
Quantitative	Understanding	in	Biology	
Conclusion:	Introduction	to	Markov	
Chains	and	Hidden	Markov	Models	
Duality	between	Kinetic	Models	and	Markov	Models	
We’ll	begin	by	considering	the	canonical	model	of	a	hypothetical	ion	channel	that	can	exist	in	either	an	
open	state	or	a	closed	state.	We	might	describe	the	system	in	terms	of	chemical	species	and	rate	
constants	using	a	simple	representation	of	the	reaction	like…	

𝑂
𝑘!
↔
𝑘!!

𝐶	

We	should	be	on	familiar	ground,	and	can	proceed	to	write	differential	equations	based	on	the	principle	
of	mass	action.	

𝑑𝑥!
𝑑𝑡 = −𝑘!𝑥! + 𝑘!𝑥!
𝑑𝑥!
𝑑𝑡

= 𝑘!𝑥! − 𝑘!!𝑥!
	

Here	we	have	written	the	differentials	in	terms	of	the	fractions	of	open	and	closed	channels,	denoted	as	
xO	and	xC.	You	might	be	used	to	writing	these	types	of	equations	in	terms	of	concentrations;	however,	it	
is	easy	to	show	that,	for	a	constant	volume	system,	the	population	fraction	is	proportional	to	the	
concentration.	

𝑂 =
𝑛!
𝑉
=
𝑛!
𝑛!
∙
𝑛!
𝑉
= 𝑥! ∙ [𝑇]	

Here	we	see	that	the	concentration	of	open	channels	is	just	the	number	of	open	channels,	nO,	divided	by	
the	volume	of	the	system,	V.	We	can	introduce	the	total	number	of	channels	in	the	system,	nt,	and	still	
have	a	valid	mathematical	relations.	This	leads	to	the	(unsurprising)	result	that	the	concentration	of	
open	channels	is	equal	to	the	total	concentration	of	channels	times	the	faction	of	channels	that	are	
open.	

We	should	note	that	in	experiments	involving	channels,	the	concentration	of	channels	may	be	measured	
in	channels	per	unit	surface	area	of	membrane.	This	does	not	change	the	result,	which	allows	us	to	write	
the	differential	equations	above,	with	the	understanding	that	the	rate	constants	have	the	appropriate	
units.	

Markov	Chains	and	Hidden	Markov	Models	
	

©Copyright	2008,	2016	–	J	Banfelder,	Weill	Cornell	Medical	College	 Page	2	
	

In	this	lecture,	we’ll	be	considering	only	discreet	time	Markov	chains,	so	it	will	be	natural	for	us	to	
transform	our	differential	equations	into	a	discrete	time	representation.	The	process	should	be	familiar;	
represent	a	discreet	change	in	the	state	variables	in	terms	of	finite	but	sufficiently	small	Δt.	

𝑥!,!!! − 𝑥!,! = −𝑘!𝑥!,!∆𝑡 + 𝑘!!𝑥!,!∆𝑡
𝑥!,!!! − 𝑥!,! = 𝑘!𝑥!,!∆𝑡 − 𝑘!!𝑥!,!∆𝑡

	

This	can	be	rewritten	as…	

𝑥!,!!! = 1 − 𝑘!∆𝑡 𝑥!,! + 𝑘!!∆𝑡 𝑥!,!
𝑥!,!!! = 𝑘!∆𝑡 𝑥!,! + 1 − 𝑘!!∆𝑡 𝑥!,!

	

…and	expressed	in	matrix	form	as…	

𝑥!
𝑥! !!!

= 1 − 𝑘!∆𝑡 𝑘!!∆𝑡
𝑘!∆𝑡 1 − 𝑘!!∆𝑡

𝑥!
𝑥! !

	

An	alternative	view	of	this	system	is	to	consider	a	single	ion	channel.	This	is	a	system	that	can	be	in	one	
of	two	states,	labeled	as	O	and	C,	as	in	the	diagram	below.	If	we	imagine	the	channel	is	currently	in	the	
closed	state,	then	we	reason	that	in	a	small	time	interval,	Δt,	the	system	has	a	probability,	α,	of	
transitioning	into	the	open	state.	Similarly,	if	the	channel	is	in	the	open	state,	there	is	a	probability,	β,	
that	it	will	transition	into	the	closed	state.	

