
Quantitative Understanding in 
Biology

Basics of genome-wide association 
study (GWAS) analysis

Jason Mezey
jgm45@cornell.edu

March 7, 2013 (Th) 5:30-7PM

mailto:jgm45@cornell.edu
mailto:jgm45@cornell.edu


Goals for today

• Motivation: example of a successful GWAS and why we 
should care

• Structure and statistics of a GWAS analysis

• GWAS analysis issues

• History and future of GWAS
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What do we know about disease / 
quantitative loci?
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What do we know about disease / 
quantitative loci?



• Genome-wide association studies (GWAS) are used to map the genomic 
location of disease loci: 

• Associations can be identified by assessing the correlation of each genetic 
marker independently for an association with phenotype: 

GWAS structure

Manhattan plot of individual marker analysis p-values. 
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Note that association is really an 
association!!

Copyright: Journal of Diabetes and its Complications; Science 
Direct; Vendramini et al 

• If we test a (non-causal) 
genotype that is correlated with 
the causal genotype AND if 
correlated genotypes are in the 
same position in the genome 
THEN we can identify the 
genomic position of the casual 
genotype (!!) = association

• This is the case in genetic 
systems (why!?)

• Do we know which genotype is 
causal in this scenario?



• Assume that you want to know if an underlying probably model is not a correct 
description of your system (a hypothesis! that we will call H0), e.g. in an association our 
H0 could be the regression slope of phenotype on genotype is zero

• In general you measure a value “x” generated by your system - we can assess our 
hypothesis H0 by considering the probability of observing “x” conditional on H0 bring 
correct (=true) - note that this distribution need not be normal!!

Core of association: p-value
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• p-value - the probability of obtaining a value of a statistic T(x), or 
more extreme, conditional on H0 being true

• In our case, our statistic is “x” and if we assume a “one-tailed 
test” (we will get to this in a moment) our p-value could be:

• To really understand this, we need probability and statistics...

Pr
(x

 | 
H

0)
Intuition (!!): p-values



p-value 1

• We quantify our intuition as to whether we would have observed 
the value of our statistics given the null is true with a p-value

• p-value - the probability of obtaining a value of a statistic T(x), or 
more extreme, conditional on H0 being true

• Formally, we can express this as follows:

• Note that a p-value is a function on a statistic (!!) that takes the 
value of a statistic as input and produces a p-value as output in the 
range [0, 1]:

each individually, and to use this information e�ectively we define a statistic T (X = x).
Now, since we have defined (assumed) the family of probability distributions that are ran-
dom variable follows, we know the sampling distribution of our statistic assuming our null
hypothesis is correct Pr(T (X = x|� = c)). We are going to use this information to as-
sess the results that we get for an actual value of our statistic (from an actual sample)
T (x) = T (x1, x2, ..., xn) to determine whether we think H0 is wrong.

Note that just as we choose statistics (functions on our sample) that will have good prop-
erties for estimation, we also choose statistics which have good properties for hypothesis
testing. A reasonable statistic that we could use in this case is the mean of the sample
T (x) =

�n
i=1 xi. To introduce the major concepts of hypothesis testing, let’s consider an

example that we would generally never deal with in a real statistical application: a case
where our sample size is n = 1. In this case, our sample is X1 = x1, and our statistic
is T (x) =

�n
i xi = x1 (i.e. the value of our one sample), and the sampling distribution

is x1 ⇠ N(µ, 1) (i.e. the same probability distribution as our random variable - see class
for a diagram). If our H0 is correct, there would be a greater probability of our single
sample observation being in an interval around zero. What if our sample is quite far from
zero, say x1 = 2.5? We could take this as evidence that H0 is incorrect. Note that we
can never be sure that H0 is incorrect, no matter how far from zero our observation is,
because there is always the possibility that such an outcome could have occurred by chance.

To make the concept of ‘evidence against H0’ more rigorous, we will need the concept
of a p-value:

p-value ⌘ the probability of obtaining a value of T (x), or more extreme, conditional
on H0 being true.

The ‘more extreme’ part of this definition is a bit confusing at first glance, so let’s
consider our example to make this more clear. For our example, let’s assume that we
are interested in whether the value of T (x1) are more extreme in the positive direc-
tion (see class for a diagram). In this case, our p-value has the following definition:
pval = Pr(T (X1) � x1|H0 : µ = 0, true), where x1 reflects the various values our sample
could take (i.e. �1 < x1 < 1). Note that for our example, fX(x) ⇠ N(0, 1) where for
this particular case:

pval(T (x)) =

⇥ 1

x1

fX(x)dx (2)

pval(T (x)) : T (x) ! [0, 1] (3)

(see diagram on board for an example). Also, note in this particular case:

pval(T (x)) =

⇥ 1

x1

fX(x)dx = 1� FX(x) = 1�
⇥ x1

�1
fX(x)dx (4)
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Just as with estimation, we will assess this null hypothesis using a sample Pr(X = x) =
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The ‘more extreme’ part of this definition is a bit confusing at first glance, so let’s
consider our example to make this more clear. For our example, let’s assume that we
are interested in whether the value of T (x1) are more extreme in the positive direc-
tion (see class for a diagram). In this case, our p-value has the following definition:
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Assume H0 is correct (!): 
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our statistic such that it is an estimate of the parameter �. We write a parameter estimate
as �̂, and since our statistic T is an estimator, we write T (x) = �̂ or T (X = x) = �̂. Note
that since our sample has a probability distribution (a sampling distribution), our statistic
= estimator has a probability distribution Pr(T (X = x)) = Pr(�̂). Our goal when defining
our estimator is to make this probability distribution such that estimate has a reasonable
probability of getting the right parameter value or ‘close to’ the right parameter value for
most samples.

