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Statistical analysis of a data set typically involves testing not just a single hypothesis, but
rather many (often very many!). For any particular test, we may assign a pre-set probability
α of a type-1 error (i.e., a false positive, rejecting the null hypothesis when in fact it is true).
The problem is that using a (say) value of α = 0.05 means that roughly one out of every
twenty such tests will show a false positive (rejecting the null hypothesis when in fact it is
true). Thus, if our experiment involves performing 100 tests, we expect 5 to be declared as
significant if we use a value ofα = 0.05 for each. This is the problem of multiple comparisons,
in that we would like to control the false positive rate not just for any single test but also for
the entire collection (or family) of tests that makes up our experiment.

How Many False Positives?

Suppose we perform n independent tests, each with a pre-set type one error of α. In this case,
the number of false positives follows from the Binomial distribution, with α the probability
of a “success” (a false positive) and n the number of trails. Hence, the probability of k such
false positives is

Pr(k false positives) =
n!

(n− k)! k!
(1− α)n−k αk (1)

For n large and α small, this is closely approximated by the Poisson, with Poisson parameter
nα (the expected number of false positives),

Pr(k false positives) ' (nα)ke−nα

k!
(2)

Example 1. Suppose 250 independent tests are performed, and we have chosen a false-
positive probability ofα = 0.025 (2.5%) for each. Suppose we observe 12 significant tests by
this criteria. Is this number greater than expected by chance? Here,nα = 250·0.025 = 6.25.
The probability of observing 12 (or more) significant tests is

250∑
k=12

Pr(k false positives) =
250∑
k=12

250!
(250− k)! k!

(1− 0.025)250−k 0.025k

1
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We could either sum this series (say in a spreadsheet) or simply recall the cumulative dis-
tribution function for a binomial, which is in R. In particular, the probability that a bino-
mial with parameters n and p has a value of j or less is obtained by pbinom(j,n,p) .
Hence the probability of 12 or greater is just one minus the probability of 11 or less, or
> 1- pbinom(11,250,0.025) . R returns 0.02470269 . Given that there is only a 2.5%
of this happening by chance, we expect some of these significant tests to be truly significant
indeed, not false positives. The critical question, of course, is which ones?

Fisher’s Method of Combining p Values Over Independent Tests

A interesting example of multiple comparisons is when the same hypothesis (i.e., smoking
causes cancer) is independently tested. If we have the raw data, we can often combine all
these experiments into a single data set. However, often this is not possible, either because
the data are not fully reported, or the experiments are such that different variables are being
followed and hence the raw data cannot be easily combined.

Fisher (1954) offered a simple, yet powerful, way around this based on the p values for
each of the independent tests. If k independent tests (usually different studies from different
groups) are performed, and the p value for test i is pi, then the sum

−2
k∑
i=1

ln(pi) (3)

approximately follows aχ2
2k distribution. Fisher’s method started the field of meta-analysis,

wherein one searches the literature to find a number of tests of a particular hypothesis, and
then combines these results into a single test. As Example 2 shows, none of the individual
tests may be significant, but Fisher’s combined approach can potentially offer more power,
and hence can generate a significant result when all the tests are jointly considered. An import
caveat to keep in mind during a literature search is the bias of reporting p values that are
close to significant and not reporting p values that are far from significant.

Example 2. Suppose five different groups collected data to test the same hypothesis, and
these groups (perhaps using different methods of analysis) report p values of 0.10, 0.06,
0.15, 0.08, and 0.07. Notice that none of these individual tests are significant, but the trend
is clearly that all are ”close” to being significant. Fisher’s statistic gives a value of

−2
k∑
i=1

ln(pi) = 24.3921, Pr(χ2
10 ≥ 24.39) = 0.0066

Hence, taken together these five tests show a highly significant p value.
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Bonferroni Corrections and Their Extensions

Bonferroni corrections (and their relatives) are the standard approach for controlling the
experiment-wide false positive value (π) by specifying what α values should be used for
each individual test (i.e., we declare a test to be significant if p ≤ α). The probability of not
making any type I (false positive) errors in n independent tests, each of level α, is (1− α)n.
Hence, the probability of at least one false positive is just one minus this,

π = 1− (1− α)n (4a)

If we wish an experiment-wide false positive rate of π (i.e., the probability of one, or more,
false positives over the entire set of tests is π), solving for the α value required for each test is

α = 1− (1− π)1/n (4b)

This is often called the Dunn-Ŝidák method. Noting that (1−α)n ' 1−nα, we obtain the
Bonferroni method, taking

α = π/n (4c)

Both Equations 4b and 4c are often referred to as Bonferroni corrections. In the literature, π
is occasionally referred to as the family-wide error rate (FWER), while α is denoted as the
comparison-wise error rate, or CWER.

