
Quantitative	Understanding	in	Biology	
Module	IV:	ODEs	
Lecture	II:	Linear	ODEs	and	Stability	

Linear	Differential	Equations	
You	will	recall	from	the	previous	lecture	that	the	solution	to	the	canonical	ordinary	linear	differential	
equation…	

𝑑𝑥
𝑑𝑡

= 𝜆𝑥	

…is…	

𝑥 = 𝑐𝑒!"	

Biological	systems	that	we	would	be	interested	in	modeling	will,	of	course,	usually	involve	more	than	
one	variable.	This	will	result	in	a	system	of	ordinary	differential	equations.	If	we	get	lucky	and	this	set	
happens	to	be	a	set	of	linear	differential	equations,	we	can	apply	techniques	similar	to	those	we	studied	
for	linear	difference	equations.	In	general,	systems	of	biological	interest	will	not	result	in	a	set	of	linear	
ODEs,	so	don’t	expect	to	get	lucky	too	often.	However,	the	analysis	of	sets	of	linear	ODEs	is	very	useful	
when	considering	the	stability	of	non-linear	systems	at	equilibrium.	For	that	reason,	we	will	pursue	this	
avenue	of	investigation	for	a	little	while.	

As	we	did	with	their	difference	equation	analogs,	we	will	begin	by	considering	a	2x2	system	of	linear	
differential	equations.	The	results	can	be	generalized	to	larger	systems.	The	arbitrary	2x2	system	can	be	
written	as…	

𝑑𝑥!
𝑑𝑡

= 𝑎!!𝑥! + 𝑎!"𝑥!	

𝑑𝑥!
𝑑𝑡

= 𝑎!"𝑥! + 𝑎!!𝑥!	

This	can	also	be	written	in	matrix	form	as…	

𝑑𝒙
𝑑𝑡

= 𝑨𝒙	

…where	x	is	a	vector	and	A	is	a	matrix.	

Linear	ODEs	and	Stability	
	

Copyright	2008,	2016	–	J	Banfelder,	Weill	Cornell	Medical	College	 Page	2	
	

In	the	spirit	of	our	solution	to	the	difference	equation	problem,	we	will	propose	that	the	solution	to	our	
single-variable	problem	will	also	work	here.	We	begin	by	eliminating	x2	from	our	system.	This	can	be	
achieved	by	differentiating	the	first	equation	in	our	set	and	then	rearranging…	

𝑑
𝑑𝑡

𝑑𝑥!
𝑑𝑡

=
𝑑
𝑑𝑡
𝑎!!𝑥! +

𝑑
𝑑𝑡
𝑎!"𝑥!	

𝑑!𝑥!
𝑑𝑡!

= 𝑎!!
𝑑𝑥!
𝑑𝑡

+ 𝑎!"
𝑑𝑥!
𝑑𝑡

 	

𝑑!𝑥!
𝑑𝑡!

= 𝑎!!
𝑑𝑥!
𝑑𝑡

+ 𝑎!" 𝑎!"𝑥! + 𝑎!!𝑥! 	

𝑑!𝑥!
𝑑𝑡!

= 𝑎!!
𝑑𝑥!
𝑑𝑡

+ 𝑎!"𝑎!"𝑥! + 𝑎!!𝑎!"𝑥!	

The	combination	a12x2	can	be	rewritten	by	looking	at	the	very	first	equation…	

𝑎!"𝑥! =
𝑑𝑥!
𝑑𝑡

− 𝑎!!𝑥!	

Using	this	relation,	we	can	continue…	

𝑑!𝑥!
𝑑𝑡!

= 𝑎!!
𝑑𝑥!
𝑑𝑡

+ 𝑎!"𝑎!"𝑥! + 𝑎!!
𝑑𝑥!
𝑑𝑡

− 𝑎!!𝑥! 	

𝑑!𝑥!
𝑑𝑡!

= 𝑎!!
𝑑𝑥!
𝑑𝑡

+ 𝑎!"𝑎!"𝑥! + 𝑎!!
𝑑𝑥!
𝑑𝑡

− 𝑎!!𝑎!!𝑥!	

𝑑!𝑥!
𝑑𝑡!

− (𝑎!! + 𝑎!!)
𝑑𝑥!
𝑑𝑡

+ (𝑎!!𝑎!! − 𝑎!"𝑎!")𝑥! = 0	

Now	we	consider	our	proposed	solution.	One	of	the	mathemagical	properties	of	the	function	ex	is	that	it	
is	its	own	derivative.	That	is	

𝑑
𝑑𝑥

𝑒! = 𝑒!	

When	a	coefficient	to	x	appears,	the	chain	rule	gives	us	

𝑑
𝑑𝑥

𝑒!" = 𝜆𝑒!"	

Since	we	have	a	second	derivative	in	our	system,	we’ll	also	need	

𝑑!

𝑑𝑥!
𝑒!" = 𝜆!𝑒!"	

So	we	now	can	write…	

Linear	ODEs	and	Stability	
	

Copyright	2008,	2016	–	J	Banfelder,	Weill	Cornell	Medical	College	 Page	3	
	

𝜆!𝑒!" − (𝑎!! + 𝑎!!)𝜆𝑒!" + (𝑎!!𝑎!! − 𝑎!"𝑎!")𝑒!" = 0	

We	can	eliminate	the	eλt,	and	we	are	left	with	a	quadratic	characteristic	equation…	

𝜆! − (𝑎!! + 𝑎!!)𝜆 + (𝑎!!𝑎!! − 𝑎!"𝑎!") = 0	

In	fact,	this	is	exactly	the	same	characteristic	equation	we	encountered	when	we	studied	systems	of	
linear	difference	equations.	This	should	make	us	very	happy,	because	it	means	that	we	can	skip	the	rest	
of	the	boring	algebra	and	jump	right	to	the	solution:	

𝜆!,! =
𝛽 ± 𝛽! − 4𝛾

2
	

𝛽 = 𝑎!! + 𝑎!!	

𝛾 = 𝑎!!𝑎!! − 𝑎!"𝑎!"	

𝑥! 𝑡 = 𝑐!𝑒!!! + 𝑐!𝑒!!!	

