Multiscale computational modeling of cardiac action potentials

Trine Krogh-Madsen Department of Medicine (Cardiology) Institute for Computational Biomedicine trk2002@med.cornell.edu A-328

Cardiac arrhythmias

~300,000 deaths/year

Ventricular tachycardia

- Rapid activation
- May impair pumping
- May degenerate to VF

Ventricular fibrillation

- Loss of synchronous activation
- Syncope, death

- How do cardiac arrhythmias initiate?
- How are they sustained?
- What can we do to prevent their occurrence?
- How can we terminate them?

Initiation

Structural heterogeneity

Bill Stevenson, KITP seminar, 2006. OCCLUSION OF R. DIVISION OF ANTERIOR INTER-VENTRICULAR BRANCH OF L. CORONARY ARTERY

F. Netter, 1978

Cardiac arrhythmia mechanisms

thevirtualheart.org

Multiscale phenomena

Cardiac action potentials Ca²⁺ K+ Na⁺ Injection of a Na Ca stimulus current initiates depolarization, which cause Na⁺ K+ Ca²⁺ Na+ and Ca⁺ channels to open and further depolarize the membrane, V≈+20 mV

(*E*_{Na}≈+50 mV, *E*_{Ca}≈+30 mV)

Cardiac action potentials Ca²⁺ K+ Na⁺ ^ICa ¹Na Na⁺ and Ca⁺ channels inactivate (close) with K+ Na+ Ca²⁺ prolonged depolarization. K⁺ channels open and cause

repolarization to V≈-85 mV.

Cardiac action potentials

- Upstroke of ventricular AP is Na⁺ mediated.
- A prolonged inward Ca²⁺ current prolongs the AP (plateau).
- Ca²⁺ influx triggers additional Ca²⁺ release from the sarcoplasmic reticulum.
- Cytoplasmic Ca²⁺ produces muscle contraction.
- Cardiac cells have many different types of K⁺ channels.

The membrane as an electrical circuit

Equation for capacitor: $Q = C_m V$

Current across capacitor: $I_c = dQ/dt = C_m dV/dt$

Charge conservation: $I = I_c + I_{ion} = 0$

Hence, dV/dt

$$= -I_{ion}/C_m$$
 where $I_{ion} = I_{Na} + I_K + I_{Ca}$

Examples of currents with voltage-gated conductances:

$$I_{Na} = g_{Na} \cdot m^{3} \cdot h \cdot j \cdot (V - E_{Na})$$

$$I_{Ca} = g_{Ca} \cdot d \cdot f \cdot (V - E_{Ca})$$

$$I_{K} = g_{K} \cdot n \cdot (V - E_{K})$$

m, h, j, d, f, n represents the fraction of gates that are open

x: fraction of gates that are open 1-*x*: fraction of gates that are closed $\alpha(V)$: opening rate $\beta(V)$: closing rate

ODE for gating variable:

$$dx / dt = \alpha_x (1 - x) - \beta_x x$$
$$= -(\alpha_x + \beta_x) x + \alpha_x$$
$$= (x_\infty - x) / \tau_x$$

where

 $x_{\infty} = \alpha_{x} / (\alpha_{x} + \beta_{x})$ $\tau_{x} = 1 / (\alpha_{x} + \beta_{x}).$

Solution for constant *V*:

