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The ‘Omics’ era

-High-throughput technologies allow for

us to simultaneously  query tens of

thousands of targets:

 Microarrays

 Proteomics (MS - Protein arrays)

 Massively parallel sequencing

- Increased the amount of biology

captured by one experiment

- Significant amount of noise

- Pose specific statistical problems



- Collection of known ssDNA probes arrayed on a solid
surface by covalent attachment to a chemically suitable

matrix

- Quantitative and qualitative measurements of
nucleic acids

- Rely on the ability of nucleic acids to hybridize to
the DNA probes through base pair recognition

under specific experimental conditions

Basic concepts on microarray technology
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TextDifferent type of Biological platforms

 Gene Expression arrays: Changes in gene expression levels

 Array-based Comparative Genomic Hybridization(aCGH):
DNA copy number variations

 ChIP-on-chip: Genomic localization of DNA-Protein
interactions

 DNA Methylation microarrays: Localization of 5-methyl-Cy

 Genotyping microarrays (SNP microarrays): Single nucleotide
polymorphisms



Some statistical considerations

- Variables far exceed number of samples

- e.g.: Test clinical response to a new drug for 

treatment of high blood pressure on 200 pts.

vs.      Identify gene expression changes associated       

with the same drug in 200 pts.

- Multiple comparisons

- i.e. in order to identify genes that change in a statistically

significant manner with the drug we will need to test each of

the 37,000 genes on the array in parallel and then select

the significant ones



Treatment (+) Treatment (-)

Multiple comparisons: a practical example

1- Gene by gene Two-tailed T test

2- Significance of p< 0.05



Treatment (+) Treatment (-)

Multiple comparisons: a practical example

Conclusion: Gene 16 is upregulated with the treatment

P-value



But… let’s review a few things

 p < 0.05: This means we accept the risk of erroneously rejecting the

null hypothesis in 5% of the cases i.e. we are willing to accept 5%

false positive calls.

 In our example we did not do 1 comparison (treated vs. untreated),

we in fact did 20 comparisons in parallel.

 Each time we had a 5% error, so if we repeat the test 20 times we

are likely to get at least 1 false positive.

 Gene 16 may or may not change its expression level with the

treatment, but we do not have enough evidence to claim that it does.

 Our “example data set” was in fact generated with a random number

generator.



Probabilities of 1 or more false positives by chance
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Probability of calling 1 or

more false + by chance
False positives incidence# genes tested (N)

If we set p-value at  < 0.05
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And on a genomics scale...

 Suppose no genes really changed (e.g. in random

samples from the same population)

 ~10,000 genes on an array

 Each gene has a 5% chance of exceeding the

threshold at a p-value of 0.05 (Type I error)

 So by chance alone…

- the p-values for 500 genes should be significant!!



Corrections for multiple comparisons

- Most approaches for correcting for multiple comparisons

work well for small number of parallel comparisons

- But when tens of thousands of tests are performed most of

these are too stringent (e.g. Bonferroni, Sidak, Holm’s)

- The most accepted methods for multiple testing correction

in the microarray field are:

- the False Discovery Rate (FDR) determination

(Benjamini-Hochberg)

- the use of permutations (Westfall-Young, SAM)



Corrections for multiple comparisons

None

Benjamin-Hochberg FDR

Westfall-Young

Holm’s step down

Bonferroni False (-)

False (+)



Permutation-based methods (at least 1000!)

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10S11S12 S11 S5 S8 S6 S9 S7 S12 S2 S3 S10 S1 S4

Normal Tumor Random 1 Random 2

Observed significant

p-values

Expected significant

p-values by chance
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Gene Expression Depends On Multiple Factors

DNA Sequence DNA Methylation Histone Modifications

Gene Transcription

EPIGENETIC REGULATIONGENETIC REGULATION

Genetic expression depends on multiple factors



Gives only a snapshot of genes transcribed at the time, with no

information on their availability for transcription.

Does not detect epigenetic/copy number changes

Only genes with high expression levels stand out above the

noise level

Sometimes biologically significant changes are lost within the

noise signal

Gene expression profiling has limitationsGene expression profiling has limitations



Aberrant DNA methylation is a hallmark of cancer

Normal

- Specific distribution of

cytosine methylation

- Promoter CpG island

hypomethylation

- Methylation of repetitive

elements

Cancer

- Global hypomethylation

- Promoter CpG island

hypermethylation

- Aberrant silencing of

certain tumor suppressors

- Aberrant hypomethylation

of certain oncogenes



Hypotheses

Identifying aberrant epigenetic patterns in AML will:

a) provide critical insight into the biological complexity of the

disease

b) help identify new and clinically relevant disease subtypes
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HpaII Amplifiable fragment array



Validation of HELP data by MassARRAY EpiTyper
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Patients’ characteristics

• 344 patients from Erasmus MC

• HOVON trials 04, 29, 32, 42 and 43

• Median follow-up: 18.2 months (0.1-214.5 m.)

• Median age: 48 years (15-77 years)

• Male: 188; Female: 156

• CD34+ bone marrow cells from 8 healthy donors



Methods

Unsupervised

analysis

- Hierarchical clustering to explore internal complexity of the data

- Class discovery

Supervised

analysis
- Understand the biology associated with each methylation cluster

Survival

analysis
- Determine risk associated with methylation clusters



DNA methylation captures AML biology
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Supervised

analysis
- Understand the biology associated with each methylation cluster

Comparison of each cluster to

normal CD34 + cells

Identify aberrant DNA methylation

signature for each cluster

Pathway  and Gene ontology analysis

to understand associated biology

Methods



Supervised

analysis
- Understand the biology associated with each methylation cluster

Methods

Gene 25,626

(Gene…)

Gene 2

Gene 1

K16(K…)K1K0 = Normals

Multiple testing

problem #1

Multiple testing

problem #2



Supervised

analysis
- Understand the biology associated with each methylation cluster

Methods

Gene 25,626

(gene …)

Gene 2

Gene 1

K16(K…)K1K0 = Normals

ANOVA x 25,626

+

BH correction

Dunnett’s method



Methods

1- Select genes with ANOVA p < 0.0005 after BH

2- Run Dunnett’s method for pairwise comparisons

against a reference group

3- Select for each cluster the genes that are are

significant at p< 0.0005



Results

Slide Redacted

Unpublished Results



Combining statistical and biological significance

- Increases our chances of capturing biologically significant

changes

- Still requires that we correct the p value for multiple testing



Common concerns

“If I correct I do not get any significant genes, so I am better off not

correcting”

Wrong! If you do not correct, your “significant” genes are probably not

significant at all. This is like cheating your own self!

“My hypothesis was wrong because I do not have any significant

genes after correction”

This may or may not be the case. You may just have insufficient

power in your design to detect small changes. You can:

1- Increase the number of replicates/samples

2- Select a smaller number of genes to begin your analysis with (high

variance genes, high SNR) and in this way the stringency of your

correction will be reduced



In Summary

• High-throughput methods are very useful in biology.

• However, there is a risk for drawing the wrong conclusions if we are

not careful.

• Conventional statistical approaches may not always be the most

appropriate for these data sets.

• When selecting an analytical approach we need to remember the

nature of the data we are analysis (high number of correlated genes,

lack of normality, etc)

• For multiple testing: B-H FDR and permutation-based methods are

acceptable ways of dealing with this

• Nothing can replace experimental validations!!