	

Implicit	in	this	diagram	is	the	fact	that	the	probability	of	the	ion	channel	remaining	in	the	closed	state	
given	that	it	starts	in	that	state	is	1	–	α,	and	similarly	that	the	probability	of	remaining	in	the	open	state	
given	that	as	the	starting	point	is	1	–	β.	In	some	of	the	more	elementary	literature,	you	would	see	the	
diagram	for	the	Markov	chain	drawn	as	shown	below.	For	the	remainder	our	discussion,	we’ll	leave	out	
these	cases,	and	understand	that	they	are	implicit	because	all	of	the	probabilities	leaving	a	state	must	
sum	to	one.	

	

Markov	Chains	and	Hidden	Markov	Models	
	

©Copyright	2008,	2016	–	J	Banfelder,	Weill	Cornell	Medical	College	 Page	3	
	

If	xO	and	xC	represent	the	probability	of	the	channel	being	in	the	open	and	closed	state,	then	we	can	
write	a	matrix	equation	that	derives	directly	from	these	diagrams.	

𝑥!
𝑥! !!!

= 1 − 𝛽 𝛼
𝛽 1 − 𝛼

𝑥!
𝑥! !

	

This	matrix	equation	is	very	similar	to	the	one	we	derived	from	the	kinetic	view	of	the	system.	A	key	
difference	is	that	in	the	kinetic	view,	we	took	xO	and	xC	to	be	the	fraction	of	channels	in	a	population	that	
were	open	or	closed,	whereas	in	the	single-channel	view,	we	said	xO	and	xC	were	the	probabilities	that	a	
particular	channel	of	interest	is	open	or	closed.	It	turns	out	that	when	all	of	the	states	of	a	system	are	
accessible	from	all	other	states,	these	quantities	are	equal.	Such	systems	are	called	ergodic,	and	the	
equality	of	the	time	average	of	a	single	entity	and	the	bulk	average	of	an	ensemble	of	entities	is	called	
the	ergodic	hypothesis.	Note	that	for	a	Markov	chain	to	be	egrodic,	there	must	be	a	way	to	reach	every	
state	from	every	state,	but	not	necessarily	in	one	step.1	

A	slightly	more	complex	model	of	an	ion	channel	is	one	that	incorporates	an	inactive	state…	

𝐼
𝑘!
↔
𝑘!!

𝑂
𝑘!
↔
𝑘!!

𝐶	

The	discretized	versions	of	the	differential	equations	that	describe	this	system	are	(you	should	be	able	
to	derive	this	on	you	own):	

𝑥!
𝑥!
𝑥! !!!

=
1 − 𝑘!Δ𝑡 𝑘!!Δ𝑡 0
𝑘!Δ𝑡 1 − 𝑘!Δ𝑡 − 𝑘!!Δ𝑡 𝑘!Δ𝑡
0 𝑘!Δ𝑡 1 − 𝑘!!Δ𝑡

𝑥!
𝑥!
𝑥! !

	

Its	Markov	chain	diagram	would	look	like	this:	

	

This	system	is	ergodic	because	there	is	a	path	from	every	state	to	every	other	state	(e.g.,	you	can	get	
from	I	to	C	through	O.	The	matrix	equation	that	describes	this	system	is…	

	
																																																													
1		
The	condition	is	actually	a	little	more	strict.	A	finite-state	Markov	chain	is	ergodic	if	there	is	
a	finite	number	N	such	that	any	state	can	be	reached	by	any	other	state	in	exactly	N	steps.	
The	chain	to	the	right	is	not	ergodic	because	there	is	no	single	number	of	steps	from	which	
you	can	get	from	A	to	B	and	from	A	to	C.	
	 	
	

Markov	Chains	and	Hidden	Markov	Models	
	

©Copyright	2008,	2016	–	J	Banfelder,	Weill	Cornell	Medical	College	 Page	4	
	

𝑥!
𝑥!
𝑥! !!!

=
1 − 𝛿 𝛾 0
𝛿 1 − 𝛽 − 𝛾 𝛼
0 𝛽 1 − 𝛼

𝑥!
𝑥!
𝑥! !

	

For	both	the	two	and	three	state	systems,	you	can	see	there	is	a	direct	correspondence	between	the	
kinetic	rate	constants	and	the	transition	probabilities.	If	you	know	the	transition	probabilities	for	a	
specific	Δt,	then	you	know	the	rate	constants,	and	vice-versa.	