Example 3. Suppose we have n = 100 independent tests and wish an overall π value of
0.05. Whatα value to control for false positives should be used for each individual test? The
Dunn-Ŝidák correction gives

α = 1− (1− 0.05)1/100 = 0.000512

while the Bonferroni correction is

α = 0.05/100 = 0.0005

Note that using such small α values greatly reduces the power for any single test. For
example, under a normal distribution the 95% (two-side) confidence interval for the true
mean is x± 1.96

√
Var, while moving to an α value of 0.0005, x± 3.48

√
Var.
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Sequential Bonferroni Corrections

Under a strict Bonferroni correction, only hypotheses with associated p values ≤ π/n are
rejected, all others are accepted. This results in a considerable reduction in power if two or
more of the hypotheses are actually false. When we reject a hypothesis, there remain one
fewer tests, and the multiple comparison correction should take this into account, resulting
in so-called sequential Bonferroni corrections. Such sequential corrections have increased
power, as Example 4 below shows.

Holm’s Method

The simplest of these corrections is Holm’s method (Holm 1979). Order the p values for
the n hypotheses being tested from smallest to largest, p(1) ≤ p(2) ≤ · · · ≤ p(n), and let
H(i) be the hypothesis associated with the p value p(i). One proceeds with Holm’s method
as follows:

(i) If p(1) > π/n, accept all the n hypothesis (i.e., none are significant).

(ii) If p(1) ≤ π/n, reject H(1) [i.e., H(1) is declared significant], and consider H(2)

(iii) If p(2) > π/(n− 1), accept H(i) ( for i ≥ 2).

(iv) If p(2) ≤ π/(n− 1), reject H(2) and move onto H(3)

(v) Proceed with the hypotheses until the first j such that p(j) > π/(n− j + 1)

We can also apply Holm’s method using Equation 4a (α = 1 − (1 − π)1/n, the Dunn-Ŝidák
correction), in place of α = π/n.

Simes-Hochberg Method

With Holm’s method, we stop once we fail to reject a hypothesis. An improvement on
this approach is the Simes-Hochberg correction (Simes 1986, Hochberg 1988), which
effectively starts backwards, working with the largest p values first.

(i) If p(n) ≤ π, then all hypothesis are rejected.

(ii) If not, H(n) cannot be rejected, and we next examine H(n− 1).

(iii) If p(n− 1) ≤ π/2 then all H(i) for i ≤ n− 1 are rejected.

(iv) If not, H(n− 1) cannot be rejected, and we compare p(n− 2) with π/3.

(v) In general, if p(n− i) ≤ π/(n− i+ 1) then all H(i) for i ≤ n− i are rejected.

While the Simes-Hochberg approach is more powerful than Holm’s, it is only strictly ap-
plicable when the tests within a family are independent. Holm’s approach does not have this
restriction. Hence, use Holm’s if you are concerned about potential dependencies between
tests, while if the tests are independent, use Simes-Hochberg or Hommel’s method.
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Hommel’s Method

Hommel’s (1988) method is slightly more complicated, but is more powerful than the Simes-
Hochberg correction (Hommel 1989). Under Hommel’s method, we reject all hypotheses
whose p values are less than or equal to π/k, where

k = max
i
p(n− i+ j) > π

j

i
for j = 1, · · · , i

Example 4 shows how all three of these methods are applied.

Example 4. Suppose for n = 10 tests, the (ordered) p values are as follows

i 1 2 3 4 5 6 7 8 9 10

p(i) 0.0020 0.0045 0.0060 0.0080 0.0085 0.0090 0.0175 0.0250 0.1055 0.5350
π

n−i+1 0.0050 0.0056 0.0063 0.0071 0.0083 0.0100 0.0125 0.0167 0.0250 0.0500

For an experiment-wide level of significance of π = 0.05, the Bonferroni correction is
α = 0.05/10 = 0.005. Hence, using a strict Bonferrioni for all, we reject hypotheses 1
and 2, and fail to reject (i.e., accept) 3-10. To applied the sequential methods, we use the
associated α/(n− i+ 1) values under π = 0.05 which are also given in the table.