𝑥! 𝑡 = 𝑑!𝑒!!! + 𝑑!𝑒!!!	

Note	that	the	λs	are	the	eigenvalues	of	the	matrix	A,	just	as	we	are	used	to.	These	came	from	the	
characteristic	equation	involving	matrix	coefficients.	Note,	however,	that	the	interpretation	of	the	
eigenvalues	for	a	differential	equation	problem	is	not	the	same	as	that	of	a	difference	equation	
problem.	Since	the	eigenvalues	appear	in	expressions	of	eλt,	we	know	that	systems	will	grow	when	λ>0	
and	fizzle	when	λ<0.	

We	encountered	eigenvectors	in	our	study	of	difference	equations,	and	the	same	ideas	apply	here.	In	
the	above	solution,	there	are	four	arbitrary	constants,	c1,	c2,	d1,	and	d2,	yet	there	are	only	two	degrees	of	
freedom	(determined	by	the	two	initial	conditions).	It	turns	out	that	the	ratio	c1/d1	is	always	fixed,	as	is	
the	ratio	c2/d2.	This	gives	rise	to	the	eigenvectors.	We	can	therefore	write	our	solution	neatly	in	vector	
form	(redefining	c1	and	c2	as	we	go)	as	

𝒙 𝑡 = 𝑐!𝒗𝟏𝑒!!! + 𝑐!𝒗𝟐𝑒!!!	

Note	that	x	is	a	vector	of	state	variables.	v1	and	v2	are	also	vectors;	the	eigenvectors	of	the	matrix	A.	

Complex	Eigenvalues	Revisited	
Since	we	have	a	quadratic	characteristic	equation,	we	should	consider	the	possibility	of	complex	(and	
repeated)	roots.	As	usual,	we	will	not	consider	repeated	roots	here;	consult	a	text	on	differential	
equations	if	you	need	to	worry	about	this.	The	solution	we	wrote	holds	for	complex	eigenvalues;	
however	it	is	worth	considering	how	to	interpret	the	results.	

Everything	follows	and	can	be	reasoned	from	the	basic	identity	

𝑒!" = cos 𝜃 + 𝑖 ⋅ sin 𝜃 	

Linear	ODEs	and	Stability	
	

Copyright	2008,	2016	–	J	Banfelder,	Weill	Cornell	Medical	College	 Page	4	
	

If	an	eigenvalue	is	complex,	we	can	write…	

𝜆 = 𝑟 + 𝑐 ⋅ 𝑖	

…where	r	is	the	real	part	and	c	is	the	imaginary	part.	Terms	such	as	eλt	now	take	the	form…	

𝑒 !!!⋅! ! = 𝑒!"𝑒!⋅!" = 𝑒!" cos ct + 𝑖 ⋅ sin ct 	

As	with	real	eigenvalues,	the	rules	for	interpreting	complex	eigenvalues	are	a	bit	different	when	applied	
to	differential	equations.	We	still	see	that	complex	eigenvalues	yield	oscillating	solutions.	However,	we	
note	that	the	real	part	of	the	eigenvalue	determines	whether	the	system	will	grow	or	shrink	in	the	long	
term,	and	the	imaginary	part	determines	the	frequency.	

Expressing	the	general	solution	in	terms	of	real	parts	only	involves	a	fair	amount	of	algebra,	which	we	
won’t	worry	about.	For	completeness,	we	will	simply	state	that	when	you	have	a	system	with	complex	
eigenvalues	(which	always	come	in	conjugate	pairs),	the	solution	can	be	written	as…	

𝑥 𝑡 = 𝑐!𝑒!" 𝑎 ⋅ cos 𝑐𝑡 − 𝑏 ⋅ sin 𝑐𝑡 + 𝑐!𝑒!" 𝑎 ⋅ sin 𝑐𝑡 − 𝑏 ⋅ cos 𝑐𝑡 	

In	this	expression,	r	and	c	are	the	real	and	complex	parts	of	the	eigenvalue,	and	a	and	b	are	the	real	and	
complex	parts	of	the	corresponding	component	of	the	eigenvector.	Don’t	worry	about	the	details	here,	
the	important	part	is	above;	i.e.,	r	gives	you	long-term	growth	or	decay,	and	c	gives	you	frequency.	Both	
of	these	are	embedded	in	the	eigenvalue,	λ.	

Equilibrium	Solutions	to	Dynamic	Systems	
The	above	techniques	apply	to	linear	dynamic	systems.	The	behavior	of	non-linear	dynamic	systems	can	
be	quite	complex,	and	in	general	cannot	be	treated	analytically.	You	do	know,	however,	how	to	run	
numerical	simulations	of	arbitrary	dynamic	systems	using	Matlab.	

Even	though	we	can’t	solve	for	the	time-evolution	of	arbitrary	non-linear	systems,	there	are	some	
techniques	we	can	use	to	help	us	qualitatively	understand	their	behavior.	The	first	thing	one	usually	
does	when	analyzing	a	dynamic	system	is	see	if	there	are	any	steady-states.	This	is	easily	done	by	setting	
all	of	the	time	derivatives	to	zero,	and	trying	to	solve	the	resultant	algebraic	equations.	

For	example,	consider	again	our	simple	system:	

𝑑𝑥
𝑑𝑡

= 𝜆𝑥	

Setting	the	derivative	to	zero	yields…	

𝜆𝑥 = 0	

…which	implies	x=0.	This	is	something	of	a	trivial	solution,	as	it	tells	us	that	we	get	no	growth	if	we	don’t	
have	anything	to	start	with.	What	is	important	is	that	there	is	no	other	steady-state	solution	unless	λ=0,	
in	which	case	any	value	of	x	is	a	steady-state	solution	because	nothing	ever	grows.	

Linear	ODEs	and	Stability	
	

Copyright	2008,	2016	–	J	Banfelder,	Weill	Cornell	Medical	College	 Page	5	
	

Consider	a	more	complex	model,	the	linearized	repressilator	from	the	last	lab.	We	had…	

𝑑𝑝!
𝑑𝑡

= 𝛽 𝑚! − 𝑝! 	

