
Quantitative	Understanding	in	Biology	
Fourier	Analysis	and	Signal	Processing	

Representing	Mathematical	Functions	as	Linear	Combinations	of	Basis	
Functions	
Throughout	this	course	we	have	seen	examples	of	complex	mathematical	phenomena	being	
represented	as	linear	combinations	of	simpler	phenomena.	An	arbitrary	vector	in	a	high	dimensional	
space	can	be	thought	of	as	a	linear	combination	of	orthogonal	unit	vectors.	This	idea	is	central	to	the	
application	of	Principal	Components	Analysis,	where	we	rotated	our	data	so	that	directions	of	
decreasing	variance	align	with	the	unit	vectors.	

In	another	application,	we	noted	that	the	solution	to	a	system	of	linear	differential	or	difference	
equations	is	a	linear	combination	of	the	solutions	to	canonical,	one-variable	differential	(or	difference)	
equations,	suitably	rotated	along	the	eigenvectors	of	the	matrix	that	describes	the	system.	

Also,	when	we	looked	at	the	linearization	of	a	function	using	a	Taylor	series,	we	represented	an	arbitrary	
function	as	an	infinite	series	of	polynomial	terms.	The	set	of	polynomials	was	our	(infinitely	long)	basis	
set.	When	we	truncated	the	Taylor	series	after	the	second	term,	we	switched	to	an	incomplete	basis	set.	
Note	that	the	set	of	polynomials	is	not	orthonormal,	but	the	infinite	set	is	nevertheless	complete.	

Another	example	of	the	use	of	simple	basis	functions	to	represent	a	complex	function	that	is	applicable	
to	biology	is	found	in	quantum	chemistry.	The	basic	problem	is	to	solve	the	Schrödinger	equation	(a	
partial	differential	equation	in	three	dimensions)	to	get	the	density	of	electrons	in	a	molecule	(actually	
you	want	the	‘wavefunction’,	the	square	of	which	gives	the	electron	density).	This	can	be	done	
analytically	only	for	really	simple	cases	(such	as	a	hydrogen	atom).	There	are	different	solutions	for	
different	energy	levels,	which	result	in	the	s,	p,	d,	f,	g	etc.	orbitals,	which	are	shown	in	the	left	panel	
below.		

In	modern	quantum	chemistry	we	want	to	solve	the	Schrödinger	equation	for	biomolecules,	for	which	
there	is	no	analytical	solution	known.	The	technique	used	is	to	approximate	the	molecular	wavefunction	
as	a	linear	combination	of	these	hydrogen	atomic	orbitals.	You	pick	some	subset	of	the	equations	for	
hydrogen	orbitals	(you	often	don’t	need	the	high-energy	f	and	g	orbitals	for	low	energy	problems	with	
low	atomic	number	nuclei),	apply	coordinate	transformations	so	they	are	centered	on	each	nucleus	in	
your	biomolecule,	and	then	find	the	linear	combination	of	those	orbitals	that	best	satisfies	the	
Schrödinger	equation.	For	benzene,	you	get	something	like	what	is	shown	on	the	right	panel	of	the	
following	figure.	

	



Fourier	Analysis	and	Signal	Processing	
	

Copyright	2008,	2016	–	J	Banfelder,	Weill	Cornell	Medical	College	 Page	2	
	

	

	
	

While	the	implementation	and	mathematics	behind	this	is	quite	complex,	the	ideas	here	should	be	
familiar	to	you.	By	expressing	the	solution	to	a	complex	problem	as	a	linear	combination	of	solutions	to	
simpler	ones,	we	often	get	decent,	if	not	completely	correct,	answer.	Additionally,	we	are	able	to	think	
of	the	solution	as	decomposed	into	parts.	The	whole	idea	of	a	molecular	orbital	as	a	combination	of	
atomic	orbitals	is	just	a	mathematical	construct	that	helps	us	think	about	the	solution	in	terms	of	parts	
we	can	grasp.	

In	this	lecture,	we’ll	also	use	the	idea	of	representing	a	complex	function	as	a	linear	combination	of	
simpler	functions.	In	this	case,	the	functions	that	represent	the	building	blocks	that	we	combine	linearly	
will	be	sines	and	cosines	of	successively	higher	frequencies.	It	turns	out	that	in	many	cases,	we	can	gain	
insight	into	complex	time-dependent	and	space-dependent	signals	by	breaking	them	down	into	the	
constituent	functions.	

