
Quantitative	Understanding	in	Biology	
Module	III:	Linear	Difference	Equations	
Lecture	I:	Introduction	to	Linear	
Difference	Equations	

Introductory	Remarks	
This section of the course introduces dynamic systems; i.e., those that evolve over time. Although 
dynamic systems are typically modeled using differential equations, there are other means of modeling 
them. While we will spend a good deal of time working with differential equations in the next section, 
we’ll begin by considering a close cousin of the differential equation: the difference equation. We will 
note here that when we solve differential equations numerically using a computer, we often really solve 
their difference equation counterparts. So, having some facility with difference equations is important 
even if you think of your dynamic models in terms of differential equations. 

We’ll also spend some time in this section talking about techniques for developing and expressing 
models. While there is often more art than science involved, there are some good practices that we will 
share. 

This section of the course will also begin to emphasize matrix formulations of models and linear algebra. 

We will begin our exploration of these topics with two examples; one from molecular evolution and one 
from population dynamics. 

An	Molecular	Evolution	Example	
(Mathematical Models in Biology; Allman and Rhodes) 

A fundamental part of molecular evolution is the study of mutations of DNA sequences. As you know, a 
DNA molecule is a sequence made up from four nucleic acids: adenine, guanine, cytosine, and thymine. 
Adenine and guanine are chemically similar and are called purines; cytosine and thymine are also similar 
and are called pyrimidines. 

Some simple mutations that a DNA sequence can undergo include deletions, insertions, and single 
nucleotide substitutions. DNA can also undergo bulk mutations such as the inversion (reversal) or 
duplication of a stretch of DNA. In fact, even entire genome duplications have occurred. 

For our current purposes, however, we will consider only single nucleotide substitutions, and focus on 
the estimation of mutation rates. Within this family of mutations, substitutions that involve swapping a 
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purine with a pyrimidine are called transversions. Transitions are substitutions that leave the class of 
nucleotide unchanged. 

Consider the ancestral sequence, S0, an intermediate sequence S1, and a descendant S2. 

S0: ACCTGCGCTA 
S1: ACGTGCACTA 
S2: ACGTGCGCTA 

 

Seeing all three sequences, we count three mutation events. However, if we did not have knowledge of 
the intermediate sequence, we would only observe one mutation event, and might naïvely 
underestimate the mutation rate. This error arises from the back-mutation at the seventh position in the 
sequence. To understand how back-mutations can affect estimates of mutation rates, we’ll build and 
explore a simple model of nucleotide substitution. 

Imagine that at a single position in the genome we begin with a cytosine nucleotide at time t=0. After 
some discrete time period t=1, there is a probability that the nucleotide will change. In our simplest 
model, we will assume that all possible substitutions (transitions and transversions) are equally likely. 
We will denote the probability of each possible mutation as α. We then have 

P1(A) = α 
P1(G) = α 
P1(C) = 1-3α 
P1(T) = α 

Note that our initial condition can also be expressed in terms of probabilities. 

P0(A) = 0 
P0(G) = 0 
P0(C) = 1 
P0(T) = 0 

After a second time step, our system evolves again. The probability of observing a C at this position is 
now 

P2(C) = P1(A)·α + P1(G)·α + P1(C)·(1-3α) + P1(T)·α 
 = 3·α2 + (1-3α)2 

The probability of observing an A at this position is 

P2(A)  = P1(A)·(1-3α) + P1(G)·α + P1(C)·α + P1(T)·α 
= α·(1-3α) + α·α + ·(1-3α)·α + α·α 
=2·α·(1-3α) + 2·α2 

The probability for G and T will be same, so we have 
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P2(A) = 2·α·(1-3α) + 2·α2 

P2(G) = 2·α·(1-3α) + 2·α2 

P2(C) = 3·α2 + (1-3α)2 

P2(T) = 2·α·(1-3α) + 2·α2 

We could carry on this way with t=3, 4, 5… There would be a fair amount of algebra (although we could 
probably simplify things along the way). An alternative is to formulate our problem in terms of matrices 
and linear algebra. The motivation for doing this is not simply to save on tedium (although that would 
probably be reason enough). More importantly, since there is an enormous body of theory already 
developed around matrices and linear algebra, if we can cast our problem in this context, we inherit a 
wealth of knowledge and tools for free. 