Today, we are going to consider situations where, instead of wanting to know the ac-
tual value of a parameter, we want to be able to answer a ‘yes’ or ‘no’ question about the
parameter. For example, we may be interested in whether a drug administered to a child
has an e�ect on adult height. In such a case, we are less interested on the exact e�ect of
the drug (which we might summarize with the parameter µ) but rather whether we can
say with confidence that the hypothesis that the drug has no e�ect on height is wrong. We
could use the answer to the question (is there no e�ect of the drug?) to make decisions
about how the drug will be administered or regulated. This is what we want to accomplish
in the other major ‘type’ of inference, which is hypothesis testing. Note that hypothesis
testing is a fair bit more complicated (and arguably less intuitive) than estimation. Even
if you have been exposed to the hypothesis testing framework before, it often takes several
exposures to develop a deep understanding.

We will begin our discussion of hypothesis testing by defining some of the critical con-
cepts and providing some simple examples that should help with intuition. As per the
name, we first need to define a hypothesis:

Hypothesis � an assumption about a parameter.

More specifically, we will assume that we have defined Pr(X|�) for our system and we
will now define a null hypothesis, which states that are parameter � takes a specific value
(a constant) or is an interval of values (for the moment, we will consider � to take a single
value). We use the following formalism to write our null hypothesis (H0):

H0 : � = c (1)

where c is a constant. For example, lets assume Pr(X|�) ⇥ N(µ,⇥2), where in this case we
happen to know ⇥2 = 1. We can define the null hypothesis H0 : µ = 0 in this case and we
are interested in whether we can say with confidence that our null hypothesis is ‘incorrect’
or ‘false’.

Just as with estimation, we will assess this null hypothesis using a sample Pr(X = x) =
Pr(X1 = x1, ..., Xn = xn) , which we will assume is i.i.d. Again, just as with estimation,
we assume that multiple observations of the sample have more information about µ than

2

T(x)

(see diagram on board for an example). Also, note in this particular case:

pval(T (x)) =

⇥ 1

x1

fX(x)dx = 1� FX(x) = 1�
⇥ x1

�1
fX(x)dx (5)

where FX(x) is the cumulative distribution function of X (in general, cdf’s of statistics
have a close relationship with p-values).

Shifted paragraph down.

So, how do we make use of a p-value? Let’s go back to our example case where we
assume X ⇥ N(µ,⇤2), where we assume that we know ⇤2 = 1 and where we are go-
ing to do a one-sided test of H0 : µ = 0 using a sample of size n = 1 and statis-
tic T (x1) = x1. As an example, say our sample was x1 = 0. In this case, our p-
value would be pval =

�1
0 fX(x)dx = 0.5. Similarly we have pval(x1 = 1) = 0.159,

pval(x1 = 1.65) = 0.05, pval(x1 = 2.5) = 0.0062. So, for our case where x1 = 2.5, the
probability of getting this value or more extreme, conditional on H0 : µ = 0 being true, is
quite small. Can we interpret this as evidence against H0? Yes we can, and intuitively, this
is how we assess our null hypothesis. However, this is still does not provide us a guideline
for saying ‘yes’ or ’no’ when considering the question: is H0 false? To make this decision,
we generally decide on some probability � where if pval 6 � we reject H0, i.e. we decide
that H0 is not correct. Where we set � is quite arbitrary (and as we shall see, depends on
what trade-o�s we want to make in our hypothesis testing framework) but it is often the
case that we set this value reasonably low to values such as � = 0.05 or � = 0.01. Note
that in our example, a given value of � corresponds to a specific value of X, which we will
designate c�, the critical value:

� =

⇥ 1

c↵

fX(x)dx (6)

where for � = 0.05, we have c� = 1.65 in our example (see class for a diagram). To use �
(and c�), we pre-define this value (i.e. � = 0.05) and we reject H0 if our p-value is below
this value (i.e. or equivalently x1 > c� in this case) and we cannot reject H0 if our p-value
is not below this value. Note that we can interpret � = 0.05 as a probability of 0.05 that
we would have obtained the value of our statistic or more extreme by chance, so even if
our p-value is less than �, we cannot reject H0 with absolute certainty.

Now, in our example, we have considered a case where we reject the null hypothesis if
our statistic is (equal to) or greater than a particular value. This is an example of a one-
sided test. We might want to construct a one-sided test if we think from our previous
experience that, if H0 : µ = 0 is wrong, and the true value of µ is going to be positive (or
we only case about cases where µ is positive). In general, for one-sided tests if we have
a continuous statistic T (X = x) that could take values from (+⇤,�⇤) we can define a
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is how we assess our null hypothesis. However, this is still does not provide us a guideline
for saying ‘yes’ or ’no’ when considering the question: is H0 false? To make this decision,
we generally decide on some probability ↵ where if pval 6 ↵ we reject H0, i.e. we decide
that H0 is not correct. Where we set ↵ is quite arbitrary (and as we shall see, depends on
what trade-o↵s we want to make in our hypothesis testing framework) but it is often the
case that we set this value reasonably low to values such as ↵ = 0.05 or ↵ = 0.01. Note
that in our example, a given value of ↵ corresponds to a specific value of X, which we will
designate c

↵

, the critical value:

↵ =

Z 1

c↵

f
X

(x)dx (6)
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= 1.65 in our example (see class for a diagram). To use ↵
(and c
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), we pre-define this value (i.e. ↵ = 0.05) and we reject H0 if our p-value is below
this value (i.e. or equivalently x1 > c

↵

in this case) and we cannot reject H0 if our p-value
is not below this value. Note that we can interpret ↵ = 0.05 as a probability of 0.05 that
we would have obtained the value of our statistic or more extreme by chance, so even if
our p-value is less than ↵, we cannot reject H0 with absolute certainty.

