Discovering regulatory sequences from
expression data

- Unsupervised clustering

- Information theory

- Optimization

- Non-parametric statistical testing
- Multiple testing

- Overfitting



Transcriptional and post-transcriptional
regulation of gene expression
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Presentation Notes
-> gene expression is regulated by transcription factors that bind short DNA sequences with high specificity

-> when they bind, these factors interact with the RNA polymerase to activate or repress gene expression

-> we also know that the translation, localization and stability of mRNAs is also regulated by 
proteins and small RNAs

-> these factors often bind short RNA sequences with high specificity 



T-box
transcription
factor

CRP

DNA

Transcription factor binding sites are ~6-12 bp-long
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This is what a transcription factor looks like, when it binds DNA .. 
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Different tf regulate different sets of genes
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Different tf regulate different sets of genes
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Different tf regulate different sets of genes



Microarrax Experiments

Several microarray N

. - 4
experiments (conditions,
time points, treatments) /'

Microarray experiment




Creating co-expression clusters

Unsupervised clustering approaches:
e K-means

e Self-organizing maps

e Hierarchical clustering



K-means clustering

Genes <




Hierarchical clustering
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Self-organizing map
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Clusters of co-expressed genes

Microarray Experiments

N Cluster
\  Index

All Genes on
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Say that you have several microarray experiments
You cluster all genes based on these experiments
You associate an index with each cluster
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SUMMARY

Deciphering the noncoding regulatory genome
has proved a formidable challenge. Despite
the wealth of available gene expression data,
there currently exists no broadly applicable
method for characterizing the regulatory ele-
ments that shape the rich underlying dynamics.
We present a general framework for detecting
such regulatory DNA and RNA motifs that relies
on directly assessing the mutual information
between sequence and gene expression mea-

specific short DMA sequences and then act to modulate
the activity of the BNA polymerase. Transcript stability, lo-
calization, and translation are also regulated by proteins
and RNAs (e.g., miRMNAS), which also bind specific short
AMA sequences, generally in 3'UTRs. A comprehensive
characterization of these DNA and RNA regulatory ele-
ments is a formidable challenge, especially within complex
metaroan genomes. Experimental (Gerber et al., 2004,
Harbison et al.,, 2004) and computational approaches
are emerging to meet these challenges. Several methods
compare the intergenic regions of different genomes, aim-
ing to detect sequence elements that are highly conserved
across related species (Elemento and Tavazoie, 2005;
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we look at all genes and all clusters simultaneously

Each gene is associated to the index of the cluster to which it belongs

That defines an expression profile over all genes

Then, what we try to do, is to find .. 

Here is an example

In this example, knowing whether the motif is present or not tells you a lot about which cluster a gene belongs to

Take a gene, if the gene has the motif, you are almost sure that this gene belongs to cluster 1

We can quantify this dependency using the mutual information

We just need to calculate the joint distribution of motifs and expression

and apply this formula

A high mutual information means strong dependency

A low mutual information means no dependency



Mutual Information

P(x,y)
P(x)P(y)

[(X:;Y)= ZZP(x,y)log

1(X;Y) quantifies the amount of information that a
variable X contains about another variable Y

Expressed in bits
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we look at all genes and all clusters simultaneously

Each gene is associated to the index of the cluster to which it belongs

That defines an expression profile over all genes

Then, what we try to do, is to find .. 

Here is an example

In this example, knowing whether the motif is present or not tells you a lot about which cluster a gene belongs to

Take a gene, if the gene has the motif, you are almost sure that this gene belongs to cluster 1

We can quantify this dependency using the mutual information

We just need to calculate the joint distribution of motifs and expression

and apply this formula

A high mutual information means strong dependency

A low mutual information means no dependency
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M| estimator is biased
(sample size bias)

e Can correct for sample size bias, e.g. Slonim et al,
2002 ... slow ... not very precise ... not necessary if:

e Keep sample size the same so that we can compare
MI values

e Estimate how large an Ml value is compared to
expected Ml



Algorithm for finding informative
motifs
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Now we know what we want to look for, we want to look for informative motifs about a given expression profile …