At	steady	state,	we	can	see	that	mA=pA.	This	is	useful,	as	it	allows	us	to	eliminate	some	variables	under	
steady-state	conditions.	Note	that	similar	equations	would	imply	mB=pB,	and	mC=pC.	We	also	had…	

𝑑𝑚!

𝑑𝑡
= 𝛼! −𝑚! − 𝛼 ∙ 𝑝! 	

…which,	for	steady	state	conditions,	implies…	

0 = 𝛼! −𝑚! − 𝛼 ∙𝑚! 	

Similar	reasoning	gives…	

0 = 𝛼! −𝑚! − 𝛼 ∙𝑚!	

0 = 𝛼! −𝑚! − 𝛼 ∙𝑚!	

This	is	a	system	of	three	linear	equations	in	three	unknowns,	and	can	be	readily	solved	by	the	normal	
methods.	However,	note	that	there	is	a	symmetry	to	the	problem,	which	implies	that	the	solution	must	
satisfy	mA=mB=mC.	By	inspection	we	then	have…	

𝑚! = 𝑚! = 𝑚! =
𝛼!

1 + 𝛼
	

But	wait	a	minute…	When	we	did	the	lab	exercise,	we	saw	that	under	some	circumstances	the	system	
reached	a	steady	state,	and	in	others	it	did	not.	Yet	the	analysis	we	just	did	implies	that	there	should	
always	be	a	steady	state	solution	at	the	point	above.	

In	the	first	simulation	for	our	lab,	we	had	α	=	1;	α0	=	4;	β	=	0.01.	This	suggests	that	we	should	see	a	
steady	state	solution	at	mA=mB=mC=pA=pB=pC=2.	

We	can	model	the	repressilator	system	in	Matlab	using	differential	equations	and	the	ode45	solver.	We	
first	create	an	m-file	that	returns	derivatives:	

function [dydt] = repressilator(t, y, alpha0, alpha, beta)
%REPRESSELATOR Returns derivitaes from the Repressilator model
% The state variables are:
% y(1) = ma
% y(2) = pa
% y(3) = mb
% y(4) = pb
% y(5) = mc
% y(6) = pc

% Fetch variables
ma = y(1);
pa = y(2);
mb = y(3);
pb = y(4);
mc = y(5);
pc = y(6);

Linear	ODEs	and	Stability	
	

Copyright	2008,	2016	–	J	Banfelder,	Weill	Cornell	Medical	College	 Page	6	
	

dydt = [
 alpha0 - ma - alpha * pc;
 beta * (ma - pa);
 alpha0 - mb - alpha * pa;
 beta * (mb - pb);
 alpha0 - mc - alpha * pb;
 beta * (mc - pc);
];

	

Then,	in	Matlab,	we	can	run	the	model	

tspan = [0 1000];
start = [0, 1, 0, 0, 0, 0];
alpha0 = 4;
beta=0.01;
alpha = 1;
[t, y] = ode45(@repressilator, tspan, start, [], alpha0, alpha, beta);
	

Plots	show	that	we	indeed	reach	a	steady	state	where	all	concentrations	are	equal	to	two.	

plot(t,y);

Introduction	to	Stability	
Now	we	will	run	another	case,	where	α=2.5…	

alpha=2.5;
[t, y] = ode45(@repressilator, tspan, start, [], alpha0, alpha, beta);
plot(t,y);
	

…and	we	see	that	the	model	expands	indefinitely.	We	expected	a	steady	state	at	

𝑚! = 𝑝! =
𝛼!

1 + 𝛼
=

4
1 + 2.5

≅ 1.1429	

What	if	we	start	our	simulation	near	this	point…	

start = [1.1429, 1.1429, 1.1429, 1.1429, 1.1429, 1.1429];
[t, y] = ode45(@repressilator, tspan, start, [], alpha0, alpha, beta);

…we	see	plots	that	show	some	interesting	patterns.	

plot(t,y);
plot(y(:,1), y(:,2))
plot(y(:,2), y(:,4))

Pay	particular	attention	to	the	scales	of	the	plots.	It	seems	that	if	you	start	at	the	steady-state	solution,	
you	can	stay	on	it;	but	if	you	start	far	away,	you	won’t	find	it.	

Linear	ODEs	and	Stability	
	

Copyright	2008,	2016	–	J	Banfelder,	Weill	Cornell	Medical	College	 Page	7	
	

There	are	two	possibilities	here.	The	first	is	that	the	steady-state	solution	is	not	stable.	This	is	analogous	
to	a	boulder	balanced	precariously	on	the	top	of	a	mountain.	Leave	it	be,	and	it	will	stay	there.	But	give	
it	a	shove	(or	start	your	simulation	anywhere	other	than	a	perfectly	balanced	boulder),	and	the	
simulation	will	diverge	from	the	equilibrium	point.	Let’s	see	what	happens	in	our	case…	

start = [1.1429, 1.1429, 1.1429, 1.1429, 1.1429, 1.35];
[t, y] = ode45(@repressilator, tspan, start, [], alpha0, alpha, beta);
plot(t,y(:,2));
plot(y(:,1), y(:,2))
plot(y(:,2), y(:,4))
	
The	system	spirals	away	from	the	equilibrium	point.	So	we	can	see	that	the	equilibrium	is	not	stable.	

The	‘landscape’	of	our	repressilator	system	is	a	bit	complex.	For	example,	suppose	we	started	the	
simulation	at	

start = [1.1, 1.1, 1.1, 1.1, 1.1, 1.1];
[t, y] = ode45(@repressilator, tspan, start, [], alpha0, alpha, beta);
plot(t,y(:,2));
plot(y(:,1), y(:,2))
	
The	system	appears	stable.	This	is	analogous	to	a	walking	a	ridge	or	a	tightrope.	Our	boulder,	if	perfectly	
balanced	on	a	ridge,	can	roll	down	the	ridge	and	find	a	saddle-like	region	to	come	to	rest.	However,	if	
anything	pushes	it	off	the	center	of	the	ridge,	it	will	fall	off.	Unstable	equilibria	are	often	saddles,	which	
means	that	there	are	some	directions	in	which	a	perturbation	will	seems	stable,	and	some	in	which	it	
will	not.	An	equilibrium	point	is	considered	(mathematically)	stable	if	it	can	survive	a	push	in	all	possible	
directions.		