Fourier	Representations	of	Mathematical	Functions	
One	common	way	to	decompose	a	complex	mathematical	function	is	to	represent	it	as	a	linear	
combination	of	sines	and	cosines	at	ever	increasing	frequencies.	Such	an	infinite	series	of	sines	and	
cosines	is	called	a	Fourier	series.	One	caveat	of	Fourier	analysis	is	that	we	are	only	interested	in	what	the	
function	does	over	a	particular	interval;	usually	we	imagine	that	the	function	will	repeat	itself	from	
interval	to	interval	(as	sines	and	cosines	tend	to	do).	If	we	can	decompose	a	function	into	its	constituent	
sines	and	cosines,	we	can	talk	about	the	frequency	content	of	that	function.	Usually	the	function	in	
question	is	a	time	dependent	signal;	the	analysis	and	manipulation	of	the	frequency	content	of	such	
signals	is	known	as	the	art	of	signal	processing.	Quite	a	few	image	processing	techniques	use	2D	or	3D	
extensions	of	these	ideas.	In	fact,	MRI	machines	acquire	their	raw	data	in	the	frequency	domain,	and	the	
images	we	see	are	reconstructed	by	combining	sines	and	cosines.	For	now,	we	will	only	consider	1D	
cases.	



Fourier	Analysis	and	Signal	Processing	
	

Copyright	2008,	2016	–	J	Banfelder,	Weill	Cornell	Medical	College	 Page	3	
	

One	of	the	very	convenient	things	about	Fourier	representation	is	that	an	infinite	series	of	sines	and	
cosines	represents	a	complete	orthonormal	basis	set	for	a	function	over	a	specified	interval.	This	means	
that	we	can	exactly	represent	any	function	over	an	interval	of	interest	as	a	mixture	of	sines	and	cosines	
in	various	proportions.	In	particular,	for	the	interval	[-π,	π],	almost	any	function	can	be	represented	by	a	
series	of	the	form…	

𝑓 𝑥 =
1
2
𝑎! + 𝑎! cos nx  

!

!!!

+ 𝑏! sin nx  
!

!!!

	

We	just	have	to	find	the	ans	and	bns	that	give	us	the	function	we	want.	You	can	think	about	this	series	as	
a	linear	combination	of	basis	functions:	cos(nx)	and	sin(nx).	The	constant	term	can	be	folded	into	the	
basis	set	if	you	change	the	lower	limits	of	the	summations	to	zero.	When	n=0,	cos(nx)	is	always	unity	so	
you’ll	get	a0	times	one.	Conversely,	sin(nx)	will	always	be	zero,	and	the	value	of	b0	will	be	irrelevant.	

To	represent	a	function	of	interest,	we	need	to	take	the	projection	of	our	function,	f(x),	onto	each	of	
these	basis	functions.	To	do	this,	we	take	the	integral	of	the	product	of	our	function	with	the	basis	
function	of	interest	over	the	interval	we	are	studying:	[-π,	π].	If	you	don’t	like	this	interval,	you	can	
always	apply	a	variable	transformation.	Formally,	we	write…	

𝑎! =
1
𝜋

𝑓 𝑥 cos 𝑛𝑥 𝑑𝑥 
!

!!
	

𝑏! =
1
𝜋

𝑓 𝑥 sin 𝑛𝑥 𝑑𝑥 
!

!!
	

Normally	you	will	see	a	third	equation	in	the	literature	for	the	a0	case,	but	this	isn’t	strictly	necessary	as	
it	is	already	covered	by	the	first	equation	above.	

𝑎! =
1
𝜋

𝑓 𝑥 𝑑𝑥 
!

!!
	

You	may	also	run	across	formulations	where	the	interval	is	[0,	2π],	but	the	ideas	are	the	same.	

