF. Compared to the AP We investigated the effect of potassium channel bloc-
with I alteration alone, the reductions in I and I kade, implemented via a reduction in maximal conduct-Ca,L to Kur
produce a slowing of phase 1 repolarization and an ance of specific potassium currents, on morphology and
increase in AP plateau height that may play a role in duration of the model NAP and AFAP. We selected as our
modulating the response of the AFAP to potassium current targets four currents: I (90% inhibition), I (90%to Kur
inhibition (see below). inhibition), I (90% inhibition), I (90% inhibition), andKr Ks

I (20% inhibition). Extensive block of I compromisesK1 K1
3.2. Rate-adaptation the stability of the resting potential in the model, with

failure of repolarization or excessive resting potential
A shortened APD and decreased adaptation to rate have depolarization occurring for decreases of the inward

been observed as a consequence of AF-induced remodeling rectifier greater than 20%. Results are presented with
[9,16]. We investigated the rate-dependence of APD mea- respect to the control values APD , corresponding260
sured at APD in both NAP and AFAP. Fig. 5 illustrates approximately to the ERP, which are 260 ms for the model90
the relationship between APD and basic pacing cycle NAP and 177 ms for the model AFAP (at 1 Hz).90
length for the model NAP and AFAP (left panel) and Fig. 6 shows the result of I inhibition on the NAP andto

AFAP during pacing at 1 Hz. Inhibition of I shortens theto
NAP by 40 ms (15%) and the AFAP by 15 ms (8%). This
paradoxical shortening of APD in response to blockade of
a repolarizing current (I ) has been observed experimen-to
tally [18]. As shown in the upper panels of Fig. 6,
inhibition of I causes a slowing of phase 1 repolarizationto
following the AP upstroke. This is associated with a more
positive plateau potential, sustained by a balance between
increased I and increased I (see middle and bottomCa,L Kur
panels). The elevated plateau potential allows for greater
activation of I (compare middle and lower panels) thatK
increases the rate of mid- and late-repolarization, ultimate-
ly producing a shorter APD. Thus, a secondary increase in
I explains the paradoxical AP shortening caused by IK to
inhibition in both the NAP and AFAP models.
Fig. 7 shows the result of I inhibition on the modelKr

APs. Inhibition of I prolongs the NAP by 105 ms (38%)KrFig. 4. Role of AF-induced ionic current abnormalities in producing and the AFAP by 60 ms (34%). Inhibition of I (notKsmodel AFAP morphology. The first panel (top left) presents a comparison shown) prolongs the NAP by 32 ms (12%), prolongs theof model NAP and AFAP. Successive panels show a comparison between
AFAP by 12 ms (7%), and is qualitatively similar tothe model NAP and APs with only one of I (lower left), I (lowerto Kur

right), or I (upper right) currents being altered. inhibition of I in its effect on the AP. Because I and ICa,L Kr Kr Ks

↓ ICa 
↓ IKur 
↓ Ito

Burstein & Nattel, 
J. American College of Cardiology, 2005.

Courtemanche et al., 
Cardiovascular Research, 1999.
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Multiscale modeling example: AF maintenance
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Anatomical structure: 
~2,000,000 virtual cells. 

Computationally demanding, 
but embarrassingly parallel.
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Multiscale modeling example: AF maintenance

Ionic and structural remodelingNo remodeling
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Alternans and its control

4 1 Control of Cardiac Electrical Nonlinear Dynamics
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Fig. 1.2 A typical action potential duration
(APD) restitution curve, generated with the
Shiferaw et al. model [54] of a ventricular
cell. To generate the APD restitution curve,
a train of action potentials are stimulated at
a constant pacing rate, followed by one pre-
mature stimulus. Thus, the diastolic interval

(DI) following the penultimate action poten-
tial is varied, and the duration of the resulting
action potential is plotted as a function of the
preceding DI. As the action potentials in the
insets demonstrate, APD shortens as DI is
shortened, leading to a restitution curve with
the general shape as shown.
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Fig. 1.3 Action potential duration bifurcation
diagram, generated with the Shiferaw et al.
model [54] in a one-dimensional cable. When
pacing at a relatively slow rate, identical ac-
tion potentials occur each time a stimulus is

applied (i.e., 1:1 behavior). However, increas-
ing the pacing rate causes the action potential
behavior to bifurcate, such that for every two
stimuli, two different action potentials occur
(i.e., 2:2 behavior).

given cell bifurcates to alternans is dependent upon the membrane currents
and intracellular regulatory mechanisms operating in that cell.