Now, in our example, we have considered a case where we reject the null hypothesis if
our statistic is (equal to) or greater than a particular value. This is an example of a one-

sided test. We might want to construct a one-sided test if we think from our previous
experience that, if H0 : µ = 0 is wrong, and the true value of µ is going to be positive (or
we only case about cases where µ is positive). In general, for one-sided tests if we have
a continuous statistic T (X = x) that could take values from (+1,�1) we can define a
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Lecture 8: Hypothesis Testing II

Lecture: February 23; Version 1: February 20; Version 2, March 15

1 Introduction

Note that two sections 2-3 (power, alternative hypotheses) were added from the previous
lecture notes.

Last lecture, we began our discussion of hypothesis tests. Today, we are going to com-
plete our general discussion with the introduction of likelihood ratio tests. We will end
today’s lecture with a brief discussion of confidence intervals. This lecture will complete
our general review of probability and statistics. Next lecture, we will begin our discussion
of the application of probability and statistics in quantitative genomics.

2 Factors that a↵ect power

As a review, recall that we have a system, we conduct an experiment, which defines a
sample space S. We define a probability function Pr and a random variable X on S in
such a way that Pr(X = x) is in a ‘family’ of probability distributions that are indexed
by parameter(s) ✓, where we do not know the specific values of the parameters. We
are interested in testing the null hypothesis H0, using a statistic T (X = x) on an i.i.d
observations of our random variable, e.g. for X ⇠ N(µ,�2). To test this hypothesis, we
define an H0, which we use to define a p-value, which is a function of our statistic. If
the p-value for the actual value of our statistic (for our specific sample, e.g. T (x) = t)
is below some pre-defined value ↵ (which determines the critical value c↵), we reject H0.
If the p-value is above this value, we do not reject H0. The various critical concepts in
hypothesis testing can be organized as follows:

H0 is true H0 is false
cannot reject H0 1-↵, (correct) �, type II error

reject H0 ↵, type I error 1� �, power (correct)
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our statistic such that it is an estimate of the parameter �. We write a parameter estimate
as �̂, and since our statistic T is an estimator, we write T (x) = �̂ or T (X = x) = �̂. Note
that since our sample has a probability distribution (a sampling distribution), our statistic
= estimator has a probability distribution Pr(T (X = x)) = Pr(�̂). Our goal when defining
our estimator is to make this probability distribution such that estimate has a reasonable
probability of getting the right parameter value or ‘close to’ the right parameter value for
most samples.

Today, we are going to consider situations where, instead of wanting to know the ac-
tual value of a parameter, we want to be able to answer a ‘yes’ or ‘no’ question about the
parameter. For example, we may be interested in whether a drug administered to a child
has an e�ect on adult height. In such a case, we are less interested on the exact e�ect of
the drug (which we might summarize with the parameter µ) but rather whether we can
say with confidence that the hypothesis that the drug has no e�ect on height is wrong. We
could use the answer to the question (is there no e�ect of the drug?) to make decisions
about how the drug will be administered or regulated. This is what we want to accomplish
in the other major ‘type’ of inference, which is hypothesis testing. Note that hypothesis
testing is a fair bit more complicated (and arguably less intuitive) than estimation. Even
if you have been exposed to the hypothesis testing framework before, it often takes several
exposures to develop a deep understanding.

We will begin our discussion of hypothesis testing by defining some of the critical con-
cepts and providing some simple examples that should help with intuition. As per the
name, we first need to define a hypothesis:

Hypothesis � an assumption about a parameter.

More specifically, we will assume that we have defined Pr(X|�) for our system and we
will now define a null hypothesis, which states that are parameter � takes a specific value
(a constant) or is an interval of values (for the moment, we will consider � to take a single
value). We use the following formalism to write our null hypothesis (H0):

H0 : � = c (1)

where c is a constant. For example, lets assume Pr(X|�) ⇥ N(µ,⇥2), where in this case we
happen to know ⇥2 = 1. We can define the null hypothesis H0 : µ = 0 in this case and we
are interested in whether we can say with confidence that our null hypothesis is ‘incorrect’
or ‘false’.

Just as with estimation, we will assess this null hypothesis using a sample Pr(X = x) =
Pr(X1 = x1, ..., Xn = xn) , which we will assume is i.i.d. Again, just as with estimation,
we assume that multiple observations of the sample have more information about µ than
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where F
X

(x) is the cumulative distribution function of X (in general, cdf’s of statistics
have a close relationship with p-values).
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So, how do we make use of a p-value? Let’s go back to our example case where we
assume X ⇠ N(µ,�2), where we assume that we know �2 = 1 and where we are go-
ing to do a one-sided test of H0 : µ = 0 using a sample of size n = 1 and statis-
tic T (x1) = x1. As an example, say our sample was x1 = 0. In this case, our p-
value would be pval =

