Bayesian Methods

Quantitative Understanding in Biology

1 October 2020

Lecture Notes by Jason Banfelder

Slide Compilation and Demonstratives by Ariana Clerkin

Introduction: Frequentist vs. Bayesian

DID THE SUN JUST EXPLODE? (IT'S NIGHT, SO WE'RE NOT SURE.)

FREQUENTIST STATISTICIAN:

BAYESIAN STATISTICIAN:

Source: https://xkcd.com/1133/

Probability 7th grade classroom

Conditional Probability 7th Grade Classroom

Probability that the student is Tall given that the student is Female (Conditional Probability)

We expect P(Tall | Female) > P(Tall) without taking any measurements of this particular class.

This interplay goes both ways: generally P(Female | Tall) > P(Female)

Joint Probability 7th Grade Classroom

P(Tall, Female) = P(Female) · P(Tall | Female)

Probability that the student is Tall and that the student is Female (Joint Probability)

 $4/12 = 7/12 \cdot 4/7$

Joint Probability 7th Grade Classroom

Deriving Bayes' Rule

We have shown that:

Therefore:

$$P(Female) \cdot P(Tall \mid Female) = P(Tall) \cdot P(Female \mid Tall)$$

$$P(Tall \mid Female) = \frac{P(Female \mid Tall) \cdot P(Tall)}{P(Female)}$$

Or generally, for generic events A & B, we have

$$P(A \mid B) = \frac{P(B \mid A) \cdot P(A)}{P(B)}$$

Bayes' Rule: Terminology

Information:

- 1% of women in a given population have breast cancer
- If a woman has breast cancer, there is a 90% chance that a particular diagnostic test will return a positive result (10% false negative rate)
- If a woman does not have breast cancer, there is a 10% chance that this diagnostic test will return a positive result (10% false positive rate).

Question:

What is the probability that a woman with a positive test result actually has cancer?

Multiple Choice:

Which notation shows the probability that a woman with a positive test result actually has cancer?

- a.) P(Cancer | Positive Test)
- b.) P(Cancer, Positive Test)
- c.) P(Positive Test | Cancer)
- d.) P(Positive Test ∩ Cancer)

- 1% of women in a given population have breast cancer
- If a woman has breast cancer, there is a 90% chance that a particular diagnostic test will return a positive result (10% false negative rate)
- If a woman does not have breast cancer, there is a 10% chance that this diagnostic test will return a positive result (10% false positive rate).

$$P(Cancer \mid Positive) = \frac{P(Positive \mid Cancer) \cdot P(Cancer)}{P(Positive)}$$

- 1% of women in a given population have breast cancer
- If a woman has breast cancer, there is a 90% chance that a particular diagnostic test will return a positive result (10% false negative rate)
- If a woman does not have breast cancer, there is a 10% chance that this diagnostic test will return a positive result (10% false positive rate).

$$P(Cancer \mid Positive) = \frac{P(Positive \mid Cancer) \cdot P(Cancer)}{P(Positive)}$$

- 1% of women in a given population have breast cancer
- If a woman has breast cancer, there is a 90% chance that a particular diagnostic test will return a positive result (10% false negative rate)
- If a woman does not have breast cancer, there is a 10% chance that this diagnostic test will return a positive result (10% false positive rate).

$$P(Cancer \mid Positive) = \frac{P(Positive \mid Cancer) \cdot P(Cancer)}{P(Positive)}$$

- 1% of women in a given population have breast cancer
- If a woman has breast cancer, there is a 90% chance that a particular diagnostic test will return a positive result (10% false negative rate)
- If a woman does not have breast cancer, there is a 10% chance that this diagnostic test will return a positive result (10% false positive rate).

- 1% of women in a given population have breast cancer
- If a woman has breast cancer, there is a 90% chance that a particular diagnostic test will return a positive result (10% false negative rate)
- If a woman does not have breast cancer, there is a 10% chance that this diagnostic test will return a positive result (10% false positive rate).

```
P(Positive) = P(True Positive) + P(False Positive)

P(Positive) = P(Positive | Cancer) · P(Cancer) + P(+ | Healthy) · P(Healthy)

P(Positive) = 0.9·0.01 + 0.1·(1-0.01)

P(Positive) = 0.108
```

Now we can complete Bayes' Rule

$$P(Cancer \mid Positive) = \frac{P(Positive \mid Cancer) \cdot P(Cancer)}{P(Positive)}$$

P(Cancer | Positive) =
$$\frac{0.9 \cdot 0.01}{0.108}$$
 = 0.083

Frequentist Coin Flip: 20 Flips; 13 Heads

Objective: Estimate the Coin's Bias with a 95% Confidence Interval

```
binom.test(13, 20)

##

## Exact binomial test

##

## data: 13 and 20

## number of successes = 13, number of trials = 20, p-value =

## 0.2632

## alternative hypothesis: true probability of success is not equal to 0.5

## 95 percent confidence interval:

## 0.4078115 0.8460908

## sample estimates:

## probability of success

## 0.65
```

