Integrative modeling of transcription factor binding and histone marks predicts gene expression in lymphoma

Jenny Giannopulou

Yanwen Jiang

ChIP-seq to map where transcription factors bind

Genome Analyzer II (Illumina)

Control: input DNA

Genome Analyzer II (Illumina)

Average length ~ 250bp

ACCAATAACCGAGGCTCATGCTAAGGCGTTAGCCACAGATGGAAGTCCGACGGCTTGATCCAGAATGGTGTGTGGATTGCCTTGGAACTGATTAGTGAATTC TGGTTATTGGCTCCGAGTACGATTCCGCAATCGGTGTCTACCTTCAGGCTGCCGAACTAGGTCTTACCACACACCTAACGGAACCTTGACTAATCACTTAAG

U2OS

Average length ~ 250bp

ACCAATAACCGAGGCTCATGCTAAGGCGTTAGCCACAGATGGAAGTCCGACGGCTTGATCCAGAATGGTGTGGGATTGCCTTGGAACTGATTAGTGAATTC TGGTTATTGGCTCCGAGTACGATTCCGCAATCGGTGTCTACCTTCAGGCTGCCGAACTAGGTCTTACCACCACACCCTAACGGAACCTTGACTAATCACTTAAG

Average length ~ 250bp

BCL6 ChIP-seq

- Lymphoma cell line (OCI-Ly1)
- <u>1 lane for ChIP, 1 for input DNA</u>, 1 for QC
- 36nt long sequences
- 30 Million reads
- Aligned/mapped to hg18 with Eland

Reads can map to multiple locations/chromosomes

Reference Human Genome (hg18)

