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Introduction: Frequentist vs. Bayesian

DID THE SUN JUST EXPLODE?
(ITS NIGHT, 50 WERE NOT SURE.)

THIS NEUTRINO DETECTOR MERSURES
WHETHER THE SUN HAS GONE NOVA.

THEN, ITROUS TWO DICE. IF THEY
BOTH COME UP SIX, ITUES TO US.
OTHERWISE, ITTEU.S THE TRUIH.
LETS TRY.

DETECTOR! HAS THE
SUNGONEAOMV
/M)

MiM

FREQUENTIST STRTISTICIAN: BAYESIAN STATISTIOAN:

THE PROGABLLITY OF THIS RESULT

HHPPENING BY CHANCE 15 =027 BET YOU $50
p<0.05, T CONCLUDE T HANT,

'IHPU‘F(E SUN HAS EXPLODED. )

Source: https.//xkcd.com/1133/




Probability

7t grade classroom
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Conditional Probability

7th Grade Classroom
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Probability that the student is Tall given that the student is Female (Conditional Probability)

We expect P(Tall | Female) > P(Tall) without taking any measurements of this particular class.

This interplay goes both ways: generally P(Female | Tall) > P(Female)



Joint Probability

7! Grade Classroom
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A/D(TaKFem le) = P(Female) - P(Tall | Female)
Probability that the student is Tall and that the student is Female (Joint Probability)

4/12 = 7/12 - 4/7




Joint Probabillity

7th Grade Classroom

P(Tall , Female) = P(Female) - P(Tall | Female)

OR, equivalently
P(Tall , Female) = P(Tall) - P(Female | Tall)

4/12 = 6/12 - 4/6



Deriving Bayes' Rule

We have shown that:

P(Tall , Female) = P(Female) - P(Tall | Female)
P(Tall , Female) = P(Tall) - P(Female | Tall)

Therefore:

P(Female) - P(Tall | Female) = P(Tall) - P(Female | Tall)

P(Female | Tall) -P(Tall)

P(Tall | Female) = P(Female)

Or generally, for generic events A & B, we have
P(BA) -P(A)

P(AIB) = o)




Bayes’' Rule: Terminology

Likelihood

P . P -I-
Posterior Probability DObab' ity

i P(B|A)-P(A)
P(A]B) = P(B)- Evidence or Marginal Likelihood




Applying Bayes’ Rule

Information:
* 1% of women in a given population have breast cancer

 |f a woman has breast cancer, there is a 90% chance that a particular
diagnostic test will return a positive result (10% false negative rate)

* |f a woman does not have breast cancer, there is a 10% chance that
this diagnostic test will return a positive result (10% false positive rate).

Question:
What is the probability that a woman with a positive test result actually

has cancer?




Multiple Choice:

Which notation shows the probability that a woman with a positive test
result actually has cancer?

a.) P(Cancer | Positive Test)
b.) P(Cancer , Positive Test)
c.) P(Positive Test | Cancer)

d.) P(Positive Test N Cancer)



Applying Bayes’ Rule

* Information:
* 1% of women in a given population have breast cancer

 |f a woman has breast cancer, there is a 90% chance that a particular
diagnostic test will return a positive result (10% false negative rate)

* |f a woman does not have breast cancer, there is a 10% chance that
this diagnostic test will return a positive result (10% false positive rate).

P(Positive | Cancer) -P(Cancer)
P(Positive)

P(Cancer | Positive) =



Applying Bayes’ Rule

* Information:
* 1% of women in a given population have breast cancer

 |f a woman has breast cancer, there is a 90% chance that a particular
diagnostic test will return a positive result (10% false negative rate)

* |f a woman does not have breast cancer, there is a 10% chance that
this diagnostic test will return a positive result (10% false positive rate).
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Applying Bayes’ Rule

* Information:
* 1% of women in a given population have breast cancer
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Applying Bayes’ Rule
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Applying Bayes’ Rule

* Information:
* 1% of women in a given population have breast cancer

 |f a woman has breast cancer, there is a 90% chance that a particular
diagnostic test will return a positive result (10% false negative rate)

* |f a woman does not have breast cancer, there is a 10% chance that
this diagnostic test will return a positive result (10% false positive rate).

P(Positive) = P(True Positive) + P(False Positive)
P(Positive) = P(Positive | Cancer)- P(Cancer) + P(+ | Healthy)- P(Healthy)
P(Positive) = 0.9-0.01 + 0.1-(1-0.01)

P(Positive) = 0.108



Now we can complete Bayes' Rule

P(Positive | Cancer) -P(Cancer)

P(Cancer | Positive) =

0.9:0.01
P(Cancer | Positive) = = 0.083




Frequentist Coin Flip: 20 Flips; 13 Heads

Objective: Estimate the Coin’s Bias with a 95% Confidence Interval
binom.test (13, 20)

e

## Exact binomial test

e

## data: 13 and 20

## number of successes = 13, number of trials = 20, p-value =
## 0.2632

## alternative hypothesis: true probability of success is not equal to 0.5
## 95 percent confidence interval:

## 0.4078115 0.8460908

## sample estimates:

## probability of success

## 0.65
Conclusion:
 Bias =0.65

. 95% Cl = (0.41, 0.85)