Our interest in alternans resides in the role of alternans as a precursor, or
even as a trigger event, for more complex and potentially fatal cardiac ar-
rhythmias. The details of the implications of APD alternans for ventricular
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cell. To generate the APD restitution curve,
a train of action potentials are stimulated at
a constant pacing rate, followed by one pre-
mature stimulus. Thus, the diastolic interval

(DI) following the penultimate action poten-
tial is varied, and the duration of the resulting
action potential is plotted as a function of the
preceding DI. As the action potentials in the
insets demonstrate, APD shortens as DI is
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diagram, generated with the Shiferaw et al.
model [54] in a one-dimensional cable. When
pacing at a relatively slow rate, identical ac-
tion potentials occur each time a stimulus is

applied (i.e., 1:1 behavior). However, increas-
ing the pacing rate causes the action potential
behavior to bifurcate, such that for every two
stimuli, two different action potentials occur
(i.e., 2:2 behavior).

given cell bifurcates to alternans is dependent upon the membrane currents
and intracellular regulatory mechanisms operating in that cell.

Our interest in alternans resides in the role of alternans as a precursor, or
even as a trigger event, for more complex and potentially fatal cardiac ar-
rhythmias. The details of the implications of APD alternans for ventricular

Repolarization alternans: a beat-to-beat alternation in 
action potential duration

Normal Alternating
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Alternans and arrhythmogenesis

Concordant Discordant

Fox et al. Circ Res 2002

Alternans can induce large 
repolarization gradients 
across the heart, ultimately 
causing unidirectional 
block.

This may cause life-
threatening ventricular 
tachyarrhythmias. 
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repolarization gradients 
across the heart, ultimately 
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Alternans and arrhythmogenesis
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Alternans control

Basic concept: eliminate alternans by applying (small) 
electrical stimuli at well-timed intervals 

10 1 Control of Cardiac Electrical Nonlinear Dynamics

1.5.1
Controlling Cellular Alternans

Recent research has suggested that control algorithms targeted at cardiac al-
ternans could potentially lead to an improvement in the therapeutic efficacy
of implantable devices such as ICDs.

Most of this work is based on model-independent, adaptive control algo-
rithms, e.g., delayed feedback control (DFC). In this method, which is based
on the Ott-Grebogi-Yorke (OGY) [44] technique for chaos control, small per-
turbations are applied to the timing of the next excitation in an attempt to
force the state of the system toward the (unstable) period-1 fixed point. Un-
like chaos control techniques, DFC algorithms do not require a learning stage
(i.e., learning the dynamics in the neighborhood of the unstable period-1 so-
lution). This is important, because during alternans, the dynamics evolve far
from the period-1 dynamics (unless the alternans amplitude is very small).
Delayed feedback control (DFC) algorithms typically require (i) knowledge of
the state of the system for a very short time history, and (ii) a basic under-
standing of the system dynamics to ensure that the control perturbations are
of the proper magnitude and polarity. These two elements allow the periodic
rhythm to be stabilized by repeated adjustment of the stimulation time.

Let BCL (basic cycle length) be the time interval between two stimulations.
A typical DFC algorithm for alternans control is:

BCLn+1 =

{
BCL! for ∆BCLn+1 > 0,
BCL! + ∆BCLn+1 for ∆BCLn+1 ≤ 0,

(1.1)

with

∆BCLn+1 =
γ

2
(APDn+1 −APDn), (1.2)

where γ is the feedback gain and BCL! is the nominal BCL. The restriction
that a perturbation is only given to shorten, and not delay, the intrinsic rhythm
reflects the fact that, in the heart, it is often not possible to delay the excitation:
it will occur naturally without stimulation. Thus, this algorithm is said to be
restricted. Both unrestricted DFC algorithms (which allow both lengthening
and shortening of the BCL during control) and restricted DFC algorithms have
been applied to cardiac rhythm disturbances.