The	second	possibility	is	that	the	equilibrium	is	stable,	but	we	did	not	find	a	path	to	it.	This	is	analogous	
to	a	mountain	range	with	two	valleys.	A	boulder	sitting	in	one	basin	is	stable	(you	can	kick	it	in	any	
direction	and	it	will	come	back	to	its	stable	resting	point.	If	your	boulder	was	at	the	top	of	a	mountain,	
which	basin	it	falls	into	will	depend	on	where	it	started	from.	The	two	basins	are	called	attractors	
(because	they	attract,	or	pull,	points	on	a	trajectory	near	them	to	the	equilibrium	position).	We	will	see	
a	system	like	this	soon.	

The	bottom	line	is	that	finding	equilibrium	points	is	usually	not	that	hard	to	do	analytically;	you	just	set	
the	derivatives	to	zero.	However,	checking	for	stability	by	experimentation	is	not	so	great.	We	want	an	
analytical	means	of	doing	so.	

For	linear	systems,	we	have	the	answer	already.	We	look	at	the	eigenvalues	of	our	system.	The	real	
parts	will	tell	us	if	the	system	explodes	or	not.	Let’s	try	this	for	our	repressilator	system.	We	begin	by	
formulating	the	matrix	that	describes	our	system	of	differential	equations.	Note	that	this	is	different	
from	the	matrix	derived	from	the	same	system	for	the	difference	equation	formulation;	it	must	be	
because	that	formulation	involved	choosing	a	timestep,	τ,	which	we	don’t	need	to	do	here…	

The	system	in	matrix	form	is…	

Linear	ODEs	and	Stability	
	

Copyright	2008,	2016	–	J	Banfelder,	Weill	Cornell	Medical	College	 Page	8	
	

𝑑𝑚!

𝑑𝑡

𝑑𝑝!
𝑑𝑡

𝑑𝑚!

𝑑𝑡

𝑑𝑝!
𝑑𝑡

𝑑𝑚!

𝑑𝑡

𝑑𝑝!
𝑑𝑡

𝑑𝑦
𝑑𝑡

=

−1 0 0 0 0 −𝛼 𝛼!

𝛽 −𝛽 0 0 0 0 0

0 −𝛼 −1 0 0 0 −𝛼!

0 0 𝛽 −𝛽 0 0 0

0 0 0 −𝛼 −1 0 𝛼!

0 0 0 0 𝛽 −𝛽 0

0 0 0 0 0 0 0

𝑚!

𝑝!

𝑚!

𝑝!

𝑚!

𝑝!

1

	

We	can	write	a	function	in	Matlab	(file	is	repmat.m)	that	will	give	us	this	matrix	for	particular	values	of	
α0,	α,	and	β:	

function [repmat] = repmat(alpha0, alpha, beta)
%REPMAT return a matrix for the repressilator
% Detailed explanation goes here
repmat = [-1, 0, 0, 0, 0, -alpha, alpha0;
 beta, -beta, 0, 0, 0, 0, 0;
 0, -alpha, -1, 0, 0, 0, alpha0;
 0, 0, beta, -beta, 0, 0, 0;
 0, 0, 0, -alpha, -1, 0, alpha0;
 0, 0, 0, 0, beta, -beta, 0;
 0, 0, 0, 0, 0, 0, 0];
	

Using	Matlab,	we	can	quickly	compute	the	eigenvalues	of	this	(linear)	system	for	different	values	of	the	
parameters.	This	is	similar	to	what	you	did	in	the	lab.	

>> eig(repmat(4.0, 1.0, 0.01))

ans =

 -1.0051 + 0.0087i
 -1.0051 - 0.0087i
 -0.9898
 -0.0202
 -0.0049 + 0.0087i
 -0.0049 - 0.0087i

Linear	ODEs	and	Stability	
	

Copyright	2008,	2016	–	J	Banfelder,	Weill	Cornell	Medical	College	 Page	9	
	

 0
	

Here	we	see	that	the	real	parts	of	all	eigenvalues	are	negative,	except	for	the	last,	which	is	exactly	zero.	
This	implies	that	the	system	will	reach	a	stable	steady	state.	

Now	let	us	compute	the	eigenvalues	for	the	system	with	α=2.5…	

>> eig(repmat(4.0, 2.5, 0.01))

ans =

 -1.0129 + 0.0213i
 -1.0129 - 0.0213i
 -0.9741
 -0.0359
 0.0029 + 0.0213i
 0.0029 - 0.0213i
 0
	

Here	we	see	that	there	is	a	conjugate	pair	of	eigenvalues	with	positive	real	parts;	this	system	is	going	to	
‘explode’.	

Note	also	that	the	imaginary	parts	of	the	eigenvales	are	equal	to	0.0213.	This	tells	us	something	about	
the	frequency	of	the	osciallations	we	will	see.	Recall	that	the	solution	to	our	system	will	have	a	term	
involving	cos(ct)	and	sin(ct).	These	trigonometric	functions	complete	their	oscillations	in	2π	radians,	so	
we	expect	to	see	the	first	oscillation	complete	when	ct=2π.	Or,	in	other	words,	when	t=2π/c≈295.	Simple	
inspection	of	plots	that	we	previously	generated	confirms	an	oscillatory	period	of	about	300.	

You	can	see	from	the	above	discussion	that	the	frequency	of	oscillation	is	proportional	to	c,	the	
imaginary	part	of	a	number.	Or	you	can	view	this	as	the	period	of	oscillation	as	being	proportional	to	
1/c.	Now,	if	you	view	a	real	number	as	a	special	case	of	a	complex	number	where	the	imaginary	part,	c,	
just	happens	to	be	zero,	then	you	can	view	a	real	eigenvalue	as	giving	rise	to	a	solution	with	an	infinitely	
long	period	(or,	if	you	prefer,	a	frequency	of	zero).	

Linearizing	a	1D	System	
Note	that	we	were	able	to	use	eigenvector	analysis	to	look	at	stability	here	because	the	system	was	
linear.	For	a	non-linear	system,	this	doesn’t	work	directly	because	we	can’t	represent	the	system	in	
matrix	form,	so	there	is	nothing	to	compute	eigenvalues	and	eigenvectors	from.	