$$dx/dt = (x_{\infty} - x)/\tau_{x}$$

$$1/(x_{\infty} - x)dx = 1/\tau_{x}dt$$

$$\int_{x_{0}}^{t} 1/(x_{\infty} - x')dx' = \int_{0}^{t} 1/\tau_{x}dt'$$

$$\left[-\ln(x_{\infty} - x')\int_{x_{0}}^{x} = t/\tau_{x}$$

$$\ln \frac{x_{\infty} - x}{x_{\infty} - x_{0}} = -t/\tau_{x}$$

$$\frac{x_{\infty} - x}{x_{\infty} - x_{0}} = \exp(-t/\tau_{x})$$

$$x = x_{\infty} - (x_{\infty} - x_{0})\exp(-t/\tau_{x})$$

$$\frac{+20 \text{ mV}}{0 \text{ mV}}$$

$$-20 \text{ mV}}{-20 \text{ mV}}$$

$$-80 \text{ mV}$$

mV

mV

mV

The Hodgkin-Huxley model of the squid giant axon

The axon is giant, not the squid

Action potential recordings from squid giant axon

Full Hodgkin-Huxley model

$$\begin{aligned} \alpha_m &= 0.1(V+35)/(1-\exp(-(V+35)/10)), \\ \beta_m &= 4\exp(-(V+60)/18), \\ \alpha_h &= 0.07\exp(-(V+60)/20), \\ \beta_h &= 1/(\exp(-(V+30)/10)+1), \\ \alpha_n &= 0.01(V+50)/(1-\exp(-(V+50)/10)), \\ \beta_n &= 0.125\exp(-(V+60)/80). \end{aligned}$$

Single cardiac myocyte model example

courtesy of R. Gilmour

Single cardiac myocyte model example

Multiscale phenomena

Single-channel modeling: Markov model

- May be based on channel structure
- Gates not necessarily independent
- May reproduce experimental data better than HH
- Integration time step usually small

Three-dimensional virtual cardiac tissue

Virtual cells coupled by Ohmic resistances (gap junctions)

Why use computational modeling for cardiac electrophysiology?

- Rodent cardiac myocytes have fundamentally different channel expression levels (especially repolarizing currents). Therefore, transgenic models are not always appropriate.
- Modeling allows one to monitor each component simultaneously – not possible in experiments.
- Dynamics can be observed at resolutions that are unattainable experimentally or clinically.
- It is often faster and cheaper to do so.

Cardiac ionic model surge

- Surge in development of cell models
- 66 in total (at CellML)
- Different species, regions, pathologies
- Multiple models for the same species/ region/condition

Five different rabbit SAN models

Different models, different action potential shapes and duration

Kurata et al. (2002) AJP 283, H2074-2101.

Four different human ventricular cell models

Why do different models of the same species and regions disagree?

- Some models are simply better than others:
 - Uses better data
 - Uses more data from particular species/region
- The models are equally good/bad:
 - Differences reflect electrophysiological heterogeneity
 - Differences reflect different age, sex, etc.

Other modeling considerations

- Models are validated for specific conditions. They may not be valid for your numerical experiments (fast rates, temperature, concentrations, drugs, age, sex).
- A model can give a "right" result for the wrong reason.
- The more complicated the model (more variables and parameters), the more realistically it may behave. However,
- the more complicated the model, the harder it is to pinpoint cause-and-effect relationships and the more components may be wrong.
- *Math instead of mice vs. insights from math/physics*

$$\frac{d\mathbf{x}}{dt} = f(\mathbf{x}, t)$$

Multiscale modeling example: single-channel noise

Excised patch

Unitary events add up to give the macroscopic current.

Multiscale modeling example: atrial fibrillation maintenance

Multiscale modeling example: AF maintenance

Ionic and structural remodeling

J. American College of Cardiology, 2005.

Wave length: $WL = CV \cdot APD$

 $\downarrow CV \\ \downarrow APD \qquad \Rightarrow \downarrow WL \Rightarrow multiple waves \\ can fit in the atria$

Multiscale modeling example: AF maintenance

Anatomical structure: ~2,000,000 virtual cells.

Computationally demanding, but embarrassingly parallel.

Multiscale modeling example: AF maintenance

No remodeling

Ionic and structural remodeling

Alternans and its control

Repolarization alternans: a beat-to-beat alternation in action potential duration

Alternans and arrhythmogenesis

Fox et al. Circ Res 2002

Alternans can induce large repolarization gradients across the heart, ultimately causing unidirectional block.

This may cause lifethreatening ventricular tachyarrhythmias.

Alternans and arrhythmogenesis

Fox et al. Circ Res 2002

Alternans can induce large repolarization gradients across the heart, ultimately causing unidirectional block.

This may cause lifethreatening ventricular tachyarrhythmias.