We’ll begin by defining a vector to hold the state variables of our system. The state variables in a model 
hold all of the information you need to fully specify the dynamic state of the system. In other words, 
anything that might change over time is considered a state variable. For our first pass at this, we would 
define our vector of state variables as 

𝒔! = #

𝑃!(𝐴)
𝑃!(𝐺)
𝑃!(𝐶)
𝑃!(𝑇)

+ 

Note that technically we only need three of these values to fully specify the dynamic state of our 
system. There is an implied constitutive equation Pi(A) + Pi(G) + Pi(C) + Pi(T) = 1, and a three element 
vector would be sufficient. You have probably seen this line of reasoning before in your thermodynamics 
classes. You only need to specify two state variables (say, temperature and pressure) of a pure 
substance; everything else (enthalpy, density, etc.) can be computed from the equations of state for 
that substance. Admittedly, those equations are a good deal more complex, but the idea is the same. 
We’ll have more to say about this concept later. 

We can also define a state transition matrix, M, as 

𝑴 = #

1 − 3 ∝ ∝ ∝ ∝
∝ 1 − 3 ∝ ∝ ∝
∝ ∝ 1 − 3 ∝ ∝
∝ ∝ ∝ 1 − 3 ∝

+ 

The system under investigation then works out quite cleanly. We can write… 

si+1 = M·si 

…or, even more generally… 

sn = Mn·s0 
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A	quick	review	of	matrix	multiplication	
In the above discussion, we made use of some prior knowledge you may have had regarding matrix 
multiplication. Here we’ll review… 

If you have two matrices, A and B, you can multiply them if the number of columns in A is equal to the 
number of rows in B. The resultant product will have the same number of rows as A and the same 
number of columns as B. In other words 

Am×k · Bk×n = Cm×n 

This implies one very important property of matrix multiplication: the order of the terms matters. We 
say that matrix multiplication is not commutative. In the above example, B·A would not necessarily even 
be defined. Even if it were (in which case m=n), the product would not necessarily be the same. In fact, if 
m=n≠k, then the products would not be the same size. For this reason, you’ll often hear phrases as 
‘multiply B on the left by A’. 

In general, if we have two compatible matrices Am×k and Bk×n, matrix multiplication is defined as follows: 

Cm×n = Am×k · Bk×n 

𝑐!,# =2𝑎!,$ ∙ 𝑏$,#

%

$&'

 

It is helpful to visualize this. Each element in the resultant product matrix C is a sum of products. You 
take elements in a row of the first matrix and multiply them by the corresponding elements in a column 
of the second matrix. Then sum the products. 

⎝

⎜
⎜
⎜
⎜
⎛

𝑎',' 𝑎',( 𝑎',) ⋯ 𝑎',* … 𝑎',%
𝑎(,' 𝑎(,( 𝑎(,) ⋯ 𝑎(,* … 𝑎(,%
𝑎),' 𝑎),( 𝑎),) ⋯ 𝑎),* … 𝑎),%
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝑎!,' 𝑎!,( 𝑎!,) ⋯ 𝑎!,* … 𝑎!,%
⋮ ⋮ ⋮ ⋮ ⋱ ⋮

𝑎+,' 𝑎+,( 𝑎+,) … 𝑎+,* … 𝑎+,%⎠

⎟
⎟
⎟
⎟
⎞

⎝

⎜
⎜
⎜
⎜
⎛

𝑏',' 𝑏',( 𝑏',) ⋯ 𝑏',# … 𝑏',,
𝑏(,' 𝑏(,( 𝑏(,) ⋯ 𝑏(,# … 𝑏(,,
𝑏),' 𝑏),( 𝑏),) ⋯ 𝑏),# … 𝑏),,
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝑏-,' 𝑏-,( 𝑏-,) ⋯ 𝑏-,# … 𝑏-,,
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
𝑏%,' 𝑏%,( 𝑏%,) … 𝑏%,# … 𝑎%,,⎠