R1
0 f

X

(x)dx = 0.5. Similarly we have pval(x1 = 1) = 0.159,
pval(x1 = 1.65) = 0.05, pval(x1 = 2.5) = 0.0062. So, for our case where x1 = 2.5, the
probability of getting this value or more extreme, conditional on H0 : µ = 0 being true, is
quite small. Can we interpret this as evidence against H0? Yes we can, and intuitively, this
is how we assess our null hypothesis. However, this is still does not provide us a guideline
for saying ‘yes’ or ’no’ when considering the question: is H0 false? To make this decision,
we generally decide on some probability ↵ where if pval 6 ↵ we reject H0, i.e. we decide
that H0 is not correct. Where we set ↵ is quite arbitrary (and as we shall see, depends on
what trade-o↵s we want to make in our hypothesis testing framework) but it is often the
case that we set this value reasonably low to values such as ↵ = 0.05 or ↵ = 0.01. Note
that in our example, a given value of ↵ corresponds to a specific value of X, which we will
designate c

↵

, the critical value:

↵ =

Z 1

c↵

f
X

(x)dx (6)

where for ↵ = 0.05, we have c
↵

= 1.65 in our example (see class for a diagram). To use ↵
(and c

↵

), we pre-define this value (i.e. ↵ = 0.05) and we reject H0 if our p-value is below
this value (i.e. or equivalently x1 > c

↵

in this case) and we cannot reject H0 if our p-value
is not below this value. Note that we can interpret ↵ = 0.05 as a probability of 0.05 that
we would have obtained the value of our statistic or more extreme by chance, so even if
our p-value is less than ↵, we cannot reject H0 with absolute certainty.

Now, in our example, we have considered a case where we reject the null hypothesis if
our statistic is (equal to) or greater than a particular value. This is an example of a one-

sided test. We might want to construct a one-sided test if we think from our previous
experience that, if H0 : µ = 0 is wrong, and the true value of µ is going to be positive (or
we only case about cases where µ is positive). In general, for one-sided tests if we have
a continuous statistic T (X = x) that could take values from (+1,�1) we can define a
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probability of getting this value or more extreme, conditional on H0 : µ = 0 being true, is
quite small. Can we interpret this as evidence against H0? Yes we can, and intuitively, this
is how we assess our null hypothesis. However, this is still does not provide us a guideline
for saying ‘yes’ or ’no’ when considering the question: is H0 false? To make this decision,
we generally decide on some probability ↵ where if pval 6 ↵ we reject H0, i.e. we decide
that H0 is not correct. Where we set ↵ is quite arbitrary (and as we shall see, depends on
what trade-o↵s we want to make in our hypothesis testing framework) but it is often the
case that we set this value reasonably low to values such as ↵ = 0.05 or ↵ = 0.01. Note
that in our example, a given value of ↵ corresponds to a specific value of X, which we will
designate c

↵

, the critical value:

↵ =

Z 1

c↵

f
X

(x)dx (6)

where for ↵ = 0.05, we have c
↵

= 1.65 in our example (see class for a diagram). To use ↵
(and c

↵

), we pre-define this value (i.e. ↵ = 0.05) and we reject H0 if our p-value is below
this value (i.e. or equivalently x1 > c

↵

in this case) and we cannot reject H0 if our p-value
is not below this value. Note that we can interpret ↵ = 0.05 as a probability of 0.05 that
we would have obtained the value of our statistic or more extreme by chance, so even if
our p-value is less than ↵, we cannot reject H0 with absolute certainty.

Now, in our example, we have considered a case where we reject the null hypothesis if
our statistic is (equal to) or greater than a particular value. This is an example of a one-

sided test. We might want to construct a one-sided test if we think from our previous
experience that, if H0 : µ = 0 is wrong, and the true value of µ is going to be positive (or
we only case about cases where µ is positive). In general, for one-sided tests if we have
a continuous statistic T (X = x) that could take values from (+1,�1) we can define a
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Lecture 7: Hypothesis Testing I

Lecture: February 21; Version 1: February 19; Version 2: March 15

1 Introduction

Last lecture, we discussed estimation (also called ‘point’ estimation) where the goal was to
make a reasonable guess (=estimate) concerning the true (unknown) value of a parameter
from a sample. Today, we are going to begin discussion of the other major ‘type’ of
inference which is hypothesis testing. Our goal here is not to say what the actual value of
the parameter is, but rather, to say with some confidence what this parameter value is not.
As we will see, hypothesis testing has a natural fit with the goals of quantitative genomics.
µ = 3

2 Hypothesis Testing

As a review, recall our broader set-up, where we are interested in knowing about a system.
To do this, we conduct an experiment, which produces a sample, where we define a sample
space S the elements of which include all possible sample outcomes. We assume a specific
probability model, by defining a probability function Pr(S), and a random variable X(S)
on this sample space, where defining the probability function Pr(S) induces a probabil-
ity distribution on our random variable Pr(X) or Pr(X = x). We assume that our true
probability distribution is in a ‘family’ of probability distributions that are indexed by
parameter(s) �, e.g. X � N(µ,⇥2), which we write Pr(X|�) or Pr(X = x|�), where we do
not know the specific values of the parameters. Previously, our goal was to estimate the
value of this unknown parameter value using a sample, which are i.i.d observations of our
random variable X written X = [X1, ..., Xn] or (X = x) = [X1 = x1, ..., Xn = xn]. Our
assumed probability distribution on our random variable X, induces a (joint) probability
distribution over all the possible samples that we could produce: Pr(X) = Pr(X1, ..., Xn)
or Pr(X = x) = Pr(X1 = x1, ..., Xn = xn) and when our sample is i.i.d, each of the
individual observations in our sample has a probability distribution that is the same as
our random variable Pr(Xi = xi|�). The process of estimation requires that we define a

1



• There are only two possible decisions we can make as a result of our 
hypothesis test: reject or cannot reject

Results of hypothesis decisions II: 
when H0 is wrong (!!)