Here	we	have	introduced	the	idea	of	the	inner	product	being	the	integral	of	the	product	of	the	function	
of	interest	and	the	basis	function	without	much	comment.	It	is	interesting	to	note	that	this	formulation	
is	the	continuous	analog	of	the	inner	product	for	vectors.	When	dealing	with	vectors,	the	inner	product	
is	defined	as	the	sum	of	the	pairwise	products	of	the	vector	elements.	If	you	recall	that	an	integral	is	a	
continuous	summation,	then	the	idea	of	a	projection	of	one	function	on	another	as	the	integral	of	their	
product	is	the	natural	extension	of	the	case.	Alternatively,	you	can	think	of	a	function	over	an	interval	as	
a	vector	of	infinite	length.	The	function	f(x)	over	the	interval	can	be	represented	(albeit	not	very	
practically)	as	the	vector…	



Fourier	Analysis	and	Signal	Processing	
	

Copyright	2008,	2016	–	J	Banfelder,	Weill	Cornell	Medical	College	 Page	4	
	

𝑓 𝑥 ~

𝑓(−3.1415)
𝑓(−3.1414)
𝑓(−3.1413)

⋮
𝑓(+3.1415)

	

…but	with	infinitely	more	precision.	

Discrete	Signals	and	the	Fast	Fourier	Transform	
All	of	the	above	is	nice	in	theory,	but	has	less	practical	application	than	you	might	think.	While	there	is	
nothing	wrong	with	the	theory	that	we	have	developed,	in	reality	we	do	not	deal	with	continuous	
functions	like	f(x),	but	rather	with	discretely	sampled	signals.	The	sampling	process	has	a	profound	
effect	on	our	results.	The	topic	is	complex,	but	can	be	distilled	down	to	the	observation	that	you	need	to	
sample	a	signal	at	a	rate	that	is	sufficient	to	capture	the	data	you	are	looking	for.	You	can’t	sample	a	
fast,	high-frequency	process	with	a	low	sample	rate	and	expect	to	get	meaningful	results.	

Processing	discretely	sampled	signals	is	the	job	of	the	Fast	Fourier	Transform,	or	FFT.	Matlab	has	this	
capability	built	in,	and	we	will	demonstrate	its	use	here.	Consider	a	signal	that	is	a	1	Hz	sine	wave,	
sampled	at	a	frequency	of	10	Hz.	We’ll	generate	data	for	one	period	in	Matlab.	

>> N = 10;      %% number of sample points 
>> T = 1.0;     %% time span of our samples 
>> t = T*[0:N-1]'/N;    %% the time point of each sample 
>> f = sin(2*pi*t);     %% the value of each sample 
 
One	key	thing	to	note	here	is	that	since	our	signal	is	assumed	to	be	periodic,	we	don’t	need	to	(and	
should	not),	duplicate	the	first	value	at	the	end.	So	even	though	the	period	is	1	sec,	our	t	values	range	
from	0.0	to	0.9.	The	FFT	algorithm	will	infer	that	the	value	at	t=1.0	is	the	same	as	the	value	at	t=0.0.	

Note	that	when	we	plot	the	data,	we	do	not	draw	connecting	lines.	This	emphasizes	the	discrete	nature	
of	the	signal.	

>> plot(t,f,'o'); 



Fourier	Analysis	and	Signal	Processing	
	

Copyright	2008,	2016	–	J	Banfelder,	Weill	Cornell	Medical	College	 Page	5	
	

So	far,	so	good.	Now	let’s	get	our	ans	and	bns…	

>> fft(f) 
 
ans = 
 
   0.0000           
  -0.0000 - 5.0000i 
   0.0000 - 0.0000i 
   0.0000 - 0.0000i 
   0.0000 - 0.0000i 
   0.0000           
   0.0000 + 0.0000i 
   0.0000 + 0.0000i 
   0.0000 + 0.0000i 
  -0.0000 + 5.0000i 
 