An example of alternans control in a mathematical model is shown in Fig. 1.5.
Essentially, the restricted algorithm works by shortening the long DI by giving
a premature stimulation. This in turn shortens the long APD due to restitu-
tion, as described in section 1.2.1. Eventually, the unstable period-1 solution is
stabilized and action potentials of constant duration are established. The rate
of convergence is controlled by the feedback gain.
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Alternans control

Basic concept: eliminate alternans by applying (small) 
electrical stimuli at well-timed intervals 

10 1 Control of Cardiac Electrical Nonlinear Dynamics

1.5.1
Controlling Cellular Alternans

Recent research has suggested that control algorithms targeted at cardiac al-
ternans could potentially lead to an improvement in the therapeutic efficacy
of implantable devices such as ICDs.

Most of this work is based on model-independent, adaptive control algo-
rithms, e.g., delayed feedback control (DFC). In this method, which is based
on the Ott-Grebogi-Yorke (OGY) [44] technique for chaos control, small per-
turbations are applied to the timing of the next excitation in an attempt to
force the state of the system toward the (unstable) period-1 fixed point. Un-
like chaos control techniques, DFC algorithms do not require a learning stage
(i.e., learning the dynamics in the neighborhood of the unstable period-1 so-
lution). This is important, because during alternans, the dynamics evolve far
from the period-1 dynamics (unless the alternans amplitude is very small).
Delayed feedback control (DFC) algorithms typically require (i) knowledge of
the state of the system for a very short time history, and (ii) a basic under-
standing of the system dynamics to ensure that the control perturbations are
of the proper magnitude and polarity. These two elements allow the periodic
rhythm to be stabilized by repeated adjustment of the stimulation time.

Let BCL (basic cycle length) be the time interval between two stimulations.
A typical DFC algorithm for alternans control is:

BCLn+1 =

{
BCL! for ∆BCLn+1 > 0,
BCL! + ∆BCLn+1 for ∆BCLn+1 ≤ 0,

(1.1)

with

∆BCLn+1 =
γ

2
(APDn+1 −APDn), (1.2)

where γ is the feedback gain and BCL! is the nominal BCL. The restriction
that a perturbation is only given to shorten, and not delay, the intrinsic rhythm
reflects the fact that, in the heart, it is often not possible to delay the excitation:
it will occur naturally without stimulation. Thus, this algorithm is said to be
restricted. Both unrestricted DFC algorithms (which allow both lengthening
and shortening of the BCL during control) and restricted DFC algorithms have
been applied to cardiac rhythm disturbances.

An example of alternans control in a mathematical model is shown in Fig. 1.5.
Essentially, the restricted algorithm works by shortening the long DI by giving
a premature stimulation. This in turn shortens the long APD due to restitu-
tion, as described in section 1.2.1. Eventually, the unstable period-1 solution is
stabilized and action potentials of constant duration are established. The rate
of convergence is controlled by the feedback gain.

0 500 1000
−100

−50

0

50

100

Time (ms)

Vo
lta

ge
 (m

V)

42



Alternans control

Basic concept: eliminate alternans by applying (small) 
electrical stimuli at well-timed intervals 

10 1 Control of Cardiac Electrical Nonlinear Dynamics

1.5.1
Controlling Cellular Alternans

Recent research has suggested that control algorithms targeted at cardiac al-
ternans could potentially lead to an improvement in the therapeutic efficacy
of implantable devices such as ICDs.

Most of this work is based on model-independent, adaptive control algo-
rithms, e.g., delayed feedback control (DFC). In this method, which is based
on the Ott-Grebogi-Yorke (OGY) [44] technique for chaos control, small per-
turbations are applied to the timing of the next excitation in an attempt to
force the state of the system toward the (unstable) period-1 fixed point. Un-
like chaos control techniques, DFC algorithms do not require a learning stage
(i.e., learning the dynamics in the neighborhood of the unstable period-1 so-
lution). This is important, because during alternans, the dynamics evolve far
from the period-1 dynamics (unless the alternans amplitude is very small).
Delayed feedback control (DFC) algorithms typically require (i) knowledge of
the state of the system for a very short time history, and (ii) a basic under-
standing of the system dynamics to ensure that the control perturbations are
of the proper magnitude and polarity. These two elements allow the periodic
rhythm to be stabilized by repeated adjustment of the stimulation time.