A	significant	motivation	for	using	Markov	chains	is	that	it	gives	us	tools	for	systematically	determining	
the	transition	probabilities	for	complex	systems.	For	the	two	canonical	ion	channel	systems	above,	it	is	
pretty	easy	to	design	voltage	clamp	experiments	that	allow	for	the	determination	of	the	rates.	However,	
for	more	realistic	and	complex	models,	this	becomes	increasingly	difficult.	For	example,	Clancy	and	Rudy	
(1999)	proposed	a	model	that	included	three	closed	states	and	both	a	fast	and	a	slow	inactive	state:	

	

The	key	characteristic	of	Markov	processes	is	that	the	probability	of	transiting	to	the	next	state	is	
dependent	ONLY	on	the	current	state.	In	other	words,	the	system	has	no	memory.	This	is	known	as	the	
Markov	property.	

We	should	also	point	out	that	for	many	ion	channels	of	physiological	importance,	the	transition	
probabilities	are	voltage	dependent.	In	the	other	words,	α,	β,	γ,	and	δ	are	all	functions	of	voltage.	We	
will	only	consider	process	were	the	elements	of	the	transition	matrix	are	constant	over	time	(as	in	an	
experiment	with	the	voltage	clamped).	

Absorbing	Markov	chains	
Not	all	Markov	processes	are	ergodic.	An	important	class	of	non-ergodic	Markov	chains	is	the	absorbing	
Markov	chains.	These	are	processes	where	there	is	at	least	one	state	that	can’t	be	transitioned	out	of;	
you	can	think	if	this	state	as	a	trap.	Some	processes	have	more	than	one	such	absorbing	state.	

One	very	common	example	of	a	Markov	chain	is	known	at	the	drunkard’s	walk.	In	our	variation	of	this	
classic	toy	example,	we	imagine	a	drunk	person	wandering	a	one-dimensional	street.	There	are	five	
locations	along	the	street,	as	shown	in	the	diagram	below.	

	

Location	A	is	the	man’s	home,	and	location	E	is	a	bar.	The	drunk	will	stagger	from	one	location	to	the	
next	while	he	is	between	the	bar	and	his	home,	but	once	he	reaches	one	of	the	two	locations,	he	will	

Markov	Chains	and	Hidden	Markov	Models	
	

©Copyright	2008,	2016	–	J	Banfelder,	Weill	Cornell	Medical	College	 Page	5	
	

stay	there	permanently	(or	at	least	for	the	night).	The	drunkard’s	walk	is	usually	presented	where	the	
probability	of	moving	to	the	left	or	right	is	equal,	but	in	our	scenario,	we’ll	say	that	the	probability	of	
moving	to	the	right	is	2/3	because	the	pleasant	odors	emanating	from	the	kabob	shop	next	to	the	bar	
serve	as	an	attractant.	

We	can	write	a	matrix	equation	to	model	our	drunkard’s	wanderings:	

𝑝! 𝑝! 𝑝! 𝑝! 𝑝! !!! = 𝑝! 𝑝! 𝑝! 𝑝! 𝑝! !

1 0 0 0 0
1
3

0
2
3

0 0

0
1
3

0
2
3

0

0 0
1
3

0
2
3

0 0 0 0 1

	

Note	that	in	this	case	we’ve	written	the	state	variables	of	our	system	(the	probabilities	that	our	
drunkard	is	at	any	of	the	five	positions	along	the	street)	as	a	row	vector.	This	follows	the	convention	
used	in	most	of	the	literature	on	Markov	models,	so	we’ve	adopted	it	here,	and	we’ll	use	it	for	the	rest	
of	this	lecture.	As	a	consequence,	our	equations	to	describe	the	time	evolution	multiply	the	transition	
matrix	on	the	left.	Also,	the	matrix	in	this	representation	is	the	transpose	of	the	matrix	we’d	have	
written	if	we	were	using	column	vectors.	When	written	like	this,	all	of	the	rows	of	the	transition	matrix	
must	sum	to	one.	

We	can	use	results	from	the	theory	of	Markov	chains	to	quickly	answer	some	interesting	questions	
about	a	particular	absorbing	chain.	We’ll	look	at	three	such	questions:	how	to	compute	the	number	of	
times	each	particular	state	is	likely	to	be	visited,	how	long	a	system	is	likely	to	last	before	being	
absorbed,	and	what	the	probability	of	being	absorbed	into	each	of	the	absorbing	states	is.	In	general,	
the	answer	to	each	of	these	questions	is	dependent	on	where	you	start	on	the	chain.	