Well	that’s	just	great;	complex	numbers	again!	Actually,	we	are	pretty	close	to	the	answer	we	want.	We	
just	have	to	figure	out	what	MATLAB	means	by	all	of	this.	To	decode	this	output,	there	are	three	things	
we	need	to	know.	First,	in	the	output	of	the	FFT	function,	the	real	parts	of	the	result	correspond	to	
cosine	terms,	and	the	imaginary	parts	correspond	to	the	sine	terms	(recall	the	Euler	identity).	So	each	
row	corresponds	to	an	(an,	bn)	pair	represented	as	a	complex	value.	The	next	thing	you	need	to	know	is	
that	the	order	in	which	Matlab	returns	the	values	is	a	bit	odd;	in	the	example	above,	the	subscripts	for	
each	line	are	0,	1,	2,	3,	4,	5,	-4,	-3,	-2,	-1.		The	FFT	includes	negative	frequencies,	which	are	only	relevant	
when	the	input	signal	is	complex.	When	the	signal	is	real,	which	ours	will	be,	the	coefficients	
corresponding	to	negative	frequencies	will	always	be	the	complex	conjugates	of	those	corresponding	to	
the	real	frequencies.	The	bottom	line	is	that	the	second	half	of	the	table	contains	no	additional	
information	for	a	real	signal,	and	you	can	just	ignore	it.	The	final	item	of	interest	is	that	you	need	to	
divide	each	value	in	the	table	by	N/2	to	recover	the	ans	and	bns	that	we	want.	

Putting	all	of	this	together,	we	see	that	we	get	b1	=	1.0,	and	all	other	coefficients	are	zero.	In	other	
words,	we	have	recovered	our	original	sine	wave.	

Often,	when	analyzing	signals,	we	don’t	really	care	to	distinguish	between	the	sine	and	cosine	terms;	we	
just	want	to	know	how	much	signal	we	have	at	each	frequency.	To	determine	this,	we	just	take	the	
norm	of	each	coefficient.	Frequency	content	is	usually	measured	as	the	square	of	the	norm,	and	this	is	
what	we	are	after.	Matlab	will	compute	our	power	spectrum	as	follows…	

>> p = abs(fft(f))/(N/2); 
>> p = p(1:N/2).^2 
 
p = 
 
    0.0000 
    1.0000 
    0.0000 
    0.0000 
    0.0000 



Fourier	Analysis	and	Signal	Processing	
	

Copyright	2008,	2016	–	J	Banfelder,	Weill	Cornell	Medical	College	 Page	6	
	

 
The	frequency	corresponding	to	each	value	in	the	power	spectrum	can	also	be	computed…	

>> freq = [0:N/2-1]'/T 
 
freq = 
 
     0 
     1 
     2 
     3 
     4 
 
Note	that	frequencies	over	4	Hz	are	not	reported.	We’d	have	to	sample	more	often	to	extract	that	
information	from	our	signal.	

Let’s	try	a	more	complex	case	now.	We’ll	consider	a	combination	of	a	10	Hz	signal	and	a	30	Hz	signal.	
We’ll	sample	at	1	kHz	for	3.4	seconds.	

>> N = 3400; 
>> T = 3.4; 
>> t = T*[0:N-1]'/N; 
>> f = sin(2*pi*10*t) - 0.3*cos(2*pi*30*t); 
>> plot(t,f,'.'); 
>> p = abs(fft(f))/(N/2); 
>> p = p(1:N/2).^2; 
>> freq = [0:N/2-1]'/T; 
>> semilogy(freq,p,’.’); 
>> axis([0 50 0 2]); 
  
Here	we	can	see	strong	frequency	components	at	10	Hz	and	30	Hz;	the	rest	is	roundoff	error	(power	
values	~	10-30	and	below).	Note	the	use	of	the	semilog	plot.		

Let’s	see	what	happens	when	we	undersample.	Consider	an	11	Hz	signal,	sampled	at	10	Hz	for	one	
second.	

>> N = 10; 
>> T = 1.0; 
>> t = T*[0:N-1]'/N; 
>> f = sin(2*pi*11*t); 
>> p = abs(fft(f))/(N/2); 
>> p = p(1:N/2).^2; 
>> freq = [0:N/2-1]'/T; 
>> semilogy(freq,p,'o'); 
 
The	11	Hz	signal	appears	to	have	power	at	1	Hz.	This	is	an	artifact	of	under	sampling	called	aliasing.	It	is	
instructive	to	plot	this	function	at	high	resolution	and	then	just	the	points	sampled	here.	Let’s	plot	the	
same	underlying	signal	sampled	at	a	much	higher	frequency…	



Fourier	Analysis	and	Signal	Processing	
	

Copyright	2008,	2016	–	J	Banfelder,	Weill	Cornell	Medical	College	 Page	7	
	

>> N2 = 1000; 
>> t2 = T*[0:N2-1]'/N2; 
>> f2 = sin(2*pi*11*t2); 
>> plot(t2,f2); 
 
…and	then	overlay	the	results	of	our	under-sampling…	

>> hold on 
>> plot(t,f,'o'); 
 
	Now	you	should	appreciate	why	we	shouldn’t	draw	lines	connecting	successive	points	in	sampled	data.	