Reads map to one strand or the other

TCACAAAACAAGTCCTAACAAATTTAAGAGTAT	U0	1	13	62	chr8.	fa	59699	745	R	DD			
AGAAAAATCCTTTTTTATTATATAAACAATACAT	U2	0	0	1	chr5.	fa	12119	5098	F	DD	15G	20G	
GTCATCAAACTCCAAGGATTCTGTTTTCAAC	ATACT	U0	1	1	0	chr18	.fa	891404	49	R	DD		
GAAAGTGATTAGCAGATTGTCATTTAATAAT	TGTCT	U2	0	0	1	chr1.1	Ea	97496	963	F	DD	18G	28G
GATAAATTTTTTCCTACAATCTTAAATTATT	ACACA	U1	0	1	0	chr3.f	Ea	956434	444	R	DD	10C	
AAAAATTAAACAATTCTAAAAATATTTTTAT	CTTAA	U2	0	0	1	chr2.f	Ea	17772	7639	R	DD	18C	31G
GCACATGTCATACTCTTTCTAGCTCTCTTAT	TTTTC	U0	1	0	0	chr8.f	Ea	79132	719	R	DD		
TTAATGTAAAAAATAGGATACTGAATTGTGATA	U1	0	1	0	chr10	.fa	69774	166	F	DD	30G		
GTAGTTAACAATAATTTATTTTATACTTCAA	AATTC	U1	0	1	17	chrX.f	Ea	26496	842	R	DD	7A	
AGAATTAATTAATCAAAACACCAAATGTACTTC	U0	1	0	0	chr12	.fa	727004	465	F	DD			
ITGACTTTATTATTTTTTTTCTTCAATGTTTTTAA	NM	0	0	0									
AGTACATCAAATACATATTATATACTTTACATA	R2	0	0	2									
AATCCATATACATTTCTTTTTAATCATTTCC	TCTTT	U1	0	1	0	chr11.	.fa	942042	222	F	DD	20G	
AGTTTCTTAATCCTGAGTTCTAATTTTATTTCA	R0	29	255	255									
TTTTATAAATTTTTAATTTCATTTTAATTTATA	NM	0	0	0									
GTTTTTAAAATCAACACTTTTATTATAGAAG	TAGCA	U0	1	0	1	chr12	.fa	62166'	701	R	DD		
CTGATGTAAACTTGGTAAAAACATTGACATAAA	U0	1	0	0	chr14	.fa	65160	857	F	DD			
GAAAATGACTATGTCAAAATATTATCTCTCAAT	U0	1	0	0	chr5.	fa	97782	464	F	DD			
GTTTTACTGATTTTCTTACTTACTAAACTAC	CTGTT	U0	1	0	0	chr7.1	Ea	13320	0265	F	DD		
GATACGGCGACCACCGACAGGTTCAGAGTTCTA	NM	0	0	0									
AATTATTCAGAAGTCAAATCTGTGCTTAGTTTA	U2	0	0	1	chr5.	fa	16247	2124	R	DD	3G	7C	
IGTATCATATATATTTATGTATCATATATATTT	R1	0	3	2									
GATTGCTCCATTATTTGTTAAAAACATAGTA	AAATA	NM	0	0	0								
AGATCAGTACTTCAAAGAGATATCTGCACTCCC	U0	1	1	9	chr12	.fa	33830	898	R	DD			
AGTCCCAATATTCCATTAATCCCAATAAATATA	U2	0	0	1	chr6.	fa	11072	2427	F	DD	15G	19G	
ATAATAATAGCAGTTATGGCATCGAGATAATTT	U0	1	0	0	chr2.	fa	47305	609	R	DD			
JAGGGCACACATCACAAACAAGTTTCTGAGAAT	R2	0	0	3									
IATCCACTTGCAGACTTTACAAACAAATTTTTT	R2	0	0	4									
GGCAGATGAAACTTCTATACACTATATTTA	GCCAG	U0	1	0	0	chr13	.fa	90021	137	F	DD		
AGAAAAACTATTGAAAAAATAGTTACTTTCCAA	U0	1	0	0	chr1.	fa	74303	257	R	DD			
IAGATGATATCGAGGGCATTAGAAGTAAATAGC	U0	1	0	0	chr5.	fa	16031	200	F	DD			
AGGAAATAATAAAGATAAAAGTAGAAAAAGTGA	U0	1	0	0	chr1.	fa	18732	6417	F	DD			
AATTATGTTGTTGTAATTATTGTTTGTTTTTT	U0	1	0	0	chr15	.fa	46739	015	R	DD			
JACAATCCAGCTGTCATAGAAACTGACTATTTT	U0	1	0	0	chr12	.fa	38910	133	R	DD			
AATTCTCCCAAAACAACAAGATGTAAATATACC	U0	1	0	0	chr3.	fa	10162	5712	R	DD			
CTTACACTGATATGAAGAAATACCTGAGACTGG	U0	1	2	67	chr2.	fa	21412	8537	R	DD			
GAGAAACACACATATTTTTGTAAGTGCCATC	ACATC	U1	0	1	0	chr7.1	Ea	13668	652	R	DD	18C	
ITATCTAACACACAAGATGATGTTTGTTTTAT	NM	0	0	0									
IGTAGAAAATTTTCTGCCCTAAAATATTTGTTA	U1	0	1	0	chr6.	fa	74625	385	F	DD	13G		
ICCTAAAGTGTATCTTATGTTTTTTCATCTTCT	U1	0	1	0	chr12	.fa	74000	23	R	DD	9C		
AATAAAACAAATTCCAATGGCTTAGATTCTA	CTTAA	U2	0	0	1	chr10	.fa	98020'	799	R	DD	15C	20C
IGGTCATACTTCCCAAAGCGATCTACAGATTCA	U1	0	1	29	chr3.	fa	50834	510	R	DD	19C		
ITTCCACATTTCTGTGGAAGCCTCACAATCATT	R2	0	0	2									
ATTAATCAACAGCAACATTAATCAACTGAAT	CAACA	U0	1	0	0	chr2.1	Ea	460788	825	R	DD		
GAATAAATAATCAAAACATATAATACATTTT	TTTAT	U1	0	1	0	chr5.1	Ea	414969	935	F	DD	32G	
FACACATATATATACATATATATATACACATAT	R0	47	255	255									
GAGAAGGAAATGTGTTTTCTAAGTTTCTTT	TCTTC	U1	0	1	0	chr4.1	Ea	188020	0201	F	DD	32G	

Peak detection

- Calculate read count at each position (bp) in genome
- Determine if read count is greater than expected

Peak detection

- We need to correct for input DNA reads (control)
 - non-uniformaly distributed (form peaks too)

vastly different numbers of reads
 between ChIP and input

Expected read count = total number of reads * extended fragment length / chr length

Is the observed read count at a given genomic position greater than expected ?