Before	we	answer	any	of	these	questions,	we’ll	need	to	re-arrange	our	transition	matrix	into	a	canonical	
form.	All	we	need	to	do	is	reorder	the	states	so	that	the	transient	ones	are	first,	and	the	absorbing	ones	
come	last.	For	our	example	problem,	we	have…	

𝑝! 𝑝! 𝑝! 𝑝! 𝑝! !!! = 𝑝! 𝑝! 𝑝! 𝑝! 𝑝! !

𝐵 𝐶 𝐷 𝐴 𝐸
0 !

! 0 !
! 0

!
! 0 !

! 0 0

0 !
! 0 0 !

!

0 0 0 1 0

0 0 0 0 1

𝐵

𝐶

𝐷

𝐴

𝐸

	

	

Markov	Chains	and	Hidden	Markov	Models	
	

©Copyright	2008,	2016	–	J	Banfelder,	Weill	Cornell	Medical	College	 Page	6	
	

Here	we	have	annotated	the	rows	and	columns	with	the	names	of	the	state	that	each	corresponds	to.	
This	canonical	matrix,	T,	can	be	subdivide	into	four	parts	and	written	as…	

𝑇 = 𝑄 𝑅
0 𝐼 	

…where…	

𝑄 =

0 !
!

0
!
!

0 !
!

0 !
!

0

		 𝑅 =

!
!

0
0 0
0 !

!

	

…and	0	represents	a	matrix	of	all	zeros,	and	I	represents	an	identity	matrix	(ones	on	the	diagonal,	zeros	
elsewhere).	

Exercise:	Show	that	𝑻𝒏 = 𝑸𝒏 ∗
𝟎 𝑰 ,	where	the	*	represents	a	complicated	matrix.	

It	is	useful	to	define	one	more	matrix…	

𝑁 = 𝐼 − 𝑄 !!	

The	matrix	we’ve	denoted	as	N	is	known	as	the	fundamental	matrix	of	the	original	Markov	chain.	It	turns	
out	that	several	practical	questions	can	be	readily	answered	about	an	absorbing	Markov	chain	once	N	
and	R	and	known.	In	fact,	it	can	be	shown	that	if	you	start	in	state	i,	the	expected	number	of	times	that	
you’ll	visit	state	j	is	given	be	the	element	Ni,j	of	the	fundamental	matrix	(we	won’t	prove	this	here).	

To	compute	this	in	MATLAB	for	our	drunkards	walk…	

>> Q = [0, 2/3, 0; 1/3, 0, 2/3; 0, 1/3, 0]

Q =

 0 0.6667 0
 0.3333 0 0.6667
 0 0.3333 0

>> N = (eye(size(Q)) - Q)^-1

N =

 1.4000 1.2000 0.8000
 0.6000 1.8000 1.2000
 0.2000 0.6000 1.4000
	

This	tell	us,	for	example,	that	if	our	drunkard	starts	out	in	the	middle	of	the	road	(state	C),	on	average	he	
will	visit	state	B	0.6	times,	state	C	1.8	times,	and	state	D	1.2	times	(remember	that	the	first	row	of	this	

Markov	Chains	and	Hidden	Markov	Models	
	

©Copyright	2008,	2016	–	J	Banfelder,	Weill	Cornell	Medical	College	 Page	7	
	

matrix	corresponds	to	state	B,	the	second	to	state	C,	and	the	last	to	state	D).	Note	that	the	quantity	for	
C	includes	the	starting	visit.	

We	can	also	compute	the	average	absorption	time	for	each	starting	state.	This	is	trivial	if	we	know	N.	For	
example,	consider	starting	in	state	C.	We	just	saw	that	the	quantities	in	the	second	row	of	N	give	the	
average	number	of	times	each	transient	state	will	be	visited,	so	the	sum	of	all	of	these	entries	must	be	
the	average	number	of	visits	to	all	transient	states.	But	the	number	of	transient	states	one	visits	before	
being	absorbed	is	the	absorption	time.	

A	column	vector,	t,	that	represents	the	sum	of	row	entries	in	the	fundamental	matrix	can	be	written	as..	

𝑡 = 𝑁 ∙ 𝑐	

…where	c	is	a	column	vector	of	ones.	Continuing	the	example	above	in	MATLAB…	

>>	t	=	N	*	ones(size(N,1),1)	
	
t	=	
	
				3.4000	
				3.6000	
				2.2000	
	

This	shows	that	if	our	drunkard	starts	at	state	B,	on	average	the	drunkard	will	stagger	around	for	3.4	
steps	before	finishing	up	the	evening	at	home	or	at	the	bar.	