⎟
⎟
⎟
⎟
⎞

= 

⎝

⎜
⎜
⎜
⎜
⎛

𝑐',' 𝑐',( 𝑐',) ⋯ 𝑐',# … 𝑐',%
𝑐(,' 𝑐(,( 𝑐(,) ⋯ 𝑐(,# … 𝑐(,%
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⎟
⎞
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While matrix multiplication is not commutative, it is associative. This means that the order of operations 
(within a string of multiplications) does not matter. In other words, you can prove (A·B)·C = A·(B·C). This 
implies that we can simply write A·B·C, and one can perform the operations in any arbitrary order. 

A vector can be thought of as a special case of a matrix that happens to have one column. Often, you’ll 
see vectors written lengthwise to save space; for example, we could have written our definition of the 
state variable vector like so: 

si = (   Pi(A)   Pi(G)   Pi(C)   Pi(T)  ) 

However, for purposes of multiplication, the vector should be thought of as a column vector. 

The transpose of a matrix is written as At. All that this means is that we swap rows with columns. So if 
Bnxm = (Amxn)t, then bi,j = aj,i. The transpose of a column vector is a row vector, which is just a 1xm matrix. 

Example: If v and w are vectors, what are the dimensions of vt · w, and when is it defined? 

(1 2 3) A
1
2
3
B = 1( + 2( + 3( = 14 

Note that the vectors need to be the same length for this computation to be defined. The result is a 
scalar value. Note that in the case of vectors, we could also just write v·w, which is the scalar product (or 
dot product) of the two vectors. The result is the same. 

Example: If v and w are vectors, what are the dimensions of v · wt, and when is it defined? 

A
1
2
3
B (1 2 3 4) = A

1 2 3 4
2 4 6 8
3 6 9 12

B 

Here we get something reminiscent of a multiplication table. Note that the vectors do not need to be 
the same length. The table will have as many rows as the length of the first vector, and as many columns 
as the length of the second. 

Example: Consider a matrix, M, that holds observed (x,y) data from an experiment, augmented with a 
column of ones. Compute Mt·M. 

𝑴 = #

1 𝑥' 𝑦'
1 𝑥( 𝑦(
⋮ ⋮ ⋮
1 𝑥, 𝑦,

+ 

𝑴. ∙ 𝑴 = A
1 1 ⋯ 1
𝑥' 𝑥( … 𝑥,
𝑦' 𝑦( … 𝑦,

B#

1 𝑥' 𝑦'
1 𝑥( 𝑦(
⋮ ⋮ ⋮
1 𝑥, 𝑦,

+ = J
𝑛 ∑𝑥 ∑𝑦
∑𝑥 ∑𝑥( ∑𝑥𝑦
∑𝑦 ∑𝑥𝑦 ∑𝑦(

M 
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The quantities in the resultant matrix are exactly those that are needed when computing correlation or 
linear regression. For this reason, the augmented matrix M is sometimes referred to as the model matrix 
in the statistical literature. 

Finally, we define a matrix raised to a power simply as multiplying the matrix by itself an appropriate 
number of times. This is only meaningful for square matrices. 

A minimalist interpretation of a matrix is simply a tableau of numbers. You can also think of matrix 
multiplication as an arbitrarily defined procedure for manipulating those numbers. You will see over and 
over that appropriately defined matrices and formalisms do all sorts of really useful things. The 
examples above are just a few simple ones. 