$$P(X \ge x) = 1 - \sum_{0}^{x-1} \frac{\lambda^{x} e^{-\lambda}}{x!}$$

x = observed read count

 λ = expected read count

The Poisson distribution

Is the observed read count at a given genomic position greater than expected ?

x = 10 reads (observed) $\lambda = 0.5$ reads (expected)

 $P(X \ge 10) = 1.7 \times 10^{-10}$

 $\log 10 P(X \ge 10) = -9.77$

 $-\log 10 P(X \ge 10) = 9.77$

The Poisson

Expected read count = total number of reads * extended frag len / chr len

Expected read count = total number of reads * extended frag len / chr len

Input reads

Normalized Peak score (at each bp)

$$R = -\log 10 \frac{P(X_{ChIP})}{P(X_{input})}$$

Will detect peaks with high read counts in ChIP, low in Input

Works when no input DNA ! $P_i(X \ge x) = 1 - \sum_{i=1}^{x-1} \frac{\lambda_i^x e^{-\lambda_i}}{x!}$

Non-mappable fraction of the genome

We enumerated all 30-mers, counted # occurrences, calculated non-unique fraction of genome

•	chr18	9369067/76117153	0.123087459668913 (=12%)
•	chr2	33849240/242951149	0.139325292921335
•	chr3	27854877/199501827	0.139622164963933
•	chr4	27090014/191273063	0.141630052737745
•	chr6	24330283/170899992	0.142365618132972
•	chr8	20932821/146274826	0.143106107677065
•	chr5	26029902/180857866	0.143924633059643
•	chr12	19382853/132349534	0.14645199279659
•	chr11	20039443/134452384	0.149044906485258
•	chr20	10017788/62435964	0.160449000194824
•	chr7	26182588/158821424	0.164855517225434
•	chr10	22968951/135374737	0.169669404417753
•	chr17	14496284/78774742	0.184021980040252
•	chrX	31269270/154913754	0.201849540099583
•	chr1	55186693/247249719	0.223202247602959
•	chr13	28668063/114142980	0.251159230291692
•	chr16	23552340/88827254	0.265147676410215
•	chr14	29689825/106368585	0.279122120502026
•	chrM	4628/16571	0.279283084907368
•	chr9	43125838/140273252	0.307441635415995
•	chr19	20251255/63811651	0.317359834491667
•	chr15	31877970/100338915	0.317702957023205
•	chr21	16867677/46944323	0.359312392256674
•	chr22	21176578/49691432	0.426161556382597
•	chrY	43209644/57772954	0.747921665906161 (=74%)

Peak detection

- Determine all genomic regions with R>=15
- Merge peaks separated by less than 100bp
- Output all peaks with length >= 100bp
- Process 23M reads in <7mins

BCL6: 18,814 peaks

mo	UCS	SC Genome B	>>> zoom in	I Human Mar	2006 A base zoom of size 16,074	but 1.5x 3x) 10x
	chr8: BCL6	128815000		128820000 BCL6		128825000	<u></u>
	···· ()	ChIP reads		BCL6_chr8_reads_r1			μ
	l I	nput reads		BCL6_input_chr8_reads_r	¹		
}aks_ch100−i sidow,	nin100 _peaks C	Detected Peaks	MYC	BCL6_reads_cbr17 sraow_peaks RefSeq_Genes			
>aks_ch100−1 sidow, CpG I:	min100 _peaks [] slands	nput reads	MYC	BCL6_input_chr8_reads_r BCL6_peaks_ch100-min10 BCL6_reads_cbn17 staow_peaks RefSeq_Genes	e Light Green		

80% are within <20kb of a known gene

Human genome

ChIPseeqer

) + +

Jenny Giannopulou

ChIP-seq in lymphoma cells (LY1 cell line)

Transcription Factor / Histone modification	B cell/lymphoma function	Current status						
			LY3		NB			
BCL6	Oncogene and master regulator of germinal center phenotype	x		x	N/A			
PU.1	Myeloid and B cell development	x						
PAX5	B cell lineage commitment	х						
CTCF	Insulator and enhancer blocking	x		х	x			
BCOR	BCL6 co-repressor	x						
MTA3	BCL6 co-repressor	х						
EZH2	Catalytic subunit of Polycomb			x	N/A			
H3K4me3	Marks transcriptionally active promoters	х	x	х	x			
H3K4me1	Marks active promoters and enhancers	x		x	x			
H3K9Ac	Marks active promoters	х						
H3K27Ac	Marks active promoters and enhancers	x						
H3K27me3	Marks silenced promoters	х		x	x			
H3K79me2	Marks elongating promoters	x						
H3K79me3	Marks active promoters	x						
DNA methylation	Epigenetic Promoter Mark	x	x	х	x			