We	can	also	compute	the	absorption	probability	matrix,	B,	simply	by	multiplying	N	on	the	right	by	R.	The	
elements	of	B	give	the	probability	of	ultimately	being	absorbed	into	each	of	the	absorbing	states	for	
each	starting	state.	In	our	example…	

𝐵 =

𝐵 𝐶 𝐷 𝐴 𝐸
𝐵

𝐶

𝐷

1.4 1.2 0.8

0.6 1.8 1.2

0.2 0.6 1.4

!
! 0

0 0

0 !
!

=

𝐴 𝐸
𝐵

𝐶

𝐷

0.4667 0.5333

0.2000 0.8000

0.0667 0.9333

	

		

These	results	tell	us	that	if	we	start	at	state	B,	for	example,	there	is	a	46.7%	chance	that	we’ll	eventually	
absorb	into	state	A,	and	a	53.3%	change	that	we’ll	absorb	into	state	E.	

The	drunkard’s	walk	is	clearly	a	hypothetical	problem,	but	examples	just	like	it	appear	in	many	other	
contexts.	For	example,	consider	a	tennis	game	at	deuce	(e.g.,	tied	at	40-40).	The	rules	of	tennis	require	
that	a	game	be	won	by	two	serves.	If	player	I	wins	the	next	serve,	the	score	is	said	to	be	“Advantage	I”,	

Markov	Chains	and	Hidden	Markov	Models	
	

©Copyright	2008,	2016	–	J	Banfelder,	Weill	Cornell	Medical	College	 Page	8	
	

and	that	player	must	win	the	next	serve	to	win	the	game.	If	she	does	not,	the	score	goes	back	to	deuce.	
If	we	imaging	that	player	I	has	a	probability	α	of	winning	any	serve,	then	the	relevant	Markov	chain	is…	

	

Comparing	this	with	the	Markov	chain	for	the	drunkard’s	walk	should	make	it	apparent	that	these	
diagrams	in	fact	have	the	same	structure.	We	can	therefor	conclude,	for	example,	that	if	one	player	has	
twice	the	chance	of	winning	a	serve	as	another	(α=2/3;	1-α=1/3),	then	the	probability	of	the	lesser	
player	winning	a	game	that	has	reached	deuce	is	20%	(see	computation	of	the	B	matrix,	above).	

Hidden	Markov	Models	
So	far,	we’ve	considered	Markov	models	where	we	know	the	values	of	the	transition	matrix,	and	went	
on	to	compute	properties	of	the	system.	We’ll	now	invert	the	problem,	and	address	the	case	where	we	
have	observations	of	a	system,	and	want	to	estimate	the	values	in	the	transition	matrix.	In	this	case,	
we’ll	assume	that	we	know	how	many	states	there	are,	and	need	to	estimate	the	probabilities	of	
transitioning	from	each	state	to	every	other	state.	

As	a	working	example,	we’ll	consider	this	in	the	context	of	ion	channels,	continuing	the	discussion	at	the	
beginning	of	this	lecture.	As	shown	previously,	the	problem	is	tantamount	to	determining	the	rate	
constants	for	the	state	transitions.	

We’ll	begin	by	generating	some	representative	data	from	a	model	with	known	parameters,	and	then	
pretend	we	don’t	know	the	parameter	values,	and	see	how	we	can	estimate	them	from	the	data.	We	
start	with	the	simple,	two-state	channel:	

	

Markov	Chains	and	Hidden	Markov	Models	
	

©Copyright	2008,	2016	–	J	Banfelder,	Weill	Cornell	Medical	College	 Page	9	
	

Before	we	begin,	we’ll	need	to	say	a	few	words	about	hidden	Markov	models	(or	HMMs).	In	a	hidden	
Markov	model,	the	states	of	the	system	are	not	directly	observable;	instead,	we	are	only	able	to	observe	
and	record	some	quantity	that	correlates	with	the	internal	state	of	the	system.	In	the	case	of	our	simple	
ion	channel,	the	observed	quantity	is	the	measured	current.	There	is	nothing	really	hidden	about	this	
model	because	the	system	has	two	states,	and	the	state	of	the	system	is	obvious	from	the	current	–	if	
you	see	a	high	current,	the	channel	is	in	the	open	state,	and	a	low	(near	zero)	current	implies	that	the	
channel	is	in	the	closed	state.	For	now,	we’ll	chalk	this	up	to	semantics,	but	in	a	short	while	we’ll	see	a	
model	where	some	of	the	states	are	better	hidden.	