Back	to	Molecular	Evolution	
Now that we have formalized our definitions for matrix multiplication, we can reconsider our proposed 
model for molecular evolution: 

si+1 = M·si 

Expanded, this can be written as 

𝒔!/' = #

𝑃!/'(𝐴)
𝑃!/'(𝐺)
𝑃!/'(𝐶)
𝑃!/'(𝑇)

+ = #

𝑃0→0- 𝑃2→0 𝑃3→0 𝑃4→0
𝑃0→2 𝑃2→2 𝑃3→2 𝑃4→2
𝑃0→3 𝑃2→3 𝑃3→3 𝑃4→3
𝑃0→4 𝑃2→4 𝑃3→4 𝑃4→4

+#

𝑃!(𝐴)
𝑃!(𝐺)
𝑃!(𝐶)
𝑃!(𝑇)

+ 

For our model, which assumes that all transitions and transversions occur with equal probability, the 
governing equation is...  

𝒔!/' = #

𝑃!/'(𝐴)
𝑃!/'(𝐺)
𝑃!/'(𝐶)
𝑃!/'(𝑇)

+ = #

1 − 3 ∝ ∝ ∝ ∝
∝ 1 − 3 ∝ ∝ ∝
∝ ∝ 1 − 3 ∝ ∝
∝ ∝ ∝ 1 − 3 ∝

+#

𝑃!(𝐴)
𝑃!(𝐺)
𝑃!(𝐶)
𝑃!(𝑇)

+ 

Note that for this to be a valid matrix for this type of model, all of the columns in the transition matrix M 
must sum to exactly one, and all of the values must satisfy 0≤mi,j≤1, because the elements are 
probabilities. These models, where the state variables are probabilities of being in a particular state, and 
where the transition matrix gives the probabilities of transitioning from one state to the next, are called 
Markov models. Note that a transition matrix in a Markov model need not be symmetric. 

A	Word	on	Applied	Mathematics	
In our molecular evolution model, we have the relation… 

sn = Mn·s0 



Linear Difference Equations	
 

©	Copyright	2008,	2020	–	J	Banfelder,	Weill	Cornell	Medical	College	 Page	7	

…where M is the matrix above. Observed values are on the order of 10-8 mutations per base pair per 
year for mammalian mitochondrial DNA, 10-9 mutations per bp per year for chloroplast DNA in maize 
and barley, and a whopping 0.01 mutations per bp per year for the influenza A virus; i.e., 3α ≈ 10-8, 10-9 
or 0.01. 

If we wanted to compute M40,000,000 we would not need to do 40,000,000 serial computation. A serial 
computation as follows takes about a minute on my computer. 

>> a = 1e-11; 
>> M = [1-3*a, a, a, a; a, 1-3*a, a, a; a, a, 1-3*a, a; a, a, a, 1-3*a]; 
>> M2 = M; 
>> for (i=1:39999999) 
   M2 = M2 * M; 
end 
>> M2 
 
M2 = 
 
    0.9988    0.0004    0.0004    0.0004 
    0.0004    0.9988    0.0004    0.0004 
    0.0004    0.0004    0.9988    0.0004 
    0.0004    0.0004    0.0004    0.9988 
 

Compare this to evaluating the matrix by raising it to a power; this is perceived as instantaneous on the 
same computer. 

>> M^40000000 
 
ans = 
 
    0.9988    0.0004    0.0004    0.0004 
    0.0004    0.9988    0.0004    0.0004 
    0.0004    0.0004    0.9988    0.0004 
    0.0004    0.0004    0.0004    0.9988 
 

How might MATLAB be evaluating this so quickly? One possibility is that you can compute powers of two 
of a matrix quickly by successively squaring a matrix. For example, computing M8 could be done by 
computing M·M·M·M·M·M·M·M, which involves seven matrix multiplications. However, we could also 
compute M2 = M·M, and then compute M4=M2·M2, and then M8=M4·M4. This only involves three matrix 
multiplications. Arbitrary powers can use previous results, so M13 could be computed as M8·M4·M which 
would require a total of five multiplications. 