Yanwen Jiang

RNA-seq in LY1 cells

RPKM = # reads per kilobase per million reads

GENE	LY1-RNAseq
NM_018117	24.9
NM_001130845	45.9
NM_021107	32.9
NM_173803	1.2
NM_006528	1.6
NM_182607	1.7
NM_017722	20.2
NM_018283	26.9
NM_014068	0.2
NM_006228	20.1
NM_183377	0.0
NM_002115	0.0
NM_004504	2.9
NM_004358	35.3
NM_022114	0.0
NM_032125	40.1
NM_001011666	1.6
NM_018905	0.0
NM_080746	1.2
NM_001145155	0.0
NM_001040167	0.2
NM_001144994	0.0
NM_017812	63.1

DDVM

Modeling the influence of a TF's binding on a promoter

Transcription factors / histone modifications

-

	GENE	BCL0	MTA3	BCOK	K4ME1	K4ME3	K/9MEZ	K/9ME3	K/9AC	• • •	DNAM
	NM_018117	17.54	23.69	29.20	56.05	100.25	0.00	38.81	49.35		-0.17
	NM_001130845	126.7	203.7	373.2	113.4	58.08	104.7	148.5	117.3		0.56
	NM_021107	0.00	0.00	0.05	41.03	222.2	18.53	48.24	87.66		0.92
	NM_173803	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		-0.27
	NM_006528	0.00	16.19	35.06	40.42	113.3	0.00	0.00	0.00		0.56
	NM_182607	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.00		-0.74
	NM_017722	89.05	3.96	66.30	59.98	183.1	10.06	114.6	37.54		0.30
	NM_018283	0.00	19.48	28.95	53.16	85.51	0.02	0.06	105.3		0.25
	NM_014068	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.43
	NM_006228	16.98	0.19	0.58	8.33	0.87	0.00	0.01	1.19		-0.23
	NM_183377	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		-1.11
	NM_002115	0.09	0.00	0.30	0.00	0.00	0.00	0.00	0.00	• • •	-0.12
	NM_004504	2.38	0.00	22.70	49.26	64.23	20.06	122.1	7.80	• • •	0.08
	NM_004358	0.00	73.31	78.10	101.7	109.0	36.74	44.79	90.73	• • •	0.67
	NM_022114	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	• • •	-0.24
Transcripto	NM_032125	0.00	0.32	23.41	57.10	157.6	49.68	121.2	29.71	• • •	-0.30
Transcripts –	NM_001011666	21.05	0.00	0.00	0.48	0.00	0.00	0.00	0.00	• • •	-0.17
	NM_018905	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	• • •	0.72
	NM_080746	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	• • •	0.06
	NM_001145155	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	• • •	0.37
	NM_001040167	2.33	31.89	209.1	5.17	40.27	0.00	0.00	0.03	• • •	0.34
	NM_001144994	0.00	0.87	1.98	2.09	6.81	1.05	1.10	1.66	• • •	0.29
	NM_017812	31.99	0.00	17.73	50.97	120.3	87.4	166.9	29.53		-0.08

ADJT

TF and histone marks are very highly correlated !