Let BCL (basic cycle length) be the time interval between two stimulations.
A typical DFC algorithm for alternans control is:

BCLn+1 =

{
BCL! for ∆BCLn+1 > 0,
BCL! + ∆BCLn+1 for ∆BCLn+1 ≤ 0,

(1.1)

with

∆BCLn+1 =
γ

2
(APDn+1 −APDn), (1.2)

where γ is the feedback gain and BCL! is the nominal BCL. The restriction
that a perturbation is only given to shorten, and not delay, the intrinsic rhythm
reflects the fact that, in the heart, it is often not possible to delay the excitation:
it will occur naturally without stimulation. Thus, this algorithm is said to be
restricted. Both unrestricted DFC algorithms (which allow both lengthening
and shortening of the BCL during control) and restricted DFC algorithms have
been applied to cardiac rhythm disturbances.

An example of alternans control in a mathematical model is shown in Fig. 1.5.
Essentially, the restricted algorithm works by shortening the long DI by giving
a premature stimulation. This in turn shortens the long APD due to restitu-
tion, as described in section 1.2.1. Eventually, the unstable period-1 solution is
stabilized and action potentials of constant duration are established. The rate
of convergence is controlled by the feedback gain.
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Alternans control

Basic concept: eliminate alternans by applying (small) 
electrical stimuli at well-timed intervals 

10 1 Control of Cardiac Electrical Nonlinear Dynamics

1.5.1
Controlling Cellular Alternans

Recent research has suggested that control algorithms targeted at cardiac al-
ternans could potentially lead to an improvement in the therapeutic efficacy
of implantable devices such as ICDs.

Most of this work is based on model-independent, adaptive control algo-
rithms, e.g., delayed feedback control (DFC). In this method, which is based
on the Ott-Grebogi-Yorke (OGY) [44] technique for chaos control, small per-
turbations are applied to the timing of the next excitation in an attempt to
force the state of the system toward the (unstable) period-1 fixed point. Un-
like chaos control techniques, DFC algorithms do not require a learning stage
(i.e., learning the dynamics in the neighborhood of the unstable period-1 so-
lution). This is important, because during alternans, the dynamics evolve far
from the period-1 dynamics (unless the alternans amplitude is very small).
Delayed feedback control (DFC) algorithms typically require (i) knowledge of
the state of the system for a very short time history, and (ii) a basic under-
standing of the system dynamics to ensure that the control perturbations are
of the proper magnitude and polarity. These two elements allow the periodic
rhythm to be stabilized by repeated adjustment of the stimulation time.

Let BCL (basic cycle length) be the time interval between two stimulations.
A typical DFC algorithm for alternans control is:

BCLn+1 =

{
BCL! for ∆BCLn+1 > 0,
BCL! + ∆BCLn+1 for ∆BCLn+1 ≤ 0,

(1.1)

with

∆BCLn+1 =
γ

2
(APDn+1 −APDn), (1.2)

where γ is the feedback gain and BCL! is the nominal BCL. The restriction
that a perturbation is only given to shorten, and not delay, the intrinsic rhythm
reflects the fact that, in the heart, it is often not possible to delay the excitation:
it will occur naturally without stimulation. Thus, this algorithm is said to be
restricted. Both unrestricted DFC algorithms (which allow both lengthening
and shortening of the BCL during control) and restricted DFC algorithms have
been applied to cardiac rhythm disturbances.

An example of alternans control in a mathematical model is shown in Fig. 1.5.
Essentially, the restricted algorithm works by shortening the long DI by giving
a premature stimulation. This in turn shortens the long APD due to restitu-
tion, as described in section 1.2.1. Eventually, the unstable period-1 solution is
stabilized and action potentials of constant duration are established. The rate
of convergence is controlled by the feedback gain.
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Alternans control

Basic concept: eliminate alternans by applying (small) 
electrical stimuli at well-timed intervals 

10 1 Control of Cardiac Electrical Nonlinear Dynamics

1.5.1
Controlling Cellular Alternans

Recent research has suggested that control algorithms targeted at cardiac al-
ternans could potentially lead to an improvement in the therapeutic efficacy
of implantable devices such as ICDs.