BTRY 4830/6830: Quantitative Genomics and Genetics

Spring 2011

Lecture 8: Hypothesis Testing II

Lecture: February 23; Version 1: February 20; Version 2, March 15

1 Introduction

Note that two sections 2-3 (power, alternative hypotheses) were added from the previous
lecture notes.

Last lecture, we began our discussion of hypothesis tests. Today, we are going to com-
plete our general discussion with the introduction of likelihood ratio tests. We will end
today’s lecture with a brief discussion of confidence intervals. This lecture will complete
our general review of probability and statistics. Next lecture, we will begin our discussion
of the application of probability and statistics in quantitative genomics.

2 Factors that a↵ect power

As a review, recall that we have a system, we conduct an experiment, which defines a
sample space S. We define a probability function Pr and a random variable X on S in
such a way that Pr(X = x) is in a ‘family’ of probability distributions that are indexed
by parameter(s) ✓, where we do not know the specific values of the parameters. We
are interested in testing the null hypothesis H0, using a statistic T (X = x) on an i.i.d
observations of our random variable, e.g. for X ⇠ N(µ,�2). To test this hypothesis, we
define an H0, which we use to define a p-value, which is a function of our statistic. If
the p-value for the actual value of our statistic (for our specific sample, e.g. T (x) = t)
is below some pre-defined value ↵ (which determines the critical value c↵), we reject H0.
If the p-value is above this value, we do not reject H0. The various critical concepts in
hypothesis testing can be organized as follows:

H0 is true H0 is false
cannot reject H0 1-↵, (correct) �, type II error

reject H0 ↵, type I error 1� �, power (correct)
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Lecture 8: Hypothesis Testing II
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1 Introduction

Note that two sections 2-3 (power, alternative hypotheses) were added from the previous
lecture notes.

Last lecture, we began our discussion of hypothesis tests. Today, we are going to com-
plete our general discussion with the introduction of likelihood ratio tests. We will end
today’s lecture with a brief discussion of confidence intervals. This lecture will complete
our general review of probability and statistics. Next lecture, we will begin our discussion
of the application of probability and statistics in quantitative genomics.

2 Factors that a↵ect power

As a review, recall that we have a system, we conduct an experiment, which defines a
sample space S. We define a probability function Pr and a random variable X on S in
such a way that Pr(X = x) is in a ‘family’ of probability distributions that are indexed
by parameter(s) ✓, where we do not know the specific values of the parameters. We
are interested in testing the null hypothesis H0, using a statistic T (X = x) on an i.i.d
observations of our random variable, e.g. for X ⇠ N(µ,�2). To test this hypothesis, we
define an H0, which we use to define a p-value, which is a function of our statistic. If
the p-value for the actual value of our statistic (for our specific sample, e.g. T (x) = t)
is below some pre-defined value ↵ (which determines the critical value c↵), we reject H0.
If the p-value is above this value, we do not reject H0. The various critical concepts in
hypothesis testing can be organized as follows:

H0 is true H0 is false
cannot reject H0 1-↵, (correct) �, type II error

reject H0 ↵, type I error 1� �, power (correct)
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Results of hypothesis decisions II: 
when H0 is wrong (!!)

• There are only two possible decisions we can make as a result of our 
hypothesis test: reject or cannot reject
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Note that two sections 2-3 (power, alternative hypotheses) were added from the previous
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Last lecture, we began our discussion of hypothesis tests. Today, we are going to com-
plete our general discussion with the introduction of likelihood ratio tests. We will end
today’s lecture with a brief discussion of confidence intervals. This lecture will complete
our general review of probability and statistics. Next lecture, we will begin our discussion
of the application of probability and statistics in quantitative genomics.

2 Factors that a↵ect power

As a review, recall that we have a system, we conduct an experiment, which defines a
sample space S. We define a probability function Pr and a random variable X on S in
such a way that Pr(X = x) is in a ‘family’ of probability distributions that are indexed
by parameter(s) ✓, where we do not know the specific values of the parameters. We
are interested in testing the null hypothesis H0, using a statistic T (X = x) on an i.i.d
observations of our random variable, e.g. for X ⇠ N(µ,�2). To test this hypothesis, we
define an H0, which we use to define a p-value, which is a function of our statistic. If
the p-value for the actual value of our statistic (for our specific sample, e.g. T (x) = t)
is below some pre-defined value ↵ (which determines the critical value c↵), we reject H0.
If the p-value is above this value, we do not reject H0. The various critical concepts in
hypothesis testing can be organized as follows:
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Results of hypothesis decisions II: 
when H0 is wrong (!!)

• There are only two possible decisions we can make as a result of our 
hypothesis test: reject or cannot reject



• REMEMBER (!!): there are two possible outcomes of a hypothesis 
test: we reject or we cannot reject

• We never know for sure whether we are right (!!)

• If we cannot reject, this does not mean H0 is true (why?)

• Note that we can control the level of type I error because we decide 
on the value of 

Important concepts I

same formal way of assessing the results of the test. A p-value allow us to do this, e.g.
rejecting H0 when pval < ↵ is the same regardless of the specific test we perform. We will
use the fact that p-values have a uniform distribution later in the course when we discuss
solutions to the multiple testing issue.

A few additional important concepts:

1. There are two possible outcomes of a hypothesis test: we reject H0 or we cannot
reject H0.

2. If we cannot reject H0, this does not mean that H0 is true. This is because we could
have obtained our low p-value by chance, even when H0 is true (even if unlikely).
While people often use ‘accept’ H0 for the case where we cannot reject H0, we will
not use this phrase in this class because of the confusion this can cause, i.e. ‘accept’
seems to imply that H0 is true.