Principal Component Analysis

Principal Component Analysis

Principal Component Analysis

Promoter	PC1	PC2	PC3	PC4	PC5	PC6	PC7	 RNAseq-RPKM
NM_018117	2.65	0.81	0.12	-0.0	0.62	0.91	-0.4	 24.9
NM_001130845	13.9	11.4	2.89	-1.9	4.10	-0.6	0.75	 45.9
NM_021107	4.47	2.22	-1.5	0.43	-0.3	-3.4	0.74	 32.9
NM_173803	-0.1	0.04	0.09	-0.1	0.31	0.01	-0.4	 1.2
NM_006528	2.03	2.74	2.18	1.46	-0.2	-0.5	-2.0	 1.6
NM_182607	-0.3	0.05	0.23	-0.3	0.89	0.01	-1.8	 1.7
NM_017722	5.12	0.96	1.41	0.54	0.07	1.33	1.07	 20.2
NM_018283	3.32	2.31	-0.5	0.07	0.96	-2.0	0.57	 26.9
NM_014068	-0.3	1.56	0.18	0.38	-1.2	0.16	-1.2	 0.2
NM_006228	0.02	1.18	0.79	0.08	0.11	-0.1	-0.9	 20.1
NM_183377	-0.4	0.01	0.34	-0.5	1.33	0.02	-1.7	 0.0
NM_002115	-0.2	0.67	0.17	0.00	-0.1	0.08	-1.1	 0.0
NM_004504	2.75	1.27	0.16	0.52	0.15	-2.1	-1.2	 2.9
NM_004358	6.30	3.30	2.27	-8.3	-2.9	0.31	-0.9	 35.3
NM_022114	-0.1	0.05	0.08	-0.1	0.27	0.01	-0.4	 0.0
NM_032125	3.48	-0.7	-0.9	-0.0	-0.0	-0.7	-1.7	 40.1
NM_001011666	-0.1	1.10	0.86	0.11	-0.1	0.41	-1.6	 1.6
NM_018905	0.08	1.46	-0.0	0.47	-1.0	-0.7	0.03	 0.0
NM_080746	0.04	1.07	0.05	0.07	0.08	-1.0	-0.4	 1.2
NM_001145155	-0.1	1.80	0.10	0.31	-0.6	-1.1	-0.8	 0.0
NM_001040167	2.28	4.86	-0.0	-1.5	-0.1	2.35	-2.5	 0.2
NM_001144994	-0.2	1.46	0.14	0.28	-0.8	0.02	-1.4	 0.0
NM_017812	4.16	-1.3	-0.0	0.38	-0.9	-0.4	-1.5	 63.1
NM_194249	0.58	-0.2	-0.0	-0.2	0.60	-0.0	-0.7	 18.7
NM_199005	-0.1	-0.1	0.04	-0.1	0.36	-0.0	-0.7	 3.3
NM 182626	0.21	2.35	0.00	0.41	-0.8	-0.9	-0.6	 1.0
NM 001170689	2.62	2.67	-1.0	-0.1	0.49	0.64	-0.0	 4.2
NM_152312	4.30	2.24	-0.2	-0.6	-0.4	1.28	-1.2	 11.0
NM_006863	-0.2	0.34	0.11	-0.0	0.02	0.04	-0.2	 0.0

... (~25,000 unique RefSeq promoters)

PCs are orthogonal ! $RPKM_{i} = \beta_{0} + \sum_{i}^{m} \beta_{j} PC_{ij}$

j=1

Model:

Model fitting

Find $\hat{\beta}_{j}$ that minimize $\sum_{i=1}^{n} (RPKM_{i} - \hat{\beta}_{0} + \sum_{j=1}^{m} \hat{\beta}_{j}PC_{ij})^{2}$

Model assessment

 $(y = \mathsf{RPKM})$

7 TF and 8 histone modifications predict 65% of variance in gene expression levels

	B cell/lymphoma function
BCL6	Oncogene and master regulator of germinal center phenotype
PU.1	Myeloid and B cell development
PAX5	B cell lineage commitment
CTCF	Insulator and enhancer blocking
BCOR	BCL6 co-repressor
MTA3	BCL6 co-repressor
EZH2	Catalytic subunit of Polycomb
H3K4me3	Marks transcriptionally active promoters
H3K4me1	Marks active promoters and enhancers
H3K9Ac	Marks active promoters
H3K27Ac	Marks active promoters and enhancers
H3K27me3	Marks silenced promoters
H3K79me2	Marks elongating promoters
H3K79me3	Marks active promoters
DNA methylation	Epigenetic Promoter Mark

R²=0.65, Spearman=0.804

Assessing individual coefficients

$$RPKM_{i} = \hat{\beta}_{0} + \sum_{j=1}^{m} \hat{\beta}_{j} PC_{ij}$$

Calculate t-statistic
$$t_{j} = \hat{\beta}_{j} / se(\hat{\beta}_{j})$$

Calculate p-value using t-distribution with n-p degrees of freedom

$$P(X \ge t_j)$$

attach(m)

fit <- lm(log(RPKM+1) ~ PC1 + PC2 + PC3 + PC4 + PC5 + PC6 + PC7 + PC8 + PC9) print(summary(fit))