Under Holm’s method, p(i) ≤ π/(n− i+ 1) for i ≤ 3, and hence we reject H(1) to H(3)
and accept the others.

Under Simes-Hochberg, we fail to rejectH(7) toH(10) (as p(i) > π/(n− i+ 1)), but note
that since p(6) = 0.009 ≤ α/(n− i+ 1) = 0.010, and hence we reject H(6) to H(1),

To apply Hommel’s method, reject all hypotheses whose p values are less than or equal to
π/k, where

k = max
i
p(n− i+ j) > π

j

i

Let’s start with i = 1. Here, (i=1, j=1), p(10) = 0.5350 > π = 0.05. Now lets try i = 2,
giving (for j = 1, 2), p(9) = 0.1055 > π(1/2) = 0.025 and p(10) > π. For i = 3,
p(8) = 0.025 > π(1/3) = 0.0167, p(9) > π(2/3) = 0.033, p(10) > π. For i = 4,
p(7) = 0.175 > π(1/4) = 0.0125, but (i = 4, j = 2), p(8) = 0.025 = π(1/2). Hence,
k = 3, and we reject all hypotheses whose p values are ≤ 0.05/3 = 0.0167, which are
H(1) to H(6). Note that a strict Bonferroni declared the fewest, and Simes-Hochberg and
Hommel’s the most, of the hypotheses to be significant.

Schweder-Spjøtvoll plots

A powerful result on the distribution of pvalues if we have a large set of truly null hypotheses
is as follows:
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The distribution of p values under the null hypothesis follows a Uniform(0,1) distribution.

This useful result has been used by a number of workers. One creative use are the plots of
Schweder and Spjøtvoll (1982). Here, one orders the 1 − p values from the smallest to the
largest and plots the 1 − p values on the horizontal axis, and N on the vertical axis. For
example, the first point is (1 − pn, 1), the second point (1 − pn−1, 2), · · ·, the nth point point
(1 − p1, n). If all of the p values are indeed generated from null hypotheses, these are draw
from a uniform and the resulting plot will be a straight line (the small triangles in the figure
below).

Conversely, if some of the p values are draw from hypotheses where the null is false, we
expect an excess of small p values, and hence an overabundance of 1−p values near 1. In the
figure above, the x marks were generated from 80 true nulls and 20 significant hypotheses.
Note the strong up-turn near one. Schweder and Spjøtvoll suggest can use these plots to
estimate the actual number of true null hypothesis. One fits the best straight line until the
upturn near one appears, extrapolating this line to obtain the N value when 1 − p = 1
estimates the number of true null hypotheses, n0. From the figure, their approach gives a
value very close to 80, the correct number of true nulls used to generate this example.
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FDR: The False Discovery Rate

Benjamini and Hochberg (1995) introduced an important concept for multiple comparison
that they called the false discovery rate, or FDR. The FDR is the fraction of false positives
among all tests declared significant. The motivation for using the FDR is that we may be
running a very large number of tests, with those being declared significant being subjected
to further studies. Examples might include looking for differential expression over a huge
set of genes on a microarray or mapping a large number of genetic markers associated with
a trait of interest. The initial analysis takes a large number of candidates and produces a
reduced set for further analysis. In such cases, we are more concerned with making sure
all possible true alternatives are included in this reduced set, and we are willing to put up
with some false positives to accomplish this. However, we also don’t want to be completely
swamped with false positives. The idea is that the statistical procedure results in a significant
enrichment of differentially-expressed genes, controlling the fraction of false positives within
this enriched setting by specifying a value δ for the FDR. Choosing an FDR of 5% means that
(on average) 5% of the genes we picked as being significant are actually false positives. The
flip side is that 95% of those genes declared significant do indeed have differential expression.
Hence, screening genes with an FDR of 5% results in a significant enrichment of genes that
are truly differentially expressed.

To formally motivate the FDR, suppose a total of n hypotheses are tested, S of which are
judged significant (by the criteria being used for each test). If we had complete knowledge,
we would know that n0 of the hypotheses have the null true and n1 = n − n0 have the
alternative true, and we might find that F of the true nulls were called significant while T
of the alternative true were called significant,

Called significant Called not significant Total
Null true F n0 − F n0

Alternative true T n1 − T n1

Total S n− S n

For this experiment, the false discovery rate is the fraction of tests called significant that are
actually true nulls, FDR = F/S. (The term discovery follows in that a significant result
can be considered as a discovery for future work.) As a point of contrast, the normal type
1 error (which we can also call the false positive rate, or FPR), is the fraction of true nulls
called significant, is F/n0. Note the critical distinction between these two in that while the
numerator of each is F , the denominators are considerably different, the total number of
tests called significant (for FDR) vs. the number of hypotheses that are truly null (FPR).