The	observable	quantities	in	an	HMM	are	called	emissions	(since	each	state	‘emits’	such	a	quantity),	and	
an	HMM	always	has	an	emission	matrix	along	with	its	transition	matrix.	For	our	first	system,	the	
transition	matrix	(using	notation	consistent	with	a	row	vector	of	state	variables)	is	

𝑇 =
𝐶 𝑂

1 − 𝛼 𝛼

𝛽 1 − 𝛽
𝐶

𝑂

	

…and	the	emission	matrix	is…	

𝐸 =
𝐿 𝐻
1 0

0 1

𝐶

𝑂

	

Here	we	have	annotated	the	emission	matrix	to	clarify	which	state	each	row	corresponds	to,	and	which	
emission	each	column	corresponds	to.	The	elements	of	the	emission	matrix	are	probabilities	and	
generally	don’t	have	to	be	zeros	or	ones;	they	just	happen	to	be	in	this	case.	

We	are	now	ready	to	describe	this	system	in	MATLAB,	and	generate	some	representative	data	for	this	
system.	

>> alpha = 0.01; beta = 0.06;
>> T = [1 - alpha, alpha; beta, 1 - beta];
>> E = [1 0; 0 1];
>> [seq, states] = hmmgenerate(100000, T, E);
	

Here	was	have	asked	MATLAB	to	generate	100,000	iterations	of	our	model.	We	are	given	the	emissions	
in	the	seq	vector,	and	the	‘unobservable’	internal	states	of	the	system	in	the	states	vector.	

Plotting	the	data	requires	that	we	specify	the	scale	of	the	axes,	since	all	the	data	can’t	meaningfully	be	
shown.	

>> plot(seq);
>> axis([0 1000 0 3]);
	

Markov	Chains	and	Hidden	Markov	Models	
	

©Copyright	2008,	2016	–	J	Banfelder,	Weill	Cornell	Medical	College	 Page	10	
	

You	can	pan	to	the	right	to	see	more	of	the	trace.	As	a	side	note	here,	you	should	be	aware	that	when	
make	a	plot	that	has	more	datapoints	than	your	screen	has	pixels,	your	plotting	program	may	entirely	
miss	artifacts	in	your	data	(this	depends	on	how	your	software	samples	the	data	for	plotting).	

Note	that	in	the	plot	produced,	there	are	some	long	periods	of	low	current	and	some	short	periods	of	
low	current,	and	similarly	for	the	periods	of	high	current.	We	says	that	the	dwell	times	for	each	state	
follow	some	distribution.	It	should	be	clear	from	the	plot	that	the	closed	states	tend	to	last	longer	than	
the	open	states.	This	implies	that	β	>	α,	which	is	in	fact	the	case.	

Note	that	MATLAB	numbers	the	states	and	emissions	from	1,	so	an	emission	value	of	1	corresponds	to	
the	low	current	emission,	and	an	emission	value	of	2	represents	a	high	current	emission.	

Formally,	an	HMM	consists	of	a	transition	matrix,	an	emissions	matrix,	and	a	starting	state.	When	using	
MATLAB’s	HMM	functions,	it	is	assumed	that	the	system	always	starts	in	state	1.	You	can	always	
rearrange	the	states	to	accommodate	(or	see	the	MATLAB	help	for	other	tricks).	

Now	that	we	have	generated	a	good	amount	of	trace	data	(representative	of	a	single	channel	
recording),	out	goal	is	to	recover	the	α	and	β	parameters	from	the	trace	data	alone.	For	this	simple	
model,	there	are	several	approaches.	One	way	to	go	about	this	is	to	analyze	the	distributions	of	the	
dwell	times	in	the	open	and	closed	states.	To	this	end,	we	can	write	a	function	which	reports	the	dwell	
times	for	a	particular	emission.	The	source	code	is	kept	in	a	file	named	dwell_times.m:	

function [times] = dwell_times(seq,s)
%DWELL_TIMES Given a sequence of states (seq),
% compute the dwell times state s in the sequence.

imax = length(seq);
times = [];

previous_state = seq(1);
counter = 0;

for idx = 2:imax
 if(previous_state == seq(idx))
 counter = counter + 1;
 else
 if (previous_state == s)
 times = [times ; counter];
 end
 counter = 1;
 previous_state = seq(idx);
 end
end

end
	

We	can	now	compute	the	dwell	times	for	the	low	current	state.	