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Interce	pt) 1.278557	0.025975	49.222	< 2e-16	* * *
PC1	0.407975	0.006672	61.146	< 2e-16	* * *
PC2	0.416035	0.013539	30.728	< 2e-16	* * *
PC3	0.159544	0.012484	12.780	< 2e-16	* * *
PC4	0.010444	0.011371	0.918	0.358	
PC5	0.304946	0.014746	20.680	< 2e-16	* * *
PC6	-0.081407	0.014956	-5.443	5.34e-08	* * *
PC7	0.071195	0.014813	4.806	1.56e-06	* * *
PC8	0.098751	0.015496	6.372	1.93e-10	* * *
PC9	-0.366861	0.018438	-19.897	< 2e-16	* * *
Signif.	codes: 0 `**	*' 0.001 `*	*′ 0.01	`*′ 0.05 `	.' 0.1

Residual standard error: 1.161 on 11760 degrees of freedom
 (3543 observations deleted due to missingness)
Multiple R-squared: 0.3812, Adjusted R-squared: 0.3808
F-statistic: 805.1 on 9 and 11760 DF, p-value: < 2.2e-16</pre>

۲ / ۱

 $RPKM_{i} = \beta_{0} + \sum_{j=1}^{m} \beta_{j} PC_{ij}$

BCL6 In silico knockdown

- 1. Set all BCL6 values to 0.0
- 2. Project new binding data into original PCs
- 3. Predict RPKMs using original fitted model
- 4. Compare RPKMs to RPKMs predicted by original binding data and original model

Transcription factors / histone modifications

GENE	BCL6	MTA3	BCOR	K4ME1	K4ME3	K79ME2	K79ME3	K79AC	
NM_018117	0	23.69	29.20	56.05	100.25	0.00	38.81	49.35	
NM_001130845	0	203.7	373.2	113.4	58.08	104.7	148.5	117.3	
NM_021107	0	0.00	0.05	41.03	222.2	18.53	48.24	87.66	
NM_173803	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
NM_006528	0	16.19	35.06	40.42	113.3	0.00	0.00	0.00	
NM_182607	0	0.00	0.00	0.01	0.01	0.00	0.00	0.00	
NM_017722	0	3.96	66.30	59.98	183.1	10.06	114.6	37.54	
NM_018283	0	19.48	28.95	53.16	85.51	0.02	0.06	105.3	
NM_014068	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
NM_006228	0	0.19	0.58	8.33	0.87	0.00	0.01	1.19	
NM_183377	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
NM_002115	0	0.00	0.30	0.00	0.00	0.00	0.00	0.00	
NM_004504	0	0.00	22.70	49.26	64.23	20.06	122.1	7.80	
NM_004358	0	73.31	78.10	101.7	109.0	36.74	44.79	90.73	
NM_022114	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
NM_032125	0	0.32	23.41	57.10	157.6	49.68	121.2	29.71	
NM_001011666	0	0.00	0.00	0.48	0.00	0.00	0.00	0.00	
NM_018905	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
NM_080746	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
NM_001145155	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
NM_001040167	0	31.89	209.1	5.17	40.27	0.00	0.00	0.03	
NM_001144994	0	0.87	1.98	2.09	6.81	1.05	1.10	1.66	
NM_017812	0	0.00	17.73	50.97	120.3	87.4	166.9	29.53	

Principal Component Analysis

 $RPKM_{i} = \beta_{0} + \sum_{ij}^{m} \beta_{j} PC_{ij}$ *i* =J

Transcripts -

Simulated BCL6 knockdown predicts (correctly) that BCL6 is an obligate repressor

Top 250 up-regulated genes are enriched with genes with expression higher in NB compared to LY1 (p<0.005)

Simulated PU.1 knockdown (activator) rediscovers important PU.1 targets

STRING analysis of top 40 down-regulated genes + PU.1

Do CNVs contribute to the model ?