Another way to see the distinction between the false positive and false discovery rates
is to consider them as probability statements for a single test involving hypothesis i. For the
FDR we condition on the test as being significant,

FDR = Pr(i is truly null | i is significant) = δ (5a)

where for the false positive rate, we condition on the hypothesis being null,

FPR = Pr(i is significant | i is truly null) = α (5b)
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Table 1 reminds the reader of the various test parameters that arise when multiple compar-
isons are considered. We now show how these various parameters are related.

Table 1: Multiple Comparisons Parameters

Parameter Definition
α Comparison-wise Type one error (false positive)
β Type two error (false negative), 1− β = power
π Family-wide Type one error, Pr(F > 0) = π
δ False discovery rate
π0 Fraction of all hypotheses that are null
p Probability of the test statistic under the null
p(k) k-th smallest p value of the n tests

First, the relationship betweenα, π andF is as follows. Suppose we have set the false positive
rate (i.e., the Type one error rate) asα. Such a p value threshold (i.e., called significant if p ≤ α)
only guarantees that the expected number of false positives is bound above by E[F ] ≤ α · n.
For n tests, a π level experiment-wide false positive error (setting α = π/n, the Bonferroni
correction) implies Pr(F ≥ 1) ≤ π, i.e., the probability of at least one false positive is π. To
show how α, β, π0, and δ are related, we first need to introduce the concept of the posterior
error rate.

Morton’s Posterior Error Rate (PER) and the FDR

Fernando et al. (2004) and Manly et al. (2004) have noted that FDR measures are closely
related to Morton’s (1955) Posterior Error Rate (PER), originally introduced in the context of
linkage analysis in humans. Morton’s PER is simply the probability that a single significant
test is a false positive,

PER = Pr(F = 1 |S = n = 1) (6)

The connection between the FDR and PER is that if we set the FDR to δ then the PER for a randomly-
drawn significant test is also δ.

Framing tests in terms of the PER highlights the screening paradox (Manly et al. 2004),
“type I error control may not lead to a suitably low PER”. For example, we might choose
α = 0.05, but the PER may be much, much higher, so that a test declared significant may
have a much larger probability than 5% of being a false-positive. The key is that since we
are conditioning on the test being significant (as opposed to conditioning on the hypothesis being
a null, as occurs with α), this could include either false positives or true positives, and the
relative fractions of each (and hence the probability of a false positive) is a function of the
single test parameters α and β and fraction of null hypotheses, π0. To see this, apply Bayes’
theorem,

Pr(F = 1 |S = n = 1) =
Pr(false positive | null true) · Pr(null)

Pr(S = n = 1)
(7)

Consider the numerator first. Let π0 = n0/n be the fraction of all hypotheses that are truly
null. The probability that a null is called significant is just the type I error α, giving

Pr(false positive | null true) · Pr(null) = α · π0 (8a)
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Now, what is the probability that a single (randomly-chosen) test is declared significant?
This event can occur because we pick a null hypothesis and have a type I error or because
we pick an alternative hypothesis and avoid a type II error. For the later, the power is just
T/n1, the fraction of all alternatives called significant. Writing the power as 1 − β (β being
the type II error, the failure to reject an alternative hypothesis), the resulting probability that
a single (randomly-draw) test is significant is just

Pr(S = n = 1) = απ0 + (1− β)(1− π0) (8b)

Thus

PER =
α · π0

α · π0 + (1− β) · (1− π0)
(9a)

=
1

1 + (1−β)·(1−π0)
α·π0

(9b)

In Morton’s original application, since there are 23 pairs of human chromosomes, he argued
that two randomly-chosen genes had a 1/23' 0.05 prior probability of linkage, i.e., 1−π0 = 0.05
andπ0 = 0.95. Assuming a type I error ofα = 0.05 and 80% power to detect linkage (β = 0.20),
this would give a PER of

0.05 · 0.95
0.05 · 0.95 + 0.80 · 0.05

= 0.54

Hence with a type-one error control of α = 0.05%, a random test showing a significant result
(p ≤ 0.05) has a 54% chance of being a false-positives. This is because most of the hypotheses
are expected to null — if we draw 1000 random pairs of loci, 950 are expected to be unlinked,
and we expect 950 · 0.05 = 47.5 of these to show a false-positive. Conversely, only 50 are
expected to be linked, and we would declare 50 · 0.80 = 40 of these to be significant, so that
47.5/87.5 of the significant results are due to false-positives.