3. ↵ is called the type I error, which is the probability of incorrectly rejecting H0 by
chance when H0 is true.

4. 1� ↵ is the probability of making the correct decision not to reject H0.

5. Note that we can control the level of ↵, and hence the type I error, by setting our
critical value to a particular value. This is because we know what the sampling
distribution of our statistic will be, when assuming a specific value of our parameter.

So far, we have considered the case where H0 is true. How about the case where the true
value is di↵erent than our H0? To make the consequences of this clear, let’s consider our
example above of a normally distributed random variable, with �2 = 1, a single observation
n = 1, and a one-sided hypothesis test: H0 : µ = 0. However, in this case, let’s say that
(unknown to us), the true value of µ = 1. In this case the probability of getting an
observation such as x1 = 2.5, where we reject H0 is not all that unlikely. In fact, if we
consider ↵ = 0.05 (which means c

↵

= 1.65) we can calculate the probability 1 � � of
rejecting H0:

1� � =

Z 1

c↵

f
X

(x|µ = 1,�2 = 1)dx (10)

(see class for a diagram). We can also calculate the probability � that we will incorrectly,
not reject H0:

� =

Z
c↵

�1
f
X

(x|µ = 1,�2 = 1)dx (11)

We can similarly construct these for a two-tailed test for a case where we knew the true
value of µ (which we will never know in practice). We call 1� � is the power of the test,
i.e. the probability of making the correct decision given that H0 is false. In general, for a
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• Note that since we have induced a probability model on our r.v. -> 
sample -> statistic, and a p-value is a function on a statistic, we also 
have a probability distribution on our p-values

• This is the possible p-values we could obtain over an infinite number 
of different samples (sets of experimental trials)!

• This distribution is always (!!) the uniform distribution on [0,1] 
(regardless of the statistic or hypothesis test):

be specific to a given example with associated assumptions, the probability of a p-value is
always the same. Specifically, a p-value has a uniform distribution over the interval [0, 1,
which we may write Pr(pval) ⇥ U [0, 1]. While we haven’t seen the uniform distribution
yet, this particular distribution is pretty intuitive, i.e. each interval of the same size over
zero to one has the same probability. Why would be define p-values in such a way? This
actually makes sense, since intuitively, regardless of the test we perform, we would like the
same formal way of assessing the results of the test. A p-value allow us to do this, e.g.
rejecting H0 when pval < � is the same regardless of the specific test we perform. We will
use the fact that p-values have a uniform distribution later in the course when we discuss
solutions to the multiple testing issue.

A few additional important concepts:

1. There are two possible outcomes of a hypothesis test: we reject H0 or we cannot
reject H0.

2. If we cannot reject H0, this does not mean that H0 is true. This is because we could
have obtained our low p-value by chance, even when H0 is true (even if unlikely).
While people often use ‘accept’ H0 for the case where we cannot reject H0, we will
not use this phrase in this class because of the confusion this can cause, i.e. ‘accept’
seems to imply that H0 is true.

3. � is called the type I error, which is the probability of incorrectly rejecting H0 by
chance when H0 is true.

4. 1� � is the probability of making the correct decision not to reject H0.

5. Note that we can control the level of �, and hence the type I error, by setting our
critical value to a particular value. This is because we know what the sampling
distribution of our statistic will be, when assuming a specific value of our parameter.

So far, we have considered the case where H0 is true. How about the case where the true
value is di�erent than our H0? To make the consequences of this clear, let’s consider our
example above of a normally distributed random variable, with ⌅2 = 1, a single observation
n = 1, and a one-sided hypothesis test: H0 : µ = 0. However, in this case, let’s say that
(unknown to us), the true value of µ = 1. In this case the probability of getting an
observation such as x1 = 2.5, where we reject H0 is not all that unlikely. In fact, if we
consider � = 0.05 (which means c� = 1.65) we can calculate the probability 1 � ⇥ of
rejecting H0:

1� ⇥ =

� �

c↵

fX(x|µ = 1,⌅2 = 1)dx (12)
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• Genome-wide association studies (GWAS) are used to map the genomic 
location of disease loci: 

• Associations are identified by calculating p-values when considering an H0 
of no association between phenotype and genotype for each: 

GWAS structurethink of there being a plane that we would draw through these points where the slope
of the plane in the z-axis along the x-axis would be �a and the slope of the plane along
the y-axis would be �d, i.e. the we are projecting the values of the phenotypes into three
dimensions and the multiple regression defines a plane through the points in these three
dimensions.

For this regression model (where we are assuming a probability model of the form Pr(Y |X))
we have four parameters ✓ =

⇥
�µ,�a,�d,�

2
✏

⇤
. We are interested in a case where in the true

probability model Cov(X,Y ) 6= 0, which corresponds to any case where �a 6= 0 or �d 6= 0
(�µ and �2

✏ may be any value). As we will discuss, the way we are going to assess whether a
genotype is a causal polymorphism, i.e. by performing a hypothesis test with the following
null and alternative hypotheses:

H0 : �a = 0 \ �d = 0 (24)

HA : �a 6= 0 [ �d 6= 0 (25)

Note that intuitively, if we reject this null hypothesis, there is a relationship between the
phenotype Y and the genotype possessed by an individual, i.e. the definition of a causal
polymorphism. Also, note that cases where �a 6= 0 or �d = 0 and �a = 0 and �d 6= 0 are
such cases (where the first defines a straight line through the mean of the phenotypes asso-
ciated with each genotype and the latter defines a case where the mean of the heterozygotes
A1A2 is greater than the homozygotes). In genetic terms, a case where �d = 0 is a (purely)
additive case and any case where �d 6= 0 is a case of ‘dominance’, i.e. a case where the
mean phenotype associated with the heterozygote genotype is not mid-way between the
means of the phenotypes associated with the homozygote genotypes (a case where �a = 0
and �d 6= 0 is an example of ‘overdominance’ or ‘underdominance’).