Markov	Chains	and	Hidden	Markov	Models	
	

©Copyright	2008,	2016	–	J	Banfelder,	Weill	Cornell	Medical	College	 Page	11	
	

>> dt_closed = dwell_times(seq, 1);
>> mean(dt_closed)

ans =

 96.6472
	

This	is	telling	us	that	the	average	dwell	time	in	the	low	current	state	is	96.6.	The	reciprocal	of	this	is	our	
estimate	of	the	time	constant,	or	transition	probability,	to	leave	the	closed	to	the	open	state.	We	
therefore	estimate	that	α	=	1/96.6472	=	0.0103.	Similarly,	in	this	example,	we	estimate	the	β	=	0.0642	
from	the	distribution	of	dwell	times	in	the	open	state.	

In	this	example,	we	were	able	to	make	these	estimates	because	we	can	trivially	infer	the	state	of	the	
channel	from	its	emission	measurement.	We’ll	now	consider	a	slightly	more	complicated	channel	model	
where	(some	of)	the	states	are	hidden.	

We’ll	return	to	our	three	state	channel	mode,	assigning	values	to	all	of	the	transition	probabilities.	

	

Our	transition	matrix	is…	

𝑇 =

𝐶 𝐼 𝑂
1 − 𝛼 0 𝛼

0 1 − 𝛿 𝛿

𝛽 𝛾 1 − 𝛽 − 𝛾

𝐶

𝐼

𝑂

	

…and	our	emission	matrix	is…	

𝐸 =

𝐿 𝐻
1 0

1 0

0 1

𝐶

𝐼

𝑂

	

We	can	now	proceed	to	simulate	this	system	and	make	a	plot	of	the	simulated	current:	

Markov	Chains	and	Hidden	Markov	Models	
	

©Copyright	2008,	2016	–	J	Banfelder,	Weill	Cornell	Medical	College	 Page	12	
	

>> alpha = 0.1; beta = 0.01; gamma = 0.005; delta = 0.005;
>> T = [1 - alpha, 0, alpha; 0, 1 - delta, delta; beta, gamma, 1 -
beta - gamma];
>> E = [1, 0; 1, 0; 0, 1];
>> [seq, states] = hmmgenerate(500000, T, E);
>> plot(seq);
>> axis([0 1000 0 3]);
	

If	you	pan	through	the	current	trace,	you’ll	should	observe	that	there	are	a	large	number	of	short-lived	
low-current	states,	and	a	smaller	number	of	long-lived	low-current	states.	Looking	at	our	parameters,	
we	see	that	the	closed	states	are	expected	to	be	short	lived	relative	to	the	inactive	states	(because	α>δ),	
and	the	we	should	have	more	occurrences	of	the	closed	state	than	the	open	state	(because	β>	γ).	

Now	we	can	start	to	see	what	hidden	Markov	models	are	all	about.	If	you	observe	a	low	current	
emission,	you	don’t	know	if	the	channel	is	in	the	closed	or	inactive	state.	However,	you	can	make	guess	
based	on	the	dwell	time	of	the	state.	Short-lived	intervals	of	zero-current	imply	that	the	channel	is	in	the	
closed	state,	and	longer	ones	imply	it	is	in	the	inactive	state.	But	since	state	transitions	are	stochastic,	
you	can	never	be	sure	if	your	assignment	is	correct.	

One	of	the	very	power	tools	in	the	world	of	HMMs	is	the	Vitirbi	algorithm.	This	algorithm	takes	a	
sequence	of	emissions	(i.e.,	your	observations)	and	the	specification	of	your	HMM	(i.e.,	your	T	and	E	
matrices),	and	computes	the	most	likely	history	of	states	that	would	give	rise	to	the	emissions	that	you	
supplied.	Here	we	compute	the	predicted	states,	and	compare	them	graphically	to	the	actual	states	
(which	the	algorithm	didn’t	know).	

>> predstates = hmmviterbi(seq,T,E);
>> plot(states, 'color', 'blue', 'linewidth', 3);
>> hold on
>> plot(predstates, 'color', 'red', 'linewidth', 1);
>> hold off
>> axis([1 1000 0 4]);
	

If	you	scroll	through	the	plot,	you’ll	see	the	algorithm	does	a	pretty	good	job,	but	once	in	a	while	will	
miss-classify	a	state.	You’ll	likely	need	to	pan	quite	a	bit	to	find	the	mistakes.	You	can	quickly	summarize	
the	performance	of	the	Vitirbi	algorithm	for	this	case:	

>> sum(states == predstates)/length(states)

ans =

 0.9866
	

Here	we	see	that	for	our	(not	so	hidden	after	all)	model,	we	can	assign	the	correct	state	98.7%	of	the	
time.	Of	course,	if	the	mean	dwell	times	of	the	inactive	and	closed	states	were	closer,	it	would	be	harder	
to	tell	them	apart,	and	the	error	rate	would	increase.	