What do we want to do ?
How do we do that ?


motif representations

good

acceptable small

[AC]CGATGAGITC]

GCGATGAG
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We know that weight matrices provide a very good representation for regulatory elements
Unfortunately the space of all possible weight matrices is too large
Instead we use the degenerate code, which can be seen as an approximation to weight matrices
The space of all possible patterns is still too large to exhaustively explore
So we start by using k-mers, so we start by using k-mers,which we can exhaustively enumerate 


Highly
informative

Not
informative

k-mer M1

CTCATCG 0.0618
TCATCGC 0.0485
AAAATTT 0.0438
GATGAGC 0.0434
AAAAATT 0.0383
ATGAGCT 0.0334
TTGCCAC 0.0322
TGCCACC 0.0298
ATCTCAT 0.0265
ACGCGCG 0.0018
CGACGCG 0.0012
TACGCTA 0.0011
ACCCCCT 0.0010
CCACGGC 0.0009
TTCAAAA 0.0005
AGACGCG 0.0004
CGAGAGC 0.0003
CTTATTA 0.0002

Motif Search Algorithm
C

MI=0.081

MI=0.045

MI=0.040
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We use a two-step search algorithm

In the first step, we  try to convert these k-mers into more degenerate and more informative motif representations

In the second step, we optimize the k-mers into more informative degenerate motifs


Optimizing A-mers into more informative
degenerate motifs
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Start with a seed, add two unknown characters on each side
Pick a position at random
Try to replace the character with all characters of the degenerate code which are compatible with the seed
Each change induces a new motif, calculate the 
Keep the character which results in the highest increase mutual information
Use it to form a new motif
Pick another position .. And so on 


Optimizing A-mers into more informative
degenerate motifs
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Start with a seed, add two unknown characters on each side
Pick a position at random
Try to replace the character with all characters of the degenerate code which are compatible with the seed
Each change induces a new motif, calculate the 
Keep the character which results in the highest increase mutual information
Use it to form a new motif
Pick another position .. And so on 


- o
sHa - 0s0°0

Mutual

35

Optimization iterations

|
10

GE0'0 0<c00

information

(visited motif positions)


Presenter
Presentation Notes
This is an illustration of the optimization process
You see that we are able to increase the mutual information


A schematic view of the optimization process

The exhaustive list of k-mers, represents a finite
coarse-grain sample within this general space °




A schematic view of the optimization process
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A schematic view of the optimization process

Final motif




B
Is a given motif more informative than

expected by chance ?
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Obviously we want to test the statistical significance of the motifs we obtained

We shuffle the expression profile 10000 times, calculate the corresponding mutual information
Values, and accept a motif only if it 
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we look at all genes and all clusters simultaneously

Each gene is associated to the index of the cluster to which it belongs

That defines an expression profile over all genes

Then, what we try to do, is to find .. 

Here is an example

In this example, knowing whether the motif is present or not tells you a lot about which cluster a gene belongs to

Take a gene, if the gene has the motif, you are almost sure that this gene belongs to cluster 1

We can quantify this dependency using the mutual information

We just need to calculate the joint distribution of motifs and expression

and apply this formula

A high mutual information means strong dependency

A low mutual information means no dependency
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we look at all genes and all clusters simultaneously

Each gene is associated to the index of the cluster to which it belongs

That defines an expression profile over all genes

Then, what we try to do, is to find .. 

Here is an example

In this example, knowing whether the motif is present or not tells you a lot about which cluster a gene belongs to

Take a gene, if the gene has the motif, you are almost sure that this gene belongs to cluster 1

We can quantify this dependency using the mutual information

We just need to calculate the joint distribution of motifs and expression

and apply this formula

A high mutual information means strong dependency

A low mutual information means no dependency



Maximum of 10,000 expression-
shuffled mutual information values

................................................

- Random data

Real mutual information value

l

0 0.01 0.02 003 004 005 0.06 0.07
Bits




P-value : probability of obtaining by chance a
result at least as extreme as observed result
P(X>=x)

Maximum of 10,000 expression-

-4
shuffled mutual information values P<10

..............................................