Note section 4 on ‘quantitative genetic notation’ has been moved to the notes for next
lecture (lecture 10).
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Quantile-Quantile (QQ) plots

• An essential tool for detecting the problems in a GWAS is a 
Quantile-Quantile (QQ) plot

• quantile - regular, equally spaced intervals of a random 
variable that divide the random variable into units of equal 
distribution

• A Quantile-Quantile (QQ) plot (in general) plots the observed 
quantiles of one distribution versus another OR plots the 
observed quantiles of a distribution versus the quantiles of the 
ideal distribution

• In GWAS we use a QQ plot to plot our the quantile distribution 
of observed p-values (on the y-axis) versus the quantile 
distribution of expected p-values (what distribution is this!?)



Quantile-Quantile (QQ) plots
• How to construct a QQ plot for a GWAS:

• If you performed N tests, take the -log (base 10) of each of 
the p-values and put them in rank order from smallest to 
largest

• Create a vector of N values evenly spaces from 1 to 1 / N 
(how do we do this?), take the -log of each of these values 
and rank them from smallest to largest

• Take the pair of the smallest of values of each of these lists 
and plot a point on an x-y plot with the observed -log p-value 
on the y-axis and the spaced -log value on the x-axis

• Repeat for the next smallest pair, for the next, etc. until you 
have plotted all N pairs in order 



Quantile-Quantile (QQ) plots
• In an ideal GWAS case where there ARE NO causal polymorphisms, your QQ 

plot will be a line:

• The reason is that we will observe a uniform distribution of p-values from such a 
case and in our QQ we are plotting this observed distribution of p-value versus 
the expected distribution of p-values: a uniform distribution (where both have 
been -log transformed)

• Note that if you GWAS analysis is correct but you do not have enough power to 
detect positions of causal polymorphisms, this will also be your result (!!), i.e. it is 
a way to assess whether you can detect any hits in your GWAS (!!)
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• In an ideal GWAS case where there ARE causal polymorphisms, your QQ plot 
will be a line with a tail (!!):

• This happens because most of the p-values observed follow a uniform 
distribution (i.e. they are not in LD with a causal polymorphism so the null 
hypothesis is correct!) but the few that are in LD with a causal polymorphism 
will produce significant p-values (extremely low = extremely high -log(p-values)) 
and these are in the “tail” 

• This is ideally how you want your QQ-plot to look - if it does, you are in good 
shape!
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• In practice, you can find your QQ plot looks different than either the “null GWAS” case or 
the “ideal GWAS” case, for example:

• This indicates that something is wrong (!!!!) and if this is the case, you should not interpret 
any of your significant p-values as indicating locations of causal polymorphisms (!!!!) 

• Note that this means that you need to find an analysis strategy such that the result of your 
GWAS produces a QQ plot that does NOT look like this (note that this takes experience 
and many tools to do consistently!)

• Also note that unaccounted for covariates can cause this issue and the most frequent 
culprit is unaccounted for population structure (see lab!)
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Deciding on which p-values 
indicate associations: Type 1 error
• Say your QQ looks good - how do we decide on a cutoff 

for determining which p-values are significant?

• Recall that Type 1 error is the probability of incorrectly 
rejecting the null hypothesis when it is correct

• We can control Type 1 error by setting it to a specified 
level but recall there is a trade-off: if we set it to low, we 
will not make a Type 1 error but we will also never reject 
the null hypothesis, even when it is wrong 

• In general we like to set a conservative Type 1 error for a 
case where we perform many tests (why is this!?)

• To do this, we have to deal with the multiple testing problem



Multiple Testing

• Say that we perform N hypothesis tests 

• Recall that if we set a Type 1 error to a level (say 0.05) 
this is the probability of incorrectly rejecting the null 
hypothesis

• If we performed N tests that were independent, we 
would therefore expect to incorrectly reject the null 
N*0.05 and if N is large, we would therefore make LOTS 
of errors (!!)

• This is the multiple testing problem = the more tests we 
perform the greater the probability of making a Type 1 
error



Correcting for multiple tests I

• Since we can control the Type I error, we can correct 
for the probability of making a Type 1 error due to 
multiple tests

• There are two general approaches for doing this: those 
that involve a Bonferroni correction and those that 
involve a correction based on the estimate the False 
Discovery Rate (FDR) 

• Both are different techniques for controlling Type 1 
error but in practice, both set the Type I error to a 
specified level (!!)



Correcting for multiple tests II
• A Bonferroni correction sets the Type I error for the entire 

set of N tests using the following approach: for a desired 
type 1 error       set the Bonferroni Type 1 error        to 
the following:

• We therefore use the Bonferroni Type I error to assess 
EACH of our N tests

• For example, if we have N=100 and we want an overall 
Type 1 error of 0.05, we require a test to have a p-value 
less than 0.0005 to be considered significant

marker when there is no causal polymorphism in LD, i.e. we do not consider a case where
we reject the null for a marker in LD with a causal polymorphism a type I error. Next
sentences moved to section above.