An	important	theoretical	result	related	to	our	experiment	here	is	the	sampling	theorem,	which	states	
that	you	can	avoid	aliasing	effects	as	demonstrated	here	by	ensuring	that	your	sampling	rate	is	at	least	
twice	that	of	the	highest	frequency	component	of	the	underlying	signal.	

Filtering	and	Compression	
Once	you	have	your	hands	on	the	power	spectrum	(or	the	ans	and	bns	of	the	Fourier	expansion),	you	are	
in	a	position	to	do	all	kinds	of	filtering	in	the	frequency	domain.	

For	example,	many	experiments	that	involve	electronic	equipment	will	produce	signal	with	a	strong	
peak	at	60	Hz	because	that	is	the	frequency	at	which	alternating	current	power	is	supplied.	If	you	want	
to	get	rid	of	that	artifact	in	your	data,	you	can	transform	your	signal	into	the	frequency	domain,	zero	out	
or	reduce	the	value	corresponding	to	60	Hz,	and	reconstitute	the	signal.	

You	can	also	filter	out	high	or	low	frequency	noise	(or	unwanted	signal)	just	by	zeroing	out	parts	of	the	
power	spectrum.	All	kinds	of	filters	can	be	invented;	filter	design	is	a	big	part	of	signal	processing.	

Note	that	an	FFT	produces	as	many	coefficients	as	there	are	samples	in	the	original	data.	One	means	of	
compressing	a	signal	is	to	compute	its	transform	and	simply	drop,	or	forget	about	coefficients	with	small	
magnitudes.	When	you	reconstitute	the	signal	based	on	this	reduced	set	of	coefficients,	you	get	pretty	
close	to	the	original	signal.	In	our	two	frequency	samples	above,	we	were	able	to	reduce	the	whole	
sequence	of	3,400	numbers	down	to	two.	Of	course,	if	your	original	data	is	not	synthesized	from	sines	
and	cosines,	you	will	have	more	than	just	two	terms.	Many	image	compression	algorithms	are	based	on	
a	2D	extension	of	this	technique.	

Fun	With	FFTs	
You	can	have	some	fun	with	FFTs	in	Matlab.	Matlab	can	read	some	.wav	sound	files,	and	you	can	use	its	
FFT	functions	to	play	with	them.	In	the	example	below	we	read	in	a	.wav	file.	Its	length	is	adjusted	to	
have	an	even	number	of	samples.	



Fourier	Analysis	and	Signal	Processing	
	

Copyright	2008,	2016	–	J	Banfelder,	Weill	Cornell	Medical	College	 Page	8	
	

>> f = audioread('sucker.wav'); 
>> length(f) 
 
ans = 
 
      330099 
 
>> f(length(f)+1) = 0; 
>> N = length(f) 
 
N = 
 
      330100 
 
To	proceed	with	the	analysis,	you	need	to	know	the	frequency	at	which	the	audio	was	sampled.	In	this	
case	it	is	22	kHz	(the	file	properties	in	your	OS	will	usually	tell	you	this).	You	can	play	the	file	right	from	
Matlab	(who	needs	iTunes	when	you’ve	got	Matlab?)…	

>> plr = audioplayer(f, 22000); 
>> play(plr) 

…and	plot	the	waveform…	

>> T = length(f)/22000 
 
T = 
 
   15.0045 
 
>> t = T*[0:N-1]'/N; 
>> plot(t,f); 
 
This	is	just	a	plot	of	the	amplitude	as	a	function	of	time,	sampled	at	22	kHz.	You	can	easily	see	the	short	
pauses	between	words.	

Now	let’s	take	an	FFT	of	this	signal	and	plot	the	power	spectrum.	We	plot	on	both	semilog	axes	and	
regular	axes.	