Mathematically, the results are the same. Practically, using one little trick, we can get results about a 
million times faster. Sometimes you can’t just copy an equation out of a textbook. 
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Another issue that applied mathematicians face is the numerical precision of computers. However we 
compute M40,000,000,  it is our job to make sure that the result is still a valid Markov matrix. In this case, 
MATLAB does a pretty good job. 

>> M40M = M^40000000; 
>> sum(M40M) 
 
ans = 
    1.0000    1.0000    1.0000    1.0000 
 
>> 1-sum(M40M) 
 
ans = 
  1.0e-009 * 
    0.1048    0.1048    0.1046    0.1014 

Here we take advantage of the behavior of the sum function in MATLAB. When you take the sum of a 
matrix, you get a vector where each element corresponds to the sum of elements in each column of the 
original matrix. To get an idea of how much rounding error we have incurred, we subtract each sum 
from one; here we see that the errors on the order of 10-9. 

Simple	Population	Growth	
Consider a population of organisms that starts out at with P0 members at time t=0. Assuming that in a 
given time step (say one year), some fraction, fr, of the members will have reproduced and added a 
single member to the population. Another fraction, fm, will have died. 

We can write: 

Pn+1 = Pn + frPn – fmPn 

Pn+1 = Pn(1+fr-fm) 

We can see that 

Pn+2 = Pn+1(1+fr-fm) = Pn(1+fr-fm)2 

…and in general… 

Pn = P0(1+fr-fm)n 

The key parameter of our model is 1+fr-fm, which we define as λ. Now our model is… 

Pn = λn P0 

It is helpful to think about what the long-term fate of our population will be for different values of λ. Our 
population will eventually fizzle if 0 < λ < 1, and (in our simple model) will grow in an unbounded manner 
if λ > 1. For λ = 1 (exactly), the population is stable. In this simple model, it is not possible for λ to take on 
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negative values, since its definition will not admit the possibility. Mathematically, we would expect to 
see oscillations between positive and negative population values; oscillations are OK, but a negative 
population doesn’t make sense. We’ll get back to this point in a while. 

The exponential growth we see here is a critical result, and understanding how this growth behaves for 
different values of λ can’t be overemphasized. 

(Slightly)	More	Complex	Population	Growth	
(Mathematical Models in Biology, Edelstein-Keshet) 

Let us consider a slightly more complex example of population growth. We’ll develop a model for the 
population of annual plants. 

In our model, annual plants produce γ seeds per plant in the fall of each year. Seeds remain in the 
ground for up to two years. Some fraction of one-year-old seeds, α, germinate during the spring. Some 
fraction of two-year-old seeds, β, germinate during the spring. All plants die during the winter. 

We’ll begin by defining three state variables: 

Pn The number of plants that germinate from seeds during year n 
S1n The number of one-year-old seeds in the ground at the beginning of the spring of year n 
S2n The number of two-year-old seeds in the ground at the beginning of the spring of year n 
It is always a very good idea to write down precise definitions of your model variables. 

Our model, translated from words into equations, tells us that 

Pn = α·S1n + β·S2n 
S1n+1 = γ·Pn 
S2n+1 = (1-α)·S1n 

Since we like to write future variables in terms of present variables, we will write… 

Pn+1 = α·S1n+1 + β·S2n+1 

…and then substitute our ‘definitions’ of S1 and S2… 

Pn+1 = α·γ·Pn + β·(1-α)·S1n 

So it turns out that we can track the evolution of our system only by keeping track of P and S1. 

Pn+1 = α·γ·Pn + β·(1-α)·S1n 
S1n+1 = γ·Pn 
 
We have reduced our model to a system of linear difference equations. This begs for a matrix 
representation. In fact, we can write… 
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O
𝑃,/'
𝑆1,/'

Q = O𝛼 ∙ 𝛾 𝛽 ∙ (1 − 𝛼)
𝛾 0 Q O

𝑃,
𝑆1,

Q 

 
We can use this formulation to predict how the model will evolve over time by raising the matrix to any 
given power. Ideally, it would be nice to be able to treat the system analytically, and see if we can’t learn 
anything about the trends in behavior of the system, much as we did in the simple growth model. 