- Random data

Real mutual information value

l

0 0.01 0.02 0.03 004 005 006 0.07
Bits
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Why non-parametric test ?

We don’t know what the null distribution of
mutual information is like ... depends on sample
size, etc.

Null Distribution of

Null Distribution of T-statistic information values
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Yeast stress gene expression program
(Gasch et a/, 2000)

» 173 microarray conditions
« ~ 5,500 genes
» 80 co-expression clusters

e Runtime ~ 1h (standard PC)
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In yeast, we took a large gene expression dataset that consists of 173 microarray conditions
these conditions correspond to different kinds of stress (DNA damage, heat shock, etc)
We clustered the genes into 80 co-expression clusters
We applied our approach to the resulting clustering partition
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Rows correspond to motifs, columns correspond to clusters
This module contains 3 motifs, all of them are known.
What’s really interesting here is that in the same module, we have two motifs from 5’ upstream regions 
and one motif from 3’UTRs

We think this is an example of coop between DNA motifs and RNA motifs, or rather a cooperation between transcriptional and post-transcriptional processes.

Because again, these motifs are in the same module because they tend to be associated with the same genes

Because they are in the same module, this suggest that there are cases where DNA and RNA motifs cooperate to regulate precisely gene expression .. 

The yellow color tells you where each motif is over-represented
You see that there are also some blue colors 
The blue color tells you where each motif is under-represented 

Sometimes there is a clear reason for motif under-representation
Let’s look at the second module
Which contains only one motif, the binding for Puf3

As expected, Puf3 is over-represented in clusters enriched fir mitochondrial ribosomal genes
Now it seems like puf3 is under-represented in a cluster enriched fir cytosolic ribosomal genes

How can we explain that ? Well we think that this is to make sure that regulation of these two types of ribosmal genes is fully decoupled, that there is no interference between

 
Because we systematically 
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Where do false positives come from ?

* Multiple hypothesis testing (k-mers)

« Overfit by the optimization procedure



Highly
informative

Not
informative

k-mer M1

CTCATCG 0.0618
TCATCGC 0.0485
AAAATTT 0.0438
GATGAGC 0.0434
AAAAATT 0.0383
ATGAGCT 0.0334
TTGCCAC 0.0322
TGCCACC 0.0298
ATCTCAT 0.0265
ACGCGCG 0.0018
CGACGCG 0.0012
TACGCTA 0.0011
ACCCCCT 0.0010
CCACGGC 0.0009
TTCAAAA 0.0005
AGACGCG 0.0004
CGAGAGC 0.0003
CTTATTA 0.0002

Motif Search Algorithm
C

MI=0.081

MI=0.045

MI=0.040
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We use a two-step search algorithm

In the first step, we  try to convert these k-mers into more degenerate and more informative motif representations

In the second step, we optimize the k-mers into more informative degenerate motifs


Does the algorithm overfit motifs to the
expression ?

Cluster 0: 112 genes
Cluster 1: 132 genes «—— enriched in RAP1 motif

Randomly split cluster 1
into cluster 1A and 1B

Cluster 0: 112 genes Cluster 0: 112 genes
Cluster 1A : 66 genes Cluster 1B : 66 genes

Best motif, M1=0.38 bits ,
> MI=0.301 bits when evaluated
[CT]CC[AG][ACT]AC[AG][CT] on this dataset

_ Best motif, M1=0.33 bits
MI=0.29 bits when evaluated <«
on this dataset [ACG][CT]CC[AG][CT][AG]C[AC]




Estimating the false discovery rate

* Run motif discovery algorithm (k-
mers+optimization) on random
expression profile

« Count how many motifs we get

» Repeat a large number of times,
calculate average number of motifs
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H(X)=-) P(x)logP(x)

X
0
1

P(X)
0.5 H(X)=1 bit
0.5

Entropy

X
0
1

P(X)
0.8 H(X)=0.72 bits
0.2

X
0
1

P(X)
1.0
0.0

H(X)=0 bits




Mutual Information

I(X:Y)=H®Y)-HY | X)

Uncertainty about Y

the amount of uncertainty
remaining about Y after X is
known
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