Most of this work is based on model-independent, adaptive control algo-
rithms, e.g., delayed feedback control (DFC). In this method, which is based
on the Ott-Grebogi-Yorke (OGY) [44] technique for chaos control, small per-
turbations are applied to the timing of the next excitation in an attempt to
force the state of the system toward the (unstable) period-1 fixed point. Un-
like chaos control techniques, DFC algorithms do not require a learning stage
(i.e., learning the dynamics in the neighborhood of the unstable period-1 so-
lution). This is important, because during alternans, the dynamics evolve far
from the period-1 dynamics (unless the alternans amplitude is very small).
Delayed feedback control (DFC) algorithms typically require (i) knowledge of
the state of the system for a very short time history, and (ii) a basic under-
standing of the system dynamics to ensure that the control perturbations are
of the proper magnitude and polarity. These two elements allow the periodic
rhythm to be stabilized by repeated adjustment of the stimulation time.

Let BCL (basic cycle length) be the time interval between two stimulations.
A typical DFC algorithm for alternans control is:

BCLn+1 =

{
BCL! for ∆BCLn+1 > 0,
BCL! + ∆BCLn+1 for ∆BCLn+1 ≤ 0,

(1.1)

with

∆BCLn+1 =
γ

2
(APDn+1 −APDn), (1.2)

where γ is the feedback gain and BCL! is the nominal BCL. The restriction
that a perturbation is only given to shorten, and not delay, the intrinsic rhythm
reflects the fact that, in the heart, it is often not possible to delay the excitation:
it will occur naturally without stimulation. Thus, this algorithm is said to be
restricted. Both unrestricted DFC algorithms (which allow both lengthening
and shortening of the BCL during control) and restricted DFC algorithms have
been applied to cardiac rhythm disturbances.

An example of alternans control in a mathematical model is shown in Fig. 1.5.
Essentially, the restricted algorithm works by shortening the long DI by giving
a premature stimulation. This in turn shortens the long APD due to restitu-
tion, as described in section 1.2.1. Eventually, the unstable period-1 solution is
stabilized and action potentials of constant duration are established. The rate
of convergence is controlled by the feedback gain.
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Alternans control

Basic concept: eliminate alternans by applying (small) 
electrical stimuli at well-timed intervals 

10 1 Control of Cardiac Electrical Nonlinear Dynamics

1.5.1
Controlling Cellular Alternans

Recent research has suggested that control algorithms targeted at cardiac al-
ternans could potentially lead to an improvement in the therapeutic efficacy
of implantable devices such as ICDs.

Most of this work is based on model-independent, adaptive control algo-
rithms, e.g., delayed feedback control (DFC). In this method, which is based
on the Ott-Grebogi-Yorke (OGY) [44] technique for chaos control, small per-
turbations are applied to the timing of the next excitation in an attempt to
force the state of the system toward the (unstable) period-1 fixed point. Un-
like chaos control techniques, DFC algorithms do not require a learning stage
(i.e., learning the dynamics in the neighborhood of the unstable period-1 so-
lution). This is important, because during alternans, the dynamics evolve far
from the period-1 dynamics (unless the alternans amplitude is very small).
Delayed feedback control (DFC) algorithms typically require (i) knowledge of
the state of the system for a very short time history, and (ii) a basic under-
standing of the system dynamics to ensure that the control perturbations are
of the proper magnitude and polarity. These two elements allow the periodic
rhythm to be stabilized by repeated adjustment of the stimulation time.