Introduction	to	Eigenvalues	
We would like to formulate a solution of an arbitrary 2x2 system of linear difference equations. Our 
arbitrary system is… 

xn+1 = a11 · xn + a12 · yn 
yn+1 = a21 · xn + a22 · yn 

We can turn this into a single equation that incorporates two time steps… 

xn+2  = a11 · xn+1 + a12 · yn+1 

= a11 · xn+1 + a12 · (a21 · xn + a22 · yn) 

= a11 · xn+1 + a12 · a21 · xn + a22 · a12 · yn 

= a11 · xn+1 + a12 · a21 · xn + a22 · (xn+1 – a11 · xn) 

or 

xn+2 – (a11 + a22)xn+1 + (a22 · a11 – a12 · a21)xn = 0 

We saw that for a 1x1 system, the solution is xn = x0·λn. We can try this solution in our case here… 

x0·λn+2 – (a11 + a22) x0·λn+1 + (a22 · a11 – a12 · a21) x0·λn = 0 

Cancelling out a factor of x0·λ, we get… 

λ2 – (a11 + a22) λ + (a22 · a11 – a12 · a21) = 0 

…which is a quadratic equation. If we define b = (a11 + a22), and c=(a22 · a11 – a12 · a21), we have 

𝜆 =
𝑏 ± √𝑏( − 4𝑐

2
 

So there are two possible values for λ. For now, we’ll consider only the case of two distinct real values 
for λ. Other cases (repeated and complex roots) will be considered later. 

Since our original system of equations is linear, the principle of superposition applies. This means that 
any linear combination of solutions to our system will also be a solution to our system. So our general 
solution is… 

xn = A1 · λ1
n + A2 · λ2

n 
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As this solution is only a guess, you can go back and substitute this result into the original equation and 
prove that it works. 

Had we chosen to eliminate x instead of y, our solution would have been… 

yn = B1 · λ1
n + B2 · λ2

n 

The A and B constants are different, but the values of the λs are the same. You can see this in the 
definitions for b and c; they are symmetric (substitute aij with aji, and you get the same values of b and c, 
and thus the same λ). 

The values of λ are called the eigenvalues of the matrix. You can learn an incredible amount about the 
long-term behavior of the system simply by knowing the eigenvalues and inspecting these equations. 

xn = A1 · λ1
n + A2 · λ2

n 
yn = B1 · λ1

n + B2 · λ2
n 

Firstly, the eigenvalue with the larger absolute value will dominate the long-term behavior of the 
system. For arbitrarily large n, the terms with the smaller eigenvalues will be negligible compared to 
those with the larger. Some cases arise: 

λ > 1 System grows exponentially 
λ = 1 System reaches an equilibrium 
0 < λ < 1 System decays 
-1 < λ < 0 System decays in an oscillatory manner 
λ = -1 System reaches a stationary oscillation 
λ < -1  System grows exponentially in an oscillatory manner 
 

All of this applies to larger systems as well. A system with four state variables (such as in our molecular 
evolution example), will have four eigenvalues. Its long-term behavior will be governed by the largest. 
Eigenvalues for large systems (i.e., large matrices) are usually determined by a computer. 

Back	to	Plants	and	Seeds	
Back to our plant example, let us suppose that each plant produces 25 seeds. Let us also suppose that 
7% of one-year-old seeds germinate, and that 5% of two-year-old seeds germinate. We can compute the 
eigenvalues of this system: 

>> alpha=0.07; beta=0.05; gamma=25; M = [alpha * gamma, beta*(1-
alpha); gamma, 0]; eig(M) 
 
ans = 
 
    2.2636 
   -0.5136 
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In this case, our population should grow quite healthily. 