Note that the type I error rate of a test and the PER for a significant test, which are often
assumed to be the same, we actually very, very different. The PER depends on power of a
test and the fraction of tests that are truly null, in addition to depending on the type I error.
Manly et al. (2004) note that the PER is acceptably low only if 1−π0 (the fraction of alternative
hypotheses) is well above α.

Example 5. Suppose we setα = 0.005 for each test, and suppose that the resulting power
is essentially 1 (i.e. β ' 0). Consider 5,000 tests under two different settings. First, suppose
that the alternative is very rare, withn1 = 1 (π0 = 0.9998). Under this setting, we expect 4,999
· 0.005 = 24.995 false positives and one true positive (1·(1 − β) = 1), giving the expected
PER as

PER =
24.995

24.995 + 1
= 0.961

Thus a significant test has a 96.1% probability of being a false-positive.
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Now suppose that the alternative is not especially rare, for example n1 = 500 (π0= 0.9). The
expected number of false positives is 4500 · 0.005 = 22.5, while the expected number of true
positives is 500, giving an PER of

PER =
22.5
522.5

= 0.043

The PER is thus rather sensitive to π0, the fraction of all hypotheses which are null. If π0

is essentially 1, an PER of δ is obtained using the Bonferroni correction, setting α = δ/n.
However, if π0 departs even slightly from one (i.e., more than a few of the hypotheses are
correct), then the per-test level of α to achieve a desired PER rate is considerable larger than
that given by the Bonferroni correction, i.e., α(δ) > δ/n.

The figure below plots Equation (9b) assuming α = 0.0 for various values of π (fraction
of hypotheses that are null) and β (1-power).

Thinking in terms of the PER allows us to consider multiple comparisons in a continuum
from Bonferroni-type corrections to using FDR to control the PER. If π1 = 1 − π0 is very
small, most hypotheses tested are nulls and we wish to control the overall false positive rate
with a Bonferroni-type correction. However, as some fraction of the hypotheses are expected
to not be nulls (1− π0 is modest to large), then using FDR corrections makes more sense for
controlling the PER.
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A Technical Aside: Different Definitions of False Discovery Rate

While the false discovery rate for any experiment is justF/S, there are several subtly different
ways to formally define the expectation of this ratio. The original notion of a false discovery
rate is due to Benjamini and Hochberg (1995), with modifications suggested by a number of
other workers, most notable Storey (2002) and Fernando et al (2004), see Table 2.

Table 2: Measures of False Discovery, (Manly et al. 2004)

Name Definition Reference
FDR False discovery rate E(FS |S > 0) Pr(S > 0) Benjamini and Hochberg (1995)

pFDR Positive False E(FS |S > 0) Storey (2002)
discovery rate

PFP Proportion of E(F )/E(S) Fernando et al. (2004)
false positives

PER Posterior error rate Pr(F = 1 |S = n = 1) Morton (1955)
FPR False Positive rate Pr(F > 0)

While technically the distinction between these different false discovery rates is important,
when actually estimating a false discovery rate from a collection of p values, one is usually
left with an expression of the formE(F )/E(S), the expected number of false positives to the
expected number of significant tests. Strictly speaking, then, these are the proportion of false
positives. This is a good thing, as Fernando et al. (2004) have shown that the PFP does not
depend on either the number of tests or the correlation structure among tests (essentially this
occurs because we are taking the ratio of two expectations, so the number of tests cancels in
each and correlation structure among tests does not enter into the individual expectations).

The main operational differences between the different false discover rates are (i) the
original method of Benjamini and Hochberg (1995), which assumes n = n0 (all hypotheses
are nulls), and (ii) all other estimators which assume n0 is not necessarily one and thus also
attempt to estimate either π0 or n0, and then uses these to estimate the false discovery rate.