Let BCL (basic cycle length) be the time interval between two stimulations.
A typical DFC algorithm for alternans control is:

BCLn+1 =

{
BCL! for ∆BCLn+1 > 0,
BCL! + ∆BCLn+1 for ∆BCLn+1 ≤ 0,

(1.1)

with

∆BCLn+1 =
γ

2
(APDn+1 −APDn), (1.2)

where γ is the feedback gain and BCL! is the nominal BCL. The restriction
that a perturbation is only given to shorten, and not delay, the intrinsic rhythm
reflects the fact that, in the heart, it is often not possible to delay the excitation:
it will occur naturally without stimulation. Thus, this algorithm is said to be
restricted. Both unrestricted DFC algorithms (which allow both lengthening
and shortening of the BCL during control) and restricted DFC algorithms have
been applied to cardiac rhythm disturbances.

An example of alternans control in a mathematical model is shown in Fig. 1.5.
Essentially, the restricted algorithm works by shortening the long DI by giving
a premature stimulation. This in turn shortens the long APD due to restitu-
tion, as described in section 1.2.1. Eventually, the unstable period-1 solution is
stabilized and action potentials of constant duration are established. The rate
of convergence is controlled by the feedback gain.
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studies were approved by the Institutional Animal Care and
Use Committee of the Center for Research Animal
Resources at Cornell University. Pacing stimuli (2 ms du-
ration) were delivered to either end of the fiber via a bipolar
electrode. Action potentials were recorded [sampled at
1 kHz with 12-bit resolution [19] ] simultaneously from
6 sites along the fiber using standard microelectrode tech-
niques. Following 60 minutes of equilibration at a pacing
cycle length (T!) of 300 ms, T! was decreased progres-
sively by 10 ms decrements to induce alternans—concord-
ant (i.e., all spatial regions alternate in phase) at slower
pacing rates and discordant (i.e., distinct spatial regions
alternate out of phase) at faster pacing rates. The pacing
protocol subsequently was repeated with the application of
the control algorithm at each T!. Both the pacing and
control stimuli were applied to the same end of the fiber.

As in previous alternans control studies, the interstimu-
lus interval was adjusted for each stimulus according to:

Tn "
!
T! # !Tn if !Tn < 0;
T! if !Tn $ 0;

(1)

where

!Tn " %!=2&%An ' An'1&; (2)

T! is the pacing cycle length without control, ! is the
feedback gain (which typically ranged from 0.6 to 1.0,
and was held constant for the duration of each experiment),
A is the APD at the proximal microelectrode (‘‘Lead 1’’ in
Figs. 1 and 2) and n is the interval number. No significant
differences in the ability to control alternans were detected
for different ! values between 0.6 and 1.0.

The algorithm was similar to that used for control of
APD alternans in Refs. [14,17], although the approaches
used in those studies did not impose any conditions on
!Tn, (i.e., Tn " T! #!Tn for all !Tn). The conditions of
Eq. (1) were used in this study for two reasons. First, such
an implementation is more electrophysiologically realistic
than the unconditional approach. In an intact heart, in
which the underlying pacing is the result of native electro-
physiological activity rather than external stimulation, it is
not possible to prolong an interstimulus interval [13,20].
Second, algorithms using only negative perturbations have
been shown analytically to have a larger successful-control
regime than those that apply both positive and negative
perturbations [12,21]. However, a disadvantage of the for-
mer is that they achieve control slower (i.e., more beats are
required to suppress alternans after control is activated).

In this study, in the absence of control [as described in
detail previously [5,22,23] ], progressive shortening of T!
produces a stereotypical sequence of APD dynamics, in-
cluding a period-doubling bifurcation that initially takes
the form of concordant APD alternans and subsequently is
converted to discordant alternans at the shortest T!.
Examples of such uncontrolled dynamics are shown in
Fig. 1. They include: (1) concordant alternans at T! "