>> fs = fft(f); 
>> p = abs(fs)/(N/2); 
>> p = p(1:N/2).^2; 
>> freq = [0:N/2-1]'/T; 
>> semilogy(freq,p); 
>> plot(freq,p); 
 



Fourier	Analysis	and	Signal	Processing	
	

Copyright	2008,	2016	–	J	Banfelder,	Weill	Cornell	Medical	College	 Page	9	
	

Here	we	see	that	most	of	the	power	is	at	less	than	1	kHz,	and	that	there	is	almost	no	power	over	4	kHz.	
Let’s	clip	out	all	frequencies	greater	than	about	2	kHz.	This	corresponds	to	roughly	the	30,000th	
frequency	in	the	FFT	(15	sec	*	2000	Hz)	=	30,	000.	

for i = 1:(N/2-30000) 
fs((N/2)+i)=0; 
fs((N/2)+1-i)=0; 
end 
p = abs(fs)/(N/2); 
p = p(1:N/2).^2; 
semilogy(freq,p); 
 
Now	we	can	reconstitute	the	signal	and	play	it.	There	are	two	things	to	note	here.	First,	we	only	take	the	
real	parts	of	the	inverse	FFT.	This	should	be	purely	real,	but	there	are	some	rounding	errors.	Second,	
since	we	cut	out	a	bit	of	the	power	in	the	signal,	we’ll	add	a	bit	back	in	by	multiplying	the	amplitude	of	
the	reconstituted	signal.		

>> filtered = real(ifft(fs)); 
>> plr = audioplayer(filtered*3, 22000); 
>> play(plr) 
 
Note	that	this	sounds	a	bit	muffled.	But	even	with	half	of	the	data	gone,	it	is	still	intelligible,	if	not	at	CD	
quality.	This	is	pretty	amazing	considering	that	we	threw	out	91%	of	the	data	in	our	original	.wav	file.	

The	Human	Ear	and	Cochlear	Implants	
All	of	this	actually	does	have	something	to	do	with	biology.	Consider	the	human	ear,	which	we	just	used!	
Here,	part	of	the	system	is	mechanical.	In	the	ear,	after	sound	is	transduced	into	the	cochlea,	vibrations	
impinge	on	the	basalar	membrane.	This	membrane	varies	in	width	and	stiffness	along	its	length	in	such	a	
manner	that	various	parts	of	it	will	resonate	at	various	frequencies.	Cilia	on	the	basilar	membrane	shear	
against	a	second	membrane,	the	tectorial	membrane.	Bending	of	the	cilia	results	in	the	release	of	a	
neurotransmitter	which	passes	into	the	synapses	of	one	or	more	nerve	cells;	this	invokes	an	action	
potential	in	those	neurons.	The	net	result	is	that	specific	groups	of	neurons	fire	in	response	to	the	
frequency	content	of	the	impinging	sound.	In	essence,	basalar	membrane	acts	as	a	mechanical	FFT	
algorithm,	and	the	array	of	cilia	and	neurons	act	as	a	bank	of	bandpass	filters.	When	you	hear	sounds	
such	as	music	and	speech,	your	brain	is	receiving	a	bank	of	action	potentials	that	correspond	to	the	FFTs	
we	just	learned	about.	



Fourier	Analysis	and	Signal	Processing	
	

Copyright	2008,	2016	–	J	Banfelder,	Weill	Cornell	Medical	College	 Page	10	
	

	

	
	

A	beautiful	example	of	how	this	knowledge	can	be	used	in	medicine	is	found	in	the	cochlear	implant.	
This	device	is	used	in	patients	with	inner	ear	damage.	The	entire	mechanical	transduction	mechanism	is	
bypassed	when	the	device	is	implanted.	Instead,	a	microphone	worn	on	the	outer	ear	records	sound	
that	is	digitized	and	sent	to	a	signal	processor.	Here	an	FFT	and	an	array	of	bandpass	filters	are	applied.	
Results	are	passed	to	the	implanted	device,	which	electrically	stimulates	the	neurons	in	the	cochlea.	
Typical	devices	divide	the	frequency	range	of	0	to	4	kHz	into	about	15	or	20	bands,	and	stimulate	
neurons	accordingly.	However,	profoundly	deaf	patients	have	recovered	their	hearing	and	have	been	
able	to	understand	speech	even	when	as	few	as	five	bands	are	used.	