The Original Benjamini-Hochberg FDR Estimator

The original estimate for the FDR was introduced by Benjamini and Hochberg (1995). Letting
p(k) denote the k-th smallest (out of n) of the p values, then the false-discovery rate δk for
hypothesis k is bounded by

np(k)
k
≤ δk (10a)

In particular, if we wish an FDR of δ for the entire experiment, then we reject (i.e., declare as
significant) all hypotheses that satisfy

p(k) ≤ δ k
n

(10b)
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Example 6. Consider again the 10 ordered p values from Example 4, and compute n ·
p(k)/k = 10p(k)/k,

i 1 2 3 4 5 6 7 8 9 10

p(i) 0.0020 0.0045 0.0060 0.0080 0.0085 0.0090 0.0175 0.0250 0.1055 0.5350

10p(k)
k 0.0200 0.0225 0.0200 0.0200 0.0170 0.0150 0.0250 0.0313 0.1172 0.5350

Thus, if we wish an overall FDR value of δ = 0.05, we would reject hypotheses H(1) -
H(8). Notice that this rejects more hypotheses than under any of the sequential Bonferonni
methods (Example 4).

We will formally develop a more general estimate for the FDR below, but the basic idea
leading to Equation 10a is as follows. Suppose we set a threshold value p(k), declaring a test
to be significant if its p value is at or below p(k), in which case k of the hypotheses will be
declared significant (as p(k) is the k-th smallest p value), and S = k. Likewise, if all n of the
hypotheses are null, then the expected value ofF (the number of false positives) is just n p(k).
Thus the fraction of all rejected hypotheses that are false discoveries is just F/S = n p(k)/k,
yielding Equation (10a).

This simple (heuristic) derivation shows while the original Benjamini-Hochberg esti-
mate of the FDR is conservative, as in those settings in which one applies the FDR criteria,
the expectation is that some fraction of the hypotheses are not null, and so n0 < n. The
correct estimate of the expected number of rejected null hypotheses is n0p(k), leading to a
more generalized estimate of the FDR as

F̂DR =
n̂0 p(k)
k

(11)

where n̂0 is an estimate of the number of truly null hypotheses out of the n being tested.

A (Slightly More) Formal Derviation of the Estimated FDR

Following Storey and Tibshirani (2003), consider the expected FDR for an experiment where
we declare a hypothesis (or feature) to be significant if its p value is less than or equal to some
threshold value, τ . Obviously, as τ becomes smaller, the FDR is smaller (as significant nulls
become increasingly less likely). However, if τ is set too small, we lose power (e.g., suppose
we set τ = π/n, the Bonferonni correction). What we would like to do is to find the expected
value of the FDR as a function of the chosen threshold τ to allow us to optimually tunde this
parameter to control the desired FDR. With a large number of tested hypotheses,

E[FDR(τ)] = E

[
F (τ)
S(τ)

]
' E[F (τ)]
E[S(τ)]

(12)
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A simple estimate of the expected number of significant tests when the threshold is set at τ
is given by the observed number of significant tests when the threshold is τ .

To obtain an estimate for E[F (τ)], we call upon the property mentioned above that the
distribution of p values under the null follows a uniform (0, 1) distribution. Hence,

Pr(p ≤ τ |null hypothesis) =
∫ τ

0

u(p)dp = τ (13a)

where u(p) is the probability density function for p values under the null, which is just the
uniform (0, 1) probability density function,

u(p) =
{

1 for 0 ≤ p ≤ 1
0 otherwise

(13b)

Hence, if n0 of the n tests are truly null, then

E[F (τ)] = no · Pr(p ≤ τ |null hypothesis) ' n0 · τ (14)

Hence,
E[FDR(τ)] =

n0 · τ
S(τ)

(15)

Notice that we set τ = p(k), then S(τ) = k, and Equation (14) become n0p(k)/k, recovering
Equation (11).

Estimating the Number of Null Hypotheses, n0

The problem remaining is to estimaten0, the number of truly null hypotheses. Once again, we
call upon the distribution of p values under the null being uniform. Recall that the histogram
from a sufficiently large number of draws from this distribution is completely flat, as all
values are equally likely. However, if some alternative hypotheses are mixed in with these
nulls, then we expect the distribution to be a mixture, n0/n being draws from a uniform and
1−n0/n being draws from some other distribution in which the p values are skewed towards
zero.