200 ms, during which APD for all sites on the fiber alter-
nate in phase [leftmost column of Fig. 1(a)]; (2) increased
magnitude of alternans at the site of stimulation at T! "
190 ms, with a reduction of alternans magnitude at more
distal sites [leftmost column of Fig. 1(b)]; (3) discordant
alternans at T! " 160 ms, during which the alternans of
APD at the proximal and distal ends of the fiber are out of
phase [leftmost column of Fig. 1(c)].
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FIG. 1 (color). Data from two consecutive action potentials
recorded from 6 microelectrodes spaced along the length of a
Purkinje fiber (Lead 1 is proximal; Lead 6 is distal) in one
representative control experiment. Stimulation was applied to
the proximal end of the fiber near microelectrode 1 (x " 0 cm).
For each of the three rows [(a), (b), and (c)]: (1) T! is shown on
the left, (2) membrane potential vs time for microelectrodes 1
through 6 (which correspond to x " 0 and 2 cm, respectively)
are shown in the left column (before control) and middle column
(during control), and (3) the right column shows APD values
computed from the six microelectrodes for the same alternate
beats before (top panels) and during (bottom panels) control.
During control, stimulation was adapted according to Eq. (1). In
the middle column, action potentials for which control failed to
eliminate alternans are shown in red and blue, while those in
which alternans was suppressed are shown in black.
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Alternans control works well is single cells but 
is only effective over ~1 cm in tissue.

CorCap Cardiac Support Device: 
prevent and reverse dilation; 
add electrode grid?
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Off-site alternans control
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site to control 
alternans there
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to vary in space, even though it is held constant at the pac-
ing site. Therefore spatial heterogeneity in DCL is induced
(Fig. 7 I).
All of these spatial heterogeneities are much reduced in

the absence of a structural barrier (Fig. 7, A–E). Hence,
without the structural barrier, the alternans is concordant
(Fig. 7, C and E).

Onset of alternans

Fig. 8 shows the different dynamics that occur in ionically
heterogeneous tissue when BCL is varied. For BCL of 320
ms and above there is no alternans; and for BCL of 230 and
shorter there is 2:1 conduction block. A comparison of Figs.
4 and 8 reveals that the range over which alternans occurs is
larger in sheets with ionic heterogeneity (240–310 ms; Fig.
8) than in sheets without (250–290 ms; Fig. 4), mainly
because of the prolongation of APD, which causes earlier
onset of alternans. In heterogeneous sheets without a struc-

tural barrier, the alternans is always concordant, whereas in
sheets with a barrier, there is discordant alternans for BCL
values of 240 ms and 250 ms (:; Fig. 8).
The pacing rate at which alternans first occurs is the same

(310 ms) both in the presence and in the absence of the
structural barrier (Fig. 8 A). However, in our simulations we
distinguish alternans from nonalternans using a much
smaller criterion value (1 ms, see inset in Fig. 8 A) than
what is possible when analyzing experimental data. When
we instead define alternans as alternating APD differences
larger than 10 ms, the same criterion as used in analyzing the
experimental data (7) (Fig. 8 A, inset), there is an apparent
shift in the onset of alternans due to the presence of the
structural barrier (from 280 to 300 ms). This apparent shift in
the onset of alternans occurs because the alternans amplitude
increases more quickly as a function of BCL in sheets with a
structural barrier than in sheets without it (Fig. 8 A). This
effect is much larger in ionically heterogeneous sheets than
in homogeneous sheets (Fig. 8 A versus Fig. 4 A), as is the

FIGURE 6 Development of discor-

dant APD alternans in an ionically
heterogeneous sheet with a structural

barrier. Each panel shows a snapshot of

the transmembrane potential (in milli-

volts) in the sheet at the indicated time
(in milliseconds). BCL ¼ 240 ms.

FIGURE 7 Discordant APD alternans in ionically heterogeneous sheets without (upper row) and with (lower row) a structural barrier. (A–D) Spatial
distribution of APDi (A), APDi11 (B), DAPD (C), and DCL (D). (E) Voltage waveforms obtained from two different locations (marked ‘‘1’’ and ‘‘2’’) in the
sheets without a barrier. (F–J) Same as for A–E but in tissue with a structural barrier. Color scales apply to both rows. Asterisks indicate stimulus site. BCL ¼
240 ms.

Structural Barrier and Alternans 1143
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Use off-site control to 
eliminate alternans 
where it’s amplitude is 
large?
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Summary

• The cardiac action potential is generated by diffusion of 
ions through specific ion channels in the cell membrane

• Voltage-gated channel dynamics may be described 
quantitatively by HH-type equations or by Markov 
models

• Computational models can be used to explain 
mechanisms of experimentally or clinically observed 
phenomena

50