Alternans and arrhythmogenesis

Fox et al. Circ Res 2002

Alternans can induce large repolarization gradients across the heart, ultimately causing unidirectional block.

This may cause lifethreatening ventricular tachyarrhythmias.

Basic concept: eliminate alternans by applying (small) electrical stimuli at well-timed intervals

$$BCL_{n+1} = \begin{cases} BCL^{\star} & \text{for } \Delta BCL_{n+1} > 0, \\ BCL^{\star} + \Delta BCL_{n+1} & \text{for } \Delta BCL_{n+1} \le 0, \end{cases}$$

$$\Delta BCL_{n+1} = \frac{\gamma}{2} (APD_{n+1} - APD_n),$$

Basic concept: eliminate alternans by applying (small) electrical stimuli at well-timed intervals

$$BCL_{n+1} = \begin{cases} BCL^{\star} & \text{for } \Delta BCL_{n+1} > 0, \\ BCL^{\star} + \Delta BCL_{n+1} & \text{for } \Delta BCL_{n+1} \le 0, \end{cases}$$

$$\Delta BCL_{n+1} = \frac{\gamma}{2} (APD_{n+1} - APD_n),$$

Basic concept: eliminate alternans by applying (small) electrical stimuli at well-timed intervals

$$BCL_{n+1} = \begin{cases} BCL^{\star} & \text{for } \Delta BCL_{n+1} > 0, \\ BCL^{\star} + \Delta BCL_{n+1} & \text{for } \Delta BCL_{n+1} \le 0, \end{cases}$$

$$\Delta BCL_{n+1} = \frac{\gamma}{2} (APD_{n+1} - APD_n),$$

Basic concept: eliminate alternans by applying (small) electrical stimuli at well-timed intervals

$$BCL_{n+1} = \begin{cases} BCL^{\star} & \text{for } \Delta BCL_{n+1} > 0, \\ BCL^{\star} + \Delta BCL_{n+1} & \text{for } \Delta BCL_{n+1} \le 0, \end{cases}$$

$$\Delta BCL_{n+1} = \frac{\gamma}{2} (APD_{n+1} - APD_n),$$

Basic concept: eliminate alternans by applying (small) electrical stimuli at well-timed intervals

$$BCL_{n+1} = \begin{cases} BCL^{\star} & \text{for } \Delta BCL_{n+1} > 0, \\ BCL^{\star} + \Delta BCL_{n+1} & \text{for } \Delta BCL_{n+1} \le 0, \end{cases}$$

$$\Delta BCL_{n+1} = \frac{\gamma}{2} (APD_{n+1} - APD_n),$$

Basic concept: eliminate alternans by applying (small) electrical stimuli at well-timed intervals

$$BCL_{n+1} = \begin{cases} BCL^{\star} & \text{for } \Delta BCL_{n+1} > 0, \\ BCL^{\star} + \Delta BCL_{n+1} & \text{for } \Delta BCL_{n+1} \le 0, \end{cases}$$

$$\Delta BCL_{n+1} = \frac{\gamma}{2} (APD_{n+1} - APD_n),$$

Alternans control works well is single cells but is only effective over ~1 cm in tissue.

microelectrode: 6 5 4 3 2

Christini et al., Physical Review Letters, 2006

CorCap Cardiac Support Device: prevent and reverse dilation; add electrode grid?

Off-site alternans control

purkinje fiber

microelectrode: 6 5 4 3 2

Use data from remote site to control alternans there

Krogh-Madsen et al., Physical Review E, 2010

Use off-site control to eliminate alternans where it's amplitude is large?

RA LAD RV LV 1 cm

0 5 10 15 20 25 30 APD ALTERNANS AT EACH SITE (ms)

Pastore et al., Heart Rhythm Journal, 2006 $\triangle APD$

Krogh-Madsen & Christini, Biophysical Journal, 2007

Summary

- The cardiac action potential is generated by diffusion of ions through specific ion channels in the cell membrane
- Voltage-gated channel dynamics may be described quantitatively by HH-type equations or by Markov models
- Computational models can be used to explain mechanisms of experimentally or clinically observed phenomena