We have previously mentioned the regression estimator of Schweder-Spjøtvoll, but this
tends to overestimate the number of nulls. Another approach was offered by Mosig et al.
(2001), based on binning the p values. A third was suggested by Allison et al. (2002), who
used ML to fit a mixture model to the p values, π0 come from the null distribution (and hence
a uniform), while 1 − π0 come from the alternative where p values are assumed to follow
some (otherwise unspecified) beta distribution. The resulting likelihood functions

l(p) = (1− π0)
Γ(a+ b)
Γ(a)Γ(b)

pa−1(1− p)b−1 + π0 (16)

The a and b parameters are fit by ML, as is the quantify of interest, π0.
A very simple estimator was offered by Storey and Tibshirani (2003), using the key

feature that draws from hypotheses which are not null are expected to have their p values
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skewed towards zero. Hence, if we look at the number of p values exceeding some tuning
value λ (for example, λ = 0.5), then for large values of λ, most of these draws are from the
uniform corresponding to draws from the null. We can use this fact to estimate π0 = n0/n as
follows. Let π̂0(λ) be the estimated based on using the tuning value λ, then

π̂0(λ) =
Number of pi values > λ

n(1− λ)
(17)

This follows from the uniform, as

Pr(p > λ |null hypothesis) =
∫ 1

λ

u(p)dp = 1− λ (18)

where the density u(p) for a uniform is given by Equation 13a. Hence, an estimate of n0 is
given by

n̂0(λ) = n · ρ̂(λ) =
Number of pi values > λ

1− λ (19)

Thus an estimated value for the FDR using threshold value τ (and based on tuning parameter
λ) is just

F̂DR(τ) = n0 ·
τ

S(τ)
=
(

Number of pi values > λ

1− λ

)
·
(

τ

Number of pi values ≤ τ

)
(20)

Ideally, over a reasonable range of λ values, we expect the estimate to ρ to be reasonably
stable. If λ is set too large, the likelihood that almost all values correspond to draws from a
null is countered by the much smaller sample size (and hence larger sampling error) from
using such a small fraction of the total data.

Storey (http://faculty.washington.edu/∼jstorey/qvalue) has produced an R program,
Q-value that (among other things) computes π0 using this basic approach and then uses
a smoother (a cubic spline) to average over different values of the tuning parameter. It also
offers a bootstrap estimator for π0.

Storey’s q Value

While we can control the FDR for an entire set of experiments, we would also like to have an
indication of the FDR for any particular experiment (or test) within this family. Intuitively,
tests with smaller p values should also have smaller associated FDR values. Storey (2002,
Storey and Tibshirani 2003) introduced the concept of a q value (as opposed to the p value)
of any particular test, where q is the expected FDR rate for tests with p values at least as
extreme as the test of interest. The estimated q value is a function of the p value for that test
and the distribution of the entire set of p values from the family of tests being considered,

q̂ [p(i)] = min
τ≥p(i)

F̂DR(τ) (21)
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Example 7: As example of the interplay between the family-wide error rate π, and the
individual p and q values for a particular test, consider Storey and Tibshirani ’s (2003)
analysis of a microarray data set from Hedenfalk et al. comparing BRCA1- and BRCA2
mutation positive tumors.

A total of 3,226 genes were examined. Setting a critical p value of α = 0.001 detects 51
significant genes. (i.e., those with differential expression between the two types of tumors).
Assuming the hypotheses being tested are independent (which is unlikely as expression is
likely highly correlated across sets of genes), the probability of at least one false positive is
π = 1 − (1 − .0001)3226 = 0.96, while the expected number of false-positives is 0.001·
3226 = 3.2, or 6% of the declared significant differences.

Setting a FDR rate of δ = 0.05, Storey and Tibshirani detected 160 genes showing significant
differences in expression. Of these 160, 8 (5%) are expected to be false-positives. Notice that,
compared to the Bonferroni correction (51 genes, 6% false positives), over three times as
many genes are detected, with a lower FDR rate. Further, Storey and Tibshirani estimate the
fractionπ0 of nulls (genes with no difference in expression) at 67%, so that 33% (or roughly
1000 of the 3226 genes) are likely differentially expressed.

To contrast the distinction between p and q values, consider the MSH2 gene, which has
q value of 0.013 and p value of 5.50 · 10−5. This p value implies that the probability of
seeing at least this level of difference in expression given the null hypothesis (no difference
in expression) is 5.50 · 10−5. Conversely, q = 0.013 says that 1.3% of genes that show
differences in expression that are as or more extreme (i.e., whose p values are at least as
small) as that for MSH2 are false positives.

As a technical aside, why do we use minτ≥p(i) F̂DR(τ) instead of simply setting qi =
F̂DR(p(i))? Recall Example 6, where the original l Benjamini-Hochberg estimator for FDR
value were used. This differs from other FDR estimators by a constant, n0/n. Notice in
particular that the smallest FDR occurs for hypothesis 6 (1.5%), and not for smaller p values.
This reflects the tradeoff where increasing τ results in declaring more tests as significant, so
that the ratio τ/S(τ) need not monotonically increase as τ increases. As example 6 shows,
setting the threshold τ above the p(i) value may actually result in a smaller q value, and hence
Storey’s definition.