Bayesian Coin Flip: 20 Flips; 13 Heads

Objective: Identify the bias (x) that yields the highest posterior probability. Given 13 heads were
observed out of 20 flips

Likelihood
Posterior Probability Prior I?/robabmty
l P(13 heads | bias = x) -P(bias = x)

P(bias = x | 13 heads) =

g

Evidence or Marginal Likelihood



Bayesian Coin Flip: Define Priors

prior.probability <- numeric(101)
prior.probability[0:101] <- 1

prior.probability <- prior.probability / (sum(prior.probability))

barplot (prior.probability, names.arg = coin.bias,xlab = "Coin Bias (x)", ylab = "P(bias = x)",ylim = ¢(0,0.02), m
ain = "Prior Probability Density Funciton: Biases Equally Likely", col ="#85C0F9")
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Bayesian Coin Flip: Likelihood

coin.bias <- seq(from = 0, to = 1, by = 0.01)
likelihood <- dbinom(13, 20, prob = coin.bias)
barplot(likelihood, names.arg = coin.bias, ylab = "Likelihood: P(13 Heads | bias x)", xlab = "Coin Bias (x)", ¢
ol = "#A95AA1") ‘
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Marginal Likelihood

= P(13 heads | bias = 0.00) - P(bias = 0.00)

+ P(13 heads | bias = 0.01)
+ P(13 heads | bias = 0.02)

+ P(13 heads | bias = 0.50)

+ P(13 heads | bias = 0.99)
+ P(13 heads | bias = 1.00)

. P(bias = 0.01)
. P(bias = 0.02)

- P(bias = 0.50)

- P(bias = 0.99)
- P(bias = 1.00)



o

N

S

=

~

% 3o

s °
T

2z o

| | | | | Eg‘
o
a

s 8

2 S |

=]

=

(=3

g

=

0.34 043 052 06 068

0 0.07 0.16 025 0.34 043 052 06 0. 0.77 0.86 0.95

CCCCC i

ias

= P(13 heads | bias = 0.00) - P(bias = 0.00)
+ P(13 heads | bias = 0.01) - P(bias = 0.01)
+ P(13 heads | bias = 0.02) - P(bias = 0.02)

+ P(13 heads | bias = 0.50) - P(bias = 0.50)

+ P(13 heads | bias = 0.99) - P(bias = 0.99)
+ P(13 heads | bias = 1.00) - P(bias = 1.00)



Marginal Likelihood

= P(13 heads | bias = 0.00) - 0.0099
+ P(13 heads | bias = 0.01) - 0.0099
+ P(13 heads | bias = 0.02) - 0.0099

+ P(13 heads | bias = 0.50) - 0.0099

+ P(13 heads | bias = 0.99) - 0.0099
+ P(13 heads | bias = 1.00) - 0.0099
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Marginal Likelihood
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P(13 heads)

= P(13 heads | bias = 0.00) - 0.0099
+ P(13 heads | bias = 0.01) - 0.0099
+ P(13 heads | bias = 0.02) - 0.0099

+ P(13 heads | bias = 0.50) - 0.0099

+ P(13 heads | bias = 0.99) - 0.0099
+ P(13 heads | bias = 1.00) - 0.0099



Marginal Likelihood
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P(13 heads)
= 0.0- 0.0099

+ 7.2e-22- 0.0099
+ 5.5e-18 - 0.0099
+ 0.07392883 - 0.0099

+ 6.8e-10- 0.0099
+ 0.0- 0.0099

=0.04714757



Marginal Likelihood

(p.dl3 <- sum(dbinom(13, 20, coin.bias) * (1 / 101)))

## [1] 0.04714757

=0.04714757

likelihood
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Posterior Probability

posterior.probability <- dbinom(13, 20, coin.bias) * (1 / 101) / p.dl3
sum(posterior.probability)

## (1] 1
barplot (posterior.probability, names.arg = coin.bias, xlab = "Coin Bias (x)", y Reca” FrequentISt ConCIUSIOn'
lab = "Posterior Probability: P(bias = x | 13 Heads)", main = "Posterior Probab ° Bias - O 65

ility Density Function: 13/20 Heads Observed")

. 95% Cl = (0.41, 0.85)

Posterior Probability Density Function: 13/20 Heads Observed
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Summary: Flipping a Coin with No
expectations of fairness

P(13 heads | bias = x) -P(bias = x)

P(bias = x| 13 heads) =

Prior Probability Density Funciton: Biases Equally Likely
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Coin Bias
Assumes that each of the 101 biases are equally likely. (i.e. the prior probabilities are equa



Going Further

Doing Bayesian
Data Analysis

A Tutorial with B, JAGS. and Stan

p(0|D) & p(D|0O) P(O) p(D)

John K. Kruschke