Intuitively, in this model we expect that if the number of seeds that ultimately germinates per plant is 
greater than one, we would have a sustainable population. We get the intuitive result we expect in the 
case where the all of the seeds germinate in the first year and there are just enough of them… 

>> alpha=0.04; beta=0.0; gamma=25; M = [alpha * gamma, beta*(1-alpha); 
gamma, 0]; eig(M) 
 
ans = 
 
     0 
     1 
 

And also when the same happens in the second year… 

>> alpha=0.0; beta=0.04; gamma=25; M = [alpha * gamma, beta*(1-alpha); 
gamma, 0]; eig(M) 
 
ans = 
 
     1 
    -1 
 

Note that in this case we have a stable equilibrium and an oscillating one, with neither being dominant. 
What does this tell you about the behavior of the model? 

However, note the following… 

>> alpha=0.02; beta=0.02; gamma=25; M = [alpha * gamma, beta*(1-
alpha); gamma, 0]; eig(M) 
 
ans = 
 
    0.9933 
   -0.4933 
 
Can you explain this result?  

Exercises	
What is the condition necessary for a sustainable population? [Ans: α + β – αβ ≥ 1/γ]. Derive this from 
both our reasoning above, and our knowledge of eigenvalues? Simulate such a system and observe its 
transient as well as its dynamic behavior. Simulate ‘nearby’; systems with a dominant eigenvalue just 
above and just below the cutoff for sustainability. In all of these simulations, begin with 100 plants and 
no seeds. 
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>> alpha = 0.02; beta=0.02; gamma=25; 
>> M = [alpha * gamma, beta*(1-alpha); gamma, 0]; 
>> x = [100, 0]; 
>> for(i=1:30) 
x(i+1,:) = M * x(i,:)'; 
end 
>> x 
 
x = 
 
  1.0e+003 * 
 
    0.1000         0 
    0.0500    2.5000 
    0.0740    1.2500 
    0.0615    1.8500 
    0.0670    1.5375 
    0.0636    1.6752 
    0.0647    1.5910 
    0.0635    1.6164 
    0.0634    1.5878 
    0.0628    1.5859 
    0.0625    1.5710 
    0.0620    1.5626 
    0.0616    1.5511 
    0.0612    1.5412 
    0.0608    1.5306 
    0.0604    1.5205 
    0.0600    1.5103 
    0.0596    1.5002 
    0.0592    1.4901 
    0.0588    1.4801 
    0.0584    1.4702 
    0.0580    1.4604 
    0.0576    1.4506 
    0.0572    1.4409 
    0.0569    1.4312 
    0.0565    1.4216 
    0.0561    1.4121 
    0.0557    1.4027 
    0.0554    1.3933 
    0.0550    1.3839 
    0.0546    1.3747 
>> plot(x(:,1)) 
 
Other interesting parameter values to plot are  

>> alpha=0.00; beta=0.035; gamma=25; 
 
>> alpha=0.001; beta=0.035; gamma=25; 
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Compute the eigenvalues for our model of molecular evolution. Choose your favorite value for a 
mutation rate. 

a = 
 
    0.0100 
 
>> M = [1-3*a, a, a, a; a, 1-3*a, a, a; a, a, 1-3*a, a; a, a, a, 1-
3*a] 
 
M = 
 
    0.9700    0.0100    0.0100    0.0100 
    0.0100    0.9700    0.0100    0.0100 
    0.0100    0.0100    0.9700    0.0100 
    0.0100    0.0100    0.0100    0.9700 
 
>> eig(M) 
 
ans = 
 
    0.9600 
    0.9600 
    0.9600 
    1.0000 
 

Develop a model where the probability of transversion is lower than the probability of transition. What 
effect does this have on the long term distribution of nucleotide frequencies? 

It turns out that two theorems can be proven for Markov matrices. The first states that any Markov 
matrix has λ1 = 1, and that |λ| ≤ 1 for all eigenvalues. Furthermore, a second theorem states that for a 
Markov matrix with all positive elements, λ1 = 1 will be a strictly dominant eigenvalue (in other words, 
you can’t have another eigenvalue of λn = -1. What do these theorems imply about the behavior of a 
system that can be described by a Markov model? 