Markov	Chains	and	Hidden	Markov	Models	
	

©Copyright	2008,	2016	–	J	Banfelder,	Weill	Cornell	Medical	College	 Page	13	
	

Our	last	application	of	HMMs	will	be	to	demonstrate	a	training	algorithm.	The	job	of	the	training	
algorithm	is	to	determine	the	values	in	the	state	transition	matrix	and	the	emission	matrix	given	a	trace	
of	sequences.	This	is	an	iterative	procedure,	so	it	will	require	an	initial	guess	for	these	two	matrices.	In	
our	example,	the	emission	matrix	is	simple	and	the	guess	is	obvious.	However,	guessing	the	transition	
probabilities	from	only	the	simulated	data	is	a	bit	trickier.	

We’ll	begin	by	computing	the	dwell-times	as	before.	

>> dt_low = dwell_times(seq, 1);
>> dt_high = dwell_times(seq,2);
	

Now	the	structure	of	our	model	tells	us	that	we	should	expect	two	classes	of	non-conducting	states	with	
different	dwell-time	distributions.	We	might	suspect	that	a	histogram	of	the	dwell	times	would	have	two	
peaks,	but	trying	out	a	few	plots	doesn’t	yield	anything	obvious.	However,	a	histogram	of	the	logarithm	
of	the	dwell	time	is	informative.	

>> hist(log(dt_low), 0:0.1:10)

You	should	see	a	peak	very	roughly	around	2.5	and	a	peak	around	5.	This	implies	that	there	are	two	
(somewhat	hidden)	peaks	at	e2.5	=	12.2	and	e5	=	148.	So	our	very	rough	guesses	of	the	transition	
probabilities	are	α=	1/12.2	=	0.08	and	δ	=	1/148	=	0.007.	We	also	need	to	guess	β	and	γ;	since	the	
training	algorithm	will	do	the	heavy	lifting,	we’ll	assume	that	β	=	γ.	Now	the	average	dwell	time	for	the	
conducting	state	is…	

>> mean(dt_high)

ans =

 67.3133
	

…so	we	have	that	β	+	γ	(the	two	ways	we	can	leave	the	open	state)	=	1/67.3		=	0.0149	so	we	guess	β	=	γ	
=	0.0149	/	2	=	0.0074.	We	are	now	ready	to	run	the	training	algorithm:	

>> alphag = 0.08; betag = 0.0074; gammag = 0.0074; deltag = 0.007;
>> Tg = [1 - alphag, 0, alphag; 0, 1 - deltag, deltag; betag, gammag,
1 - betag - gammag];
>> Eg = E;
>> [T_estimate, E_estimate] = hmmtrain(seq, Tg, Eg);
	

The	training	algorithm	may	take	a	little	while	to	finish,	but	when	it	does,	we	can	compare	the	estimated	
transition	matrix	with	the	one	from	which	the	sample	data	was	derived:	

Markov	Chains	and	Hidden	Markov	Models	
	

©Copyright	2008,	2016	–	J	Banfelder,	Weill	Cornell	Medical	College	 Page	14	
	

>> T_estimate

T_estimate =

 0.9001 0 0.0999
 0 0.9950 0.0050
 0.0098 0.0050 0.9852

>> T

T =

 0.9000 0 0.1000
 0 0.9950 0.0050
 0.0100 0.0050 0.9850
	

Here	we	can	see	that	the	HMM	has	done	a	nearly	perfect	job	of	extracting	the	underlying	parameters	
from	the	data.	

We	should	note	here	that	for	both	cases,	it	is	possible	to	design	experiments	that	estimate	the	transition	
probabilities	(or	rate	constants)	by	other	means	that	some	might	consider	more	direct.	However,	as	
model	complexity	increases,	the	difficulty	of	designing	and	executing	such	experiments	becomes	
increasingly	difficult;	consider	how	one	might	estimate	the	rate	constants	in	the	Clancy	and	Rudy	model	
discussed	above.	One	of	the	great	utilities	of	HMMs	is	that	they	give	a	consistent	framework	for	thinking	
about	and	solving	problems	of	arbitrary	complexity.	

	