However,	if	we	are	interested	in	stability	around	a	specific	point,	we	can	always	approximate	the	system	
as	a	linear	model	in	the	region	around	that	point.	We	can	then	use	eigenvector	analysis	on	the	linearized	
model	to	tell	us	if	the	system	is	stable	at	that	point.	Let’s	look	at	a	one-dimensional	example	first…	

Linear	ODEs	and	Stability	
	

Copyright	2008,	2016	–	J	Banfelder,	Weill	Cornell	Medical	College	 Page	10	
	

𝑑𝑥
𝑑𝑡

= sin 𝑥 	

Because	sin(x)	is	periodic,	it	has	infinitely	many	steady-state	solutions.	We’ll	consider	just	two,	the	one	
at	x=0,	and	the	one	at	x=π.	

We	begin	the	process	of	linearization	by	recalling	that	a	Taylor	series	expansion	of	a	function,	f(x),	about	
a	point,	a,	is…	

𝑓 𝑥 = 𝑓 𝑎 + 𝑓! 𝑎 ⋅ 𝑥 − 𝑎 +
𝑓!! 𝑎
2!

𝑥 − 𝑎 ! +
𝑓 ! 𝑎
3!

𝑥 − 𝑎 ! +⋯	

This	can	be	written	more	compactly	as…	

𝑓 𝑥 =
𝑓 ! 𝑎
𝑛!

𝑥 − 𝑎 !
!

!!!

	

Note	that	when	the	series	is	infinite	(and	the	function	actually	has	infinitely	many	derivatives),	this	is	an	
exact	equality,	as	is	written.	

When	in	the	neighborhood	of	x=a,	the	series	may	be	truncated	without	much	loss	of	accuracy.	
Therefore,	we	can	write…	

𝑓 𝑥 ≅ 𝑓 𝑎 + 𝑓! 𝑎 ⋅ (𝑥 − 𝑎)	

If	we	take	f(x)	to	be	our	original	expression	for	dx/dt,	and	a	to	be	the	equilibrium	position	of	zero,	we	
get…	

𝑓 𝑥 = sin 𝑥 ≅ sin (0) + cos 0 ⋅ 𝑥 	

sin (𝑥) ≅ 𝑥	

This	is	a	good	approximation	to	know	in	general.	It	merely	says	that	for	small	angles,	sin(x)	can	be	
approximated	by	x	itself.	Using	Matlab,	we	can	see	sin(0.01)	=	0.0100,	and	sin(0.1)	=	0.0998	(to	within	
four	decimal	places).	

So,	in	the	neighborhood	of	the	equilibrium	position,	we	can	approximate	our	system	as	the	by	now	very	
familiar…	

𝑑𝑥
𝑑𝑡

≅ 𝑥	

The	eigenvalue	of	this	system	is,	of	course	λ=1.	This	indicates	that	the	equilibrium	point	is	not	stable,	
and	that	small	perturbations	from	it	will	cause	the	system	to	begin	to	diverge.	Note	that	we	cannot	draw	
any	conclusions	about	the	long-term	behavior	of	this	non-linear	system	from	this	eigenvalue.	This	is	only	
informative	in	the	neighborhood	of	x=0	because	we	used	a	truncated	Taylor	series.	Once	the	system	
starts	to	diverge,	the	Taylor	series	approximation	breaks	down.	

Linear	ODEs	and	Stability	
	

Copyright	2008,	2016	–	J	Banfelder,	Weill	Cornell	Medical	College	 Page	11	
	

We	can	follow	similar	logic	to	investigate	the	other	steady-state	point	we	wish	to	consider,	that	of	x=π.	
At	this	point,	the	Taylor	series	is…	

𝑓 𝑥 = sin 𝑥 ≅ sin 𝜋 + cos 𝜋 ⋅ 𝑥 − 𝜋 	

sin 𝑥 ≅ − 𝑥 − 𝜋 	

Again,	in	the	neighborhood	of	our	equilibrium	position,	we	can	write…	

𝑑𝑥
𝑑𝑡

≅ − 𝑥 − 𝜋 	

The	eigenvalue	for	this	system	is,	of	course,	λ=-1.	This	indicates	that	the	system	is	stable	in	the	
neighborhood	of	this	equilibrium.	

Note	that	whenever	we	write	a	truncated	Taylor	series	around	an	equilibrium	point,	the	first	term	is	
always	zero	(because	it	is	an	equilibrium	point).	The	second	term	has	the	form…	

𝑑
𝑑𝑥

𝑑𝑥
𝑑𝑡 !!!

	

The	work	we	have	done	here	can	be	extended	to	two	more	dimensions.	We	will	shortly	consider	a	
model	non-linear	system	and	investigate	its	stability	characteristics.	

A	1D	Phase	Portrait	
The	stability	of	the	above	system	can	be	rationalized	in	a	graphical	manner.	We	can	draw	a	one-
dimensional	phase	portrait	of	this	system	as	follows.	

	

In	locations	where	the	value	of	the	derivative	is	positive,	we	draw	a	right-facing	arrow	to	indicate	that	x	
will	increase.	Conversely,	we	draw	left-facing	arrows	wherever	the	derivative	is	negative.	The	stable	and	
unstable	points	occur	where	the	derivative	changes	sign	(that	is	what	happens	to	numbers	when	they	
cross	zero,	after	all).	Stable	points	have	arrows	pointing	into	them,	and	unstable	points	have	arrows	
pointing	away.	

A	Genetic	Switch	
Reference:	Gardner,	Cantor,	and	Collins;	Science,	2000,	as	described	in	Ellner	and	Guckenheimer,	
Dynamic	Models	in	Biology.	