A final key point to stress above FDR methods is that all that is needed is the ordered
listed of p values, with no other information about the testing really needed. Since the FDR
rate is typically estimated using the PFP criteria (ratio of two expectations), the associated
δ values are independent of the number of tests and their correlation structure. Stoery’s
aforementioned Q-value program takes an list of p values are returns the associated q values
as well as estimates of π0 and plots of q vs. p, the histogram of p values and other useful
diagnostics. Note that the p value histogram should always be examined (akin to examining
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the plot of residuals in a fitted model). If the resulting p histogram is binomial, with modes
near both zero and one, this indicates that at least some of the tests we likely one-sided, when
two-sides tests are more appropriate.

References

Allison, D. B., G. L. Gadbury, M. Heo, J. R. Fernandez, C.-K. Lee, T. A. Prolla, and R. Wein-
druch. 2002. A mixture model approach for the analysis of microarray gene expression data.
Computational Statistics and Data Analysis 39: 1-20.

Benjamini, Y., and Hochberg, T. 1995. Controlling the False Discovery Rate: a practical and
powerful approach to multiple testing. J. Royal Stat. Soc. B 85: 289–300.

Benjamini, Y., and Hochberg, T. 2000. On the adaptive control of the false discovery rate in
multiple testing with independent statistics. Journal of Educational and Behavioral Statistics 26:
60–83.

Fernando, R. L., D. Nettleton, B. R. Southey, J. C. M. Dekkers, M. F. Rothschild, and M. Soller.
2004. Controlling the proportion of false positives in multiple dependent tests. Genetics 166:
611-619.

Genovese C. and L. Wasserman. 2002. Operating Characteristics and Extensions of the False
Discovery Rate Procedure. Journal of the Royal Statistical Society Series B: 64: 499–517.

Hochberg, Y. 1988. A sharper Bonferroni procedure for multiple tests of significance.
Biometrika 75: 800–802.

Holm, S. 1979. A simple sequential rejective multiple test procedure. Scand. J. Statistics 6:
65–70.

Hommel, G. 1988. A stagewise rejective multiple test procedure on a modified Bonferroni
test. Biometrika 75: 383 – 386.

Hommel, G. 1989. A comparison of two modified Bonferonii procedures. Biometrika 76: 624-
625.

Manly, K. F., D. Nettleton, and J. T. G. Hwang. 2004. Genomics, prior probability, and statis-
tical tests of multiple hypotheses. (in press)

Morton, N. E. 1955. Sequential tests for the detection of linkage. American Journal of Human
Genetics 7: 277–318.

Mosig, M. O., E. Lipkin, G. Khutoreskaya, E. Tchourzyna, M. Soller, and A. Friedmann.
2001. A Whole Genome Scan for Quantitative Trait Loci Affecting Milk Protein Percentage
in Israeli-Holstein Cattle, by Means of Selective Milk DNA Pooling in a Daughter Design,
Using an Adjusted False Discovery Rate Criterion, Genetics 157: 1683-1698.

Schweder, T. and E. Spjøtvoll. 1982. Plots of p-values to evaluate many tests simultaneously.
Biometrika 69: 493–502.

Simes, J. R. 1986. An improved Bonferroni procedure for multiple tests of significance.
Biometrika 73: 75–754.



CORRECTIONS FOR MULTIPLE TESTS 17

Storey J.D. 2002. A direct approach to false discovery rates. Journal of the Royal Statistical
Society Series B: 64: 479–498.

Storey J.D. 2003. The positive false discovery rate: a Bayesian interpretation and the q-value.
Annals of Statistics 31: 2013-2035.

Storey J.D. 2004. QVALUE: The Manual (Version 1.0). On the web at
http://faculty.washington.edu/∼jstorey/qvalue/manual.pdf

Storey J.D., J. E. Taylor, and D. Siegmund. 2004. Strong control, conservative point estimation,
and simultaneous conservative consistency of false discovery rates: A unified approach.
Journal of the Royal Statistical Society, Series B 66: 187-205.

Storey, J. D., and R. Tibshirani. 2003. Statistical significance for genomewide studies. Proc.
Natl. Acad. Sci. 100: 9440–9445.