A potential source of Type I error in GWAS arises from the multiple testing problem. Recall
that the sampling distribution of p-values, when the null hypothesis is true, is uniform, i.e.
Pr(pval) ⇠ unif [0, 1]. This means that if we were to repeat a large number of independent
hypothesis tests, we would expect the p-values to follow a uniform distribution, such that
some of the p-values would be very low just by chance. More precisely, if we set a Type I
error at say ↵ = 0.05 we would incorrectly reject the null hypothesis in approximately 5%
of the cases. If we did a large number of tests, say a million, this would produce a very
large number of false positives. This is e↵ectively the case we have in a GWAS (with the
one di↵erence that many of the tests of markers are correlated, an issue we will discuss
next lecture). If we have N markers, we will perform N hypothesis tests, which means if
our ↵ is set relatively high, we will expect to get a large number of false positives by chance.

Now, the nice property of Type I error is that we can control this error rate by setting ↵
lower. However, there is a trade-o↵: the lower we set the Type I error, the lower the power
of our hypothesis tests (see lecture 7). We therefore would like to adjust the Type I error
but how should this be done? It turns out, there is no perfect way to set the Type I error
and all proposed methods have drawbacks. Here we will consider three common approaches
for controlling Type I error in GWAS: 1. Bonferroni correct, 2. Benjamini-Hochberg cor-
rection (which is one way of implementing a False Discovery Rate (FDR) correction), and
3. a permutation approach.

A Bonferroni correction is applied as follows. Say we are interested in controlling the
probability of making one Type I error at ↵ among N tests. A strategy for doing this is
to set a Bonferroni adjusted Type I error ↵

B

, which uses the formula:

↵
B

=
↵

N
(13)

Note that a Bonferroni correction controls the Type I error of the entire experiment (i.e.
the probability of making one or more Type I errors) to 0.05 or, more precisely, to a level
that is less that 0.05 (i.e. a standard Bonferroni correction bounds the Type I error at less
than 0.05 because of how this correction is derived). For example, if we were interested in
controlling the probability of a single Type I error among N = 1, 000, 000 tests to ↵ = 0.05,
we would set the Type I error to ↵

B

= 0.05/1, 000, 000. It turns out that a Bonferroni
correction makes some assumptions (which we will not describe here), which in fact sets
the probability of making a single Type I error to a level even lower than ↵. A drawback
of these assumptions is a Bonferroni correction is very ‘conservative’, i.e. there is a low
probability of making a Type I error by also low power. This is particularly problematic
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marker when there is no causal polymorphism in LD, i.e. we do not consider a case where
we reject the null for a marker in LD with a causal polymorphism a type I error. Next
sentences moved to section above.
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error at say ↵ = 0.05 we would incorrectly reject the null hypothesis in approximately 5%
of the cases. If we did a large number of tests, say a million, this would produce a very
large number of false positives. This is e↵ectively the case we have in a GWAS (with the
one di↵erence that many of the tests of markers are correlated, an issue we will discuss
next lecture). If we have N markers, we will perform N hypothesis tests, which means if
our ↵ is set relatively high, we will expect to get a large number of false positives by chance.

Now, the nice property of Type I error is that we can control this error rate by setting ↵
lower. However, there is a trade-o↵: the lower we set the Type I error, the lower the power
of our hypothesis tests (see lecture 7). We therefore would like to adjust the Type I error
but how should this be done? It turns out, there is no perfect way to set the Type I error
and all proposed methods have drawbacks. Here we will consider three common approaches
for controlling Type I error in GWAS: 1. Bonferroni correct, 2. Benjamini-Hochberg cor-
rection (which is one way of implementing a False Discovery Rate (FDR) correction), and
3. a permutation approach.

A Bonferroni correction is applied as follows. Say we are interested in controlling the
probability of making one Type I error at ↵ among N tests. A strategy for doing this is
to set a Bonferroni adjusted Type I error ↵

B

, which uses the formula:

↵
B

=
↵

N
(13)

Note that a Bonferroni correction controls the Type I error of the entire experiment (i.e.
the probability of making one or more Type I errors) to 0.05 or, more precisely, to a level
that is less that 0.05 (i.e. a standard Bonferroni correction bounds the Type I error at less
than 0.05 because of how this correction is derived). For example, if we were interested in
controlling the probability of a single Type I error among N = 1, 000, 000 tests to ↵ = 0.05,
we would set the Type I error to ↵

B

= 0.05/1, 000, 000. It turns out that a Bonferroni
correction makes some assumptions (which we will not describe here), which in fact sets
the probability of making a single Type I error to a level even lower than ↵. A drawback
of these assumptions is a Bonferroni correction is very ‘conservative’, i.e. there is a low
probability of making a Type I error by also low power. This is particularly problematic
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Correcting for multiple tests III

• A False Discovery Rated (FDR) based approach (there are many 
variants!) uses the expected number of false positives to set (=control) 
the type 1 error

• For N tests and a specified Type 1 error, the FDR is defined in terms or 
the number of cases where the null hypothesis is rejected R:

• Intuitively, the FDR is the proportion of cases where we reject the null 
hypothesis that are false positives 

• We can estimate the FDR, e.g. say for N=100,000 tests and a Type I error 
of 0.05, we reject the null hypothesis 10,000 times, the FDR = 0.5

• FDR methods for controlling for multiple tests (e.g. Benjamini-
Hochberg) set the Type 1 error to control the FDR to a specific level, 
say FDR=0.01 (what is the intuition at this FDR level?)

hypothesis for a marker when there is no causal polymorphism in LD, i.e. we do not con-
sider a case where we reject the null for a marker in LD with a causal polymorphism a
type I error. Next sentences moved to section above.

Last lecture, we defined a Bonferroni adjusted Type I error ↵B strategy, which uses the
formula:

↵