Let	us	consider	a	system	similar	to	the	repressilator,	but	with	only	two	components	instead	of	three.	We	
can	summarize	the	system	with	a	diagram	like	this:	

Linear	ODEs	and	Stability	
	

Copyright	2008,	2016	–	J	Banfelder,	Weill	Cornell	Medical	College	 Page	12	
	

	

Using	reasoning	similar	to	that	which	we	applied	to	the	repressilator,	we	may	be	able	to	anticipate	what	
this	system	will	do.	If	component	A	is	overexpressed,	this	will	lead	to	an	inhibition	of	B.	The	reduction	in	
B	will	then	lead	to	an	increase	in	A.	So	we	expect	that	the	system,	in	this	case,	will	favor	A	over	B.	
However,	the	opposite	case	is	also	a	possibility;	if	B	starts	out	overexpressed,	the	resultant	inhibition	of	
A	will	lead	to	a	reinforcement	of	the	excess	levels	of	B.	Qualitatively,	we	expect	this	system	to	act	as	a	
kind	of	switch,	favoring	A	or	B.	Just	from	the	diagram	it	is	hard	to	say	anything	about	stability,	that	will	
have	to	wait	for	a	more	quantitative	treatment.	

In	our	treatment	of	this	switch	model,	we	will	make	several	assumptions	that	will	make	the	system	
easier	to	study	mathematically.	While	some	of	them	may	seem	to	be	a	bit	of	a	reach,	recall	that	the	
purpose	of	the	system	here	is	to	serve	as	a	model	for	studying	dynamic	systems	in	general.	

If	we	look	back	at	the	repressilator	model,	we	see	that	we	had	equations	like…	

𝑑𝑝!
𝑑𝑡

= 𝛽 𝑚! − 𝑝! 	

In	the	switch	model,	we	will	omit	such	equations	and	simply	take	mi=pi.	This	is	tantamount	to	assuming	
that	β	is	large,	so	the	mRNA	and	protein	quickly	reach	equilibrium.	This	is	a	convenient	assumption	for	
us,	as	it	allows	us	to	remove	two	variables	from	our	system.	Since	mA=pA,	we	will	simple	write	this	as	x.	
Similarly,	we	take	mB=pB=y.	

You	can	also	think	of	this	process	as	a	biological	control	system	that	tries	to	keep	two	concentrations	
equal.	The	time	constant	for	the	controller	is	proportional	to	1/β.	

Now	when	we	write	the	differential	equation	for	mRNA,	we’ll	put	a	new	spin	on	our	model	and	write…	

𝑑𝑥
𝑑𝑡

= −𝑥 +
𝛼!

1 + 𝑦!!
	

The	first	term	represents	degradation	of	A.	The	second	term	represents	production	of	A.	In	the	absence	
of	B	(i.e.,	when	y=0),	production	will	be	at	its	maximum	of	αx.	When	the	system	is	rich	in	B,	production	
approaches	zero.	Note	that	production	of	A	is	non-linear	in	y;	we	have	borrowed	a	Hill-like	formulation	
from	our	study	of	cooperative	enzymatic	action.	

Let	us	compare	this	to	the	linear	equation	we	used	in	the	repressilator:	

Linear	ODEs	and	Stability	
	

Copyright	2008,	2016	–	J	Banfelder,	Weill	Cornell	Medical	College	 Page	13	
	

𝑑𝑚!

𝑑𝑡
= 𝛼! −𝑚! − 𝛼 ∙ 𝑝! 	

In	this	equation,	the	third	term	is	meant	to	represent	inhibition	of	production	of	the	mRNA	of	gene	A.	
Basal	levels	of	production	were	given	by	α0,	and	were	reduced	by	the	term	α·pc.	While	this	is	fine	when	
moderate	amounts	of	the	inhibitor	are	present,	things	get	ugly	when	there	is	an	abundance	of	it.	In	this	
case,	inhibition	of	production	can	turn	into	active	degradation,	which	is	not	what	we	wanted	to	model.	
The	non-linear	formulation	we	use	for	our	switch	model	overcomes	this	problem.	

Another	way	of	looking	at	this	is	to	realize	that	the	linear	model	used	in	our	formulation	of	the	
repressilator	can	admit	negative	values	of	the	concentrations	of	the	components.	This	is	clearly	not	
biologically	reasonable.	A	model	that	does	not	allow	this	to	happen	is	clearly	better;	here	this	
improvement	comes	at	the	non-trivial	cost	of	introducing	non-linearity.	

We	can	now	repeat	our	differential	equation	for	A,	and	write	a	similar	one	for	B,	but	add	two	simplifying	
assumptions	in	the	process.	We	will	take	αx	=	αy	=	α	and	take	nA=nB=n.	This	makes	some	of	our	work	
easier,	although	you	could	model	the	system	just	as	well	without	these	assumptions.	

𝑑𝑥
𝑑𝑡

= −𝑥 +
𝛼

1 + 𝑦!
	

𝑑𝑦
𝑑𝑡

= −𝑦 +
𝛼

1 + 𝑥!
	

To	start	our	exploration	of	this	system,	we	will	take	parameters	α=3	and	n=2.	To	begin,	we	look	for	
steady	state	points	by	setting	the	derivatives	of	our	system	to	zero.	This	yields	the	equations…	

𝑥 =
3

1 + 𝑦!
	

𝑦 =
3

1 + 𝑥!
	

	

It	is	not	obvious	how	to	solve	this	system	of	simultaneous	non-linear	algebraic	equations.	It	is	helpful	to	
plot	them	on	the	same	set	of	axes	…	

x1 = 0:0.1:10;
y1 = 3 ./ (1 + x1 .^ 2);
y2 = 0:0.1:10;
x2 = 3 ./ (1 + y2 .^ 2);
plot(x1,y1,x2,y2);

In	this	case,	we	can	see	that	there	are	three	equilibrium	solutions.	

The	curves	we	plotted	are	call	nullclines.	Whenever	we	are	on	a	nullcline,	one	of	the	derivatives	is	zero.	
When	the	nullclines	cross,	both	derivatives	are	zero	and	we	are	at	a	steady	state.	Of	course,	each	steady	

Linear	ODEs	and	Stability	
	

Copyright	2008,	2016	–	J	Banfelder,	Weill	Cornell	Medical	College	 Page	14	
	

state	must	be	evaluated	separately	for	stability.	Since	the	model	is	non-linear	we	cannot	simply	
compute	the	eigenvalues	of	our	model	matrix	(there	isn’t	one).	However,	if	we	can	formulate	a	linear	
approximation	of	the	behavior	of	the	model	in	the	region	of	each	steady-state	point,	we	can	compute	
the	eigenvectors	of	the	approximate	model	and	draw	some	conclustions	about	the	stability	of	the	model	
in	that	region.	