Conclusion:

- Bias = 0.65
- 95% CI = (0.41, 0.85)

Bayesian Coin Flip: 20 Flips; 13 Heads

Objective: Identify the bias (x) that yields the highest posterior probability. Given 13 heads were observed out of 20 flips

Bayesian Coin Flip: Define Priors

```
prior.probability <- numeric(101)
prior.probability[0:101] <- 1
# Normalize; since it is a PDF, sum must be 1.0
prior.probability <- prior.probability / (sum(prior.probability))
barplot(prior.probability, names.arg = coin.bias,xlab = "Coin Bias (x)", ylab = "P(bias = x)",ylim = c(0,0.02), m
ain = "Prior Probability Density Funciton: Biases Equally Likely", col = "#85COF9")</pre>
```


Bayesian Coin Flip: Likelihood

```
coin.bias <- seq(from = 0, to = 1, by = 0.01)
likelihood <- dbinom(13, 20, prob = coin.bias)
barplot(likelihood, names.arg = coin.bias, ylab = "Likelihood: P(13 Heads | bias = x)", xlab = "Coin Bias (x)", c
ol = "#A95AA1") #Color-blindess friendly purple</pre>
```


P(13 heads)

```
= P(13 heads | bias = 0.00) · P(bias = 0.00)
+ P(13 heads | bias = 0.01) · P(bias = 0.01)
+ P(13 heads | bias = 0.02) · P(bias = 0.02)
...
+ P(13 heads | bias = 0.50) · P(bias = 0.50)
...
+ P(13 heads | bias = 0.99) · P(bias = 0.99)
+ P(13 heads | bias = 1.00) · P(bias = 1.00)
```

P(13 heads)

```
= P(13 heads | bias = 0.00) · P(bias = 0.00)
+ P(13 heads | bias = 0.01) · P(bias = 0.01)
+ P(13 heads | bias = 0.02) · P(bias = 0.02)
...
+ P(13 heads | bias = 0.50) · P(bias = 0.50)
...
+ P(13 heads | bias = 0.99) · P(bias = 0.99)
+ P(13 heads | bias = 1.00) · P(bias = 1.00)
```


P(13 heads)

```
= P(13 heads | bias = 0.00) · 0.0099
+ P(13 heads | bias = 0.01) · 0.0099
+ P(13 heads | bias = 0.02) · 0.0099
...
+ P(13 heads | bias = 0.50) · 0.0099
...
+ P(13 heads | bias = 0.99) · 0.0099
+ P(13 heads | bias = 1.00) · 0.0099
```


P(13 heads)

```
= P(13 \text{ heads} \mid \text{bias} = 0.00) \cdot 0.0099
```

- $+ P(13 \text{ heads} | \text{bias} = 0.01) \cdot 0.0099$
- $+ P(13 \text{ heads} | \text{bias} = 0.02) \cdot 0.0099$

. . .

 $+ P(13 \text{ heads} | \text{bias} = 0.50) \cdot 0.0099$

. . .

- $+ P(13 \text{ heads} | \text{bias} = 0.99) \cdot 0.0099$
- + P(13 heads | bias = 1.00) · 0.0099

P(13 heads)

```
= 0.0 \cdot 0.0099
```

- + 7.2e-22 · 0.0099
- + 5.5e-18 · 0.0099

. . .

+ 0.07392883 - 0.0099

• • •

- + 6.8e-10 · 0.0099
- + 0.0 · 0.0099


```
(p.d13 <- sum(dbinom(13, 20, coin.bias) * (1 / 101)))
```

```
## [1] 0.04714757
```

= 0.04714757

Posterior Probability

```
posterior.probability <- dbinom(13, 20, coin.bias) * (1 / 101) / p.d13</pre>
sum(posterior.probability)
## [1] 1
barplot(posterior.probability, names.arg = coin.bias, xlab = "Coin Bias (x)", y
lab = "Posterior Probability: P(bias = x | 13 Heads)", main = "Posterior Probab
ility Density Function: 13/20 Heads Observed")
        Posterior Probability Density Function: 13/20 Heads Observed
Posterior Probability: P(bias = x | 13 Heads)
     0.01
     0.00
            0 0.07 0.16 0.25 0.34 0.43 0.52 0.6 0.68 0.77 0.86 0.95
                                        Coin Bias (x)
```

Recall Frequentist Conclusion:

- Bias = 0.65
- 95% CI = (0.41, 0.85)

Summary: Flipping a Coin with No expectations of fairness

P(bias = x | 13 heads) =

P(13 heads | bias = x) -P(bias = x)
P(13 heads)

Coin Bias
Assumes that each of the 101 biases are equally likely. (i.e. the prior probabilities are equal

P(13 Heads) = 0.04714757

Going Further

Second Dation

Doing Bayesian Data Analysis

A Tutorial with R, JAGS, and Stan

John K. Kruschke