 $RPKM_{i} = \beta_{0} + \sum \beta_{j}PC_{j} + \beta_{m+1}CNV_{i}$ i=1

We generated Affymetrix 6.0 SNP array data in LY1

Yanwen Jiang, Huimin Geng

Ongoing work

- Using non-negative matrix factorization instead of PCA
- Integration of DNA looping
- Integration of post-transcriptional regulation (can we improve over 65%?)
- Experimental validation (knockdowns)

Can the binding patterns predict what will happen upon siRNA knockdown ?

$$\log(siBCL6/NT)_i = \beta_0 + \sum_{j=1}^m \beta_j PC_{ij}$$

KZ79me2 KK79me2 KK27Ac KK4me1 KK4me3 KK4me3 COR COR COR COR COR COR COR COR COR COR	Ly´	1 expres	sion		siBCL6/NT 24h					
DHHCSZZZZHC	coef	t-value	p-value	coeff	t-value	p-value				
PC1	0.47	184.94	<2e-16	-0.00	-2.30	0.0215				
PC2	-0.17	-36.63	<2e-16	-0.00	-1.68	0.0923				
PC3	-0.21	-41.05	<2e-16	0.04	11.63	<2e-16	←──			
PC4	0.09	15.11	<2e-16	0.01	2.25	0.0248				
PC5	0.02	2.18	0.0292	_0.01_	2.06	0.0399				
PC6	0.11	14.72	<2e-16	0.01	1.80	0.0715				
PC7	0.28	35.81	<2e-16	0.04	9.18	<2e-16				
	-0.19	-20.27	<i>⊲e-</i> 16	0.03	4.61	<u>4.02e-06</u>				
PC9	-0.05	-5.33	9.67e-08	0.09	15.02	<2e-16	<			
PC1	0 0.14	12.49	<2e-16	0.04	4.95	7.49e-07				
PC1.	1 -0.08	-5.45	5.00e-08	-0.11	-11.83	<2e-16				
PC1	2 0.18	11.40	<2e-16	-0.02	-2.06	0.0390				
<i>PC1</i> .	3 0.09	5.29	1.26e-07	-0.01	-0.70	0.4851				

BCL6 In silico knockdown

- 1. Set all BCL6 values to 0.0
- 2. Project new binding data into original PCs
- 3. Predict RPKMs using original fitted model
- 4. Compare RPKMs to RPKMs predicted by original binding data and original model

GENE	BCL6	MTA3	BCOR	K4ME1	K4ME3	K79ME2	K79ME3	K79AC	
NM_018117	17.54	23.69	29.20	56.05	100.25	0.00	38.81	49.35	
NM_001130845	126.7	203.7	373.2	113.4	58.08	104.7	148.5	117.3	
NM_021107	0.00	0.00	0.05	41.03	222.2	18.53	48.24	87.66	
NM_173803	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
NM_006528	0.00	16.19	35.06	40.42	113.3	0.00	0.00	0.00	
NM_182607	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.00	
NM_017722	89.05	3.96	66.30	59.98	183.1	10.06	114.6	37.54	
NM_018283	0.00	19.48	28.95	53.16	85.51	0.02	0.06	105.3	
NM_014068	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
NM_006228	16.98	0.19	0.58	8.33	0.87	0.00	0.01	1.19	
NM_183377	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
NM_002115	0.09	0.00	0.30	0.00	0.00	0.00	0.00	0.00	
NM_004504	2.38	0.00	22.70	49.26	64.23	20.06	122.1	7.80	
NM_004358	0.00	73.31	78.10	101.7	109.0	36.74	44.79	90.73	
NM_022114	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
NM_032125	0.00	0.32	23.41	57.10	157.6	49.68	121.2	29.71	
NM_001011666	21.05	0.00	0.00	0.48	0.00	0.00	0.00	0.00	
NM_018905	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
NM_080746	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
NM_001145155	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
NM_001040167	2.33	31.89	209.1	5.17	40.27	0.00	0.00	0.03	
NM_001144994	0.00	0.87	1.98	2.09	6.81	1.05	1.10	1.66	
NM_017812	31.99	0.00	17.73	50.97	120.3	87.4	166.9	29.53	

... (~25,000 unique RefSeq promoters)

BCL6 In silico knockdown

- 1. Set all BCL6 values to 0.0
- 2. Project new binding data into original PCs
- 3. Predict RPKMs using original fitted model
- 4. Compare RPKMs to RPKMs predicted by original binding data and original model