But	first,	of	course,	we	have	to	find	the	intersections	of	the	nullclines.	While	it	might	be	possible	to	
analytically	solve	for	the	intersection	of	our	two	nullclines	in	this	case,	in	general	it	is	not	possible	to	
analytically	solve	a	system	of	arbitrary	non-linear	algebraic	equations.	Even	if	it	were	possible,	it	may	
often	be	quite	difficult	to	do	so.	We	will	therefore	be	content	to	solve	them	numerically,	using	Matlab	to	
do	the	heavy	lifting.	First	we	define	a	function	that	returns	the	“errors”	in	our	equations	(file	
switch_ss.m):	

function [F] = switch_ss(v)
%SWITCH_SS look nullclines for switch model

x = v(1);
y = v(2);

F = [x - 3/(1+y^2);
 y - 3/(1+x^2)];
	

Now	we	can	use	the	Matlab	function	fsolve	to	solve	this	system	for	us.	This	function	is	part	of	
Matlab’s	Optimization	Toolbox,	which	is	a	licensed	add-on	to	Matlab.	Assuming	that	this	is	available	to	
you,	simply	provide	fsolve	with	the	system	you	are	trying	to	solve,	and	an	initial	guess.	Since	we	have	
three	steady-state	points	that	we	need	to	solve	for,	we	will	need	to	do	this	three	times.	In	each	case	we	
will	provide	a	starting	point	close	to	the	intersection	that	we	are	interested	in;	the	plot	we	made	earlier	
will	inform	our	initial	guesses.1	

x1 = fsolve(@switch_ss, [1.2;1.1])
x2 = fsolve(@switch_ss, [0.3;2.6])
x3 = fsolve(@switch_ss, [2.6;0.3])

We	should	verify	that	these	are	indeed	solutions:	switch_ss(x2).	Our	results	are		

>> [x1 x2 x3]
ans =
 1.2134 0.3820 2.6180
 1.2134 2.6180 0.3820

																																																													
1	Some	versions	of	Matlab	surprisingly	don’t	converge	on	the	solution	properly	with	default	parameters	for	fsolve.	
This	seems	to	be	due	to	a	change	in	the	maximum	step	size	from	0.1	to	Infinity.	For	Matlab	2011a,	you	may	want	
to	use	the	older	default	value	for	this	parameter;	this	can	be	run	with	the	command…	
			x1 = fsolve(@switch_ss, [1.2;1.1], optimset('DiffMaxChange',0.1))

Linear	ODEs	and	Stability	
	

Copyright	2008,	2016	–	J	Banfelder,	Weill	Cornell	Medical	College	 Page	15	
	

Linearizing	a	Multidimensional	System	
Now	we	want	to	assess	the	stability	of	each	of	these	points.	As	was	done	in	the	1D	case,	we	will	use	a	
truncated	Taylor	series	centered	on	the	steady	state	point	of	interest.		A	truncated	2D	Taylor	series	
looks	like	this:	

𝑓 𝑥, 𝑦 ≅ 𝑓 𝑥!, 𝑦! + 𝑥 − 𝑥!
𝜕𝑓
𝜕𝑥 !!,!!

+ 𝑦 − 𝑦!
𝜕𝑓
𝜕𝑦 !!,!!

	

For	the	first	differential	equation	in	our	system,	it	turns	out	that	the	partial	derivative	with	respect	to	x	is	
fairly	trivial…	

𝑓 𝑥, 𝑦 =
𝑑𝑥
𝑑𝑡

= −𝑥 +
𝛼

1 + 𝑦!
	

𝜕𝑓
𝜕𝑥

= −1	

𝜕𝑓
𝜕𝑥 !!,!!

= −1	

The	partial	derivative	with	respect	to	y	involves	recalling	a	bit	of	differential	calculus…	

𝜕𝑓
𝜕𝑦

= −
𝛼𝑛𝑦!!!

1 + 𝑦! !	

𝜕𝑓
𝜕𝑦 !!,!!

= −
𝛼𝑛𝑦!!!!

1 + 𝑦!!!! ! = −3 ⋅ 2 ⋅
1.2134 !!!

1 + 1.2134! ! = −1.1911	

So	our	linear	approximation	of	the	system	is…	

𝑑𝑥
𝑑𝑡

= −1 ⋅ 𝑥 − 𝑥! − 1.1911 ⋅ 𝑦 − 𝑦! 	

By	symmetry,	we	also	have…	

𝑑𝑦
𝑑𝑡

= −1.1911 ⋅ 𝑥 − 𝑥! − 1 ⋅ 𝑦 − 𝑦! 	

At	this	point	it	is	useful	to	make	a	variable	transformation.	Lets	define	x*=x-x0	and	y*=y-y0.	We	then	have	

𝑑𝑥∗

𝑑𝑡
= −1 ⋅ 𝑥∗ − 1.1911 ⋅ 𝑦∗	

𝑑𝑦∗

𝑑𝑡
= −1.1911 ⋅ 𝑥∗ − 1 ⋅ 𝑦∗	

This	can	be	written	in	matrix	form	as…	

Linear	ODEs	and	Stability	
	

Copyright	2008,	2016	–	J	Banfelder,	Weill	Cornell	Medical	College	 Page	16	
	

𝑑𝒙∗

𝑑𝑡
= 𝑱 ⋅ 𝒙∗	

…where	J	is	the	matrix…	

𝐽 = −1 −1.1911
−1.1911 −1 	

Remember,	this	is	an	approximation	of	our	model.	Around	the	point	(x=x0,y=y0),	or	alternatively	around	
(x*=0,y*=0),	it	is	a	pretty	good	approximation	of	the	model.	So	if	we	want	to	know	if	our	first	steady-
state	point	is	stable,	we	can	compute	the	eigenvectors	of	this	matrix.	

>> J = [-1, -1.1911; -1.1911, -1];
>> eig(J)

ans =

 -2.1911
 0.1911

We	see	a	positive	eigenvalue,	and	conclude	that	this	equilibrium	is	not	stable.	

Symbolic	Math	With	a	Computer	
We	will	take	a	brief	diversion	here	and	explore	some	of	the	symbolic	math	capabilities	of	Matlab.	If	
figuring	out	the	derivative	above	gave	you	pause	or	brought	back	bad	memories,	than	this	section	is	for	
you.	

While	it	is	well	recognized	that	computers	are	quite	good	at	numerical	work	(such	as	solving	for	the	
intersection	of	the	nullclines),	with	the	right	software	they	also	have	good	symbolic	mathematical	
capabilities.	Here	we	will	show	you	how	use	Matlab’s	Symbolic	Math	Toolbox	(also	a	licensed	add-on)	to	
do	some	of	the	heavy	lifting.	

When	working	with	symbolic	math,	it	is	a	good	idea	to	make	sure	you	don’t	have	any	extraneous	
variables	in	your	workspace.	For	current	purposes,	enter	the	clear	command	to	make	sure	(save	
anything	you	want	to	keep	first).	

Next,	define	which	symbols	you	want	Matlab	to	treat	as	variables	that	don’t	have	values.	In	our	case,	
the	expression	we	want	to	differentiate	uses	the	symbols	x,	y,	alpha,	and	n.	We	enter	the	following	
command:	

>> syms x y alpha n

Now	we	can	define	a	function	that	we	want	to	differentiate.	

>> f = -x + alpha/(1+y^n);

We	can	now	ask	Matlab	to	differentiate	our	newly	defined	function	with	respect	to	x…	

Linear	ODEs	and	Stability	
	

Copyright	2008,	2016	–	J	Banfelder,	Weill	Cornell	Medical	College	 Page	17	
	

>> diff(f,x)
 ans =
 -1

…and	with	respect	to	y…	

 >> diff(f,y)
 ans =
 -alpha/(1+y^n)^2*y^n*n/y

Careful	inspection	of	the	second	result	shows	that	it	is	equivalent	to	our	result;	however,	Matlab	may	
need	a	little	encouragement	to	write	the	answer	a	bit	more	neatly…2	

>> simplify(ans)
ans =
-alpha/(1+y^n)^2*y^(n-1)*n

This	is	just	a	demonstration;	Matlab	can	do	more	than	this.	If	you	ever	need	to	do	a	lot	of	symbolic	work	
like	this,	you	may	also	want	to	look	at	Mathematica.	

The	Jacobian	
We	can	do	the	same	thing	for	the	second	and	third	steady-state	points.	But	before	we	do	so,	let’s	look	
back	at	how	we	got	the	matrix	J.	In	general,	this	matrix,	which	is	known	as	the	Jacobian,	will	be	the	
matrix…	

𝐽 =

𝜕
𝜕𝑥

𝑑𝑥
𝑑𝑡

𝜕
𝜕𝑦

𝑑𝑥
𝑑𝑡

𝜕
𝜕𝑥

𝑑𝑦
𝑑𝑡

𝜕
𝜕𝑦

𝑑𝑦
𝑑𝑡

!!,!!

	

Note	that	for	a	system	of	linear	differential	equations,	the	model	matrix	itself	is	the	Jacobian.	The	values	
in	that	matrix	are	applicable	(and	exactly	correct)	everywhere	in	model	space.	

	For	our	system,	we	can	write	

𝐽 =
−1 −

𝛼𝑛𝑦!!!

1 + 𝑦! !

−
𝛼𝑛𝑥!!!

1 + 𝑥! ! −1
!!,!!

	

We	can	write	a	function	in	Matlab	to	compute	this	for	us	(file	switch_j.m):	

																																																													
2	Later	versions	of	Matlab	don’t	need	such	encouragement.	

Linear	ODEs	and	Stability	
	

Copyright	2008,	2016	–	J	Banfelder,	Weill	Cornell	Medical	College	 Page	18	
	

function [J] = switch_j(a, n, x, y)
%SWITCH_J Summary of this function goes here
% Detailed explanation goes here
J= [-1, -a/(1+y^n)^2*y^(n-1)*n;
 -a/(1+x^n)^2*x^(n-1)*n, -1];
	

Now	we	can	evaluate	the	Jacobian	and	its	eigenvalues	for	the	other	stationary	points…	

>> x=x2(1); y=x2(2);
>> J = switch_j(alpha,n,x,y);
>> J

J =

 -1.0000 -0.2547
 -1.7454 -1.0000

>> eig(J)

ans =

 -0.3333
 -1.6667

It	is	apparent	that	the	second	(and	by	symmetry,	the	third)	stationary	points	are	stable.	

Phase	Portraits	
When	we	investigated	our	1D	non-linear	dynamic	system,	we	constructed	a	1D	phase	portrait	to	help	us	
understand	how	the	system	behaves	over	a	range	of	values.	2D	phase	portraits	are	very	useful	in	
understanding	the	behavior	of	more	complex	dynamic	systems.	There	is	an	excellent	and	freely	available	
add-on	tool	for	Matlab	called	pplane	that	prepares	such	diagrams.	pplane	is	developed	by	John	C.	
Polking	in	the	Department	of	Mathematics	at	Rice	University.	This	tool	can	be	downloaded	from	
http://math.rice.edu/~dfield/.	Simply	add	the	file	pplane7.m	(or	the	one	appropriate	to	your	version	
of	Matlab)	to	Matlab’s	path	to	make	it	available.	To	invoke	the	tool,	enter	the	command	pplane7	at	
the	Matlab	prompt.	

Below	are	two	screenshots	of	pplane	being	used	to	model	our	switch	system.	The	arrows	indicate	the	
direction	that	a	solution	moves	in.	The	orange	and	pink	lines	are	nullclines,	and	the	blue	lines	are	
trajectories	that	the	system	can	take.	This	tool	can	also	compute	Jacobians,	and	eigensystems	at	
stationary	points.	

Linear	ODEs	and	Stability	
	

Copyright	2008,	2016	–	J	Banfelder,	Weill	Cornell	Medical	College	 Page	19	
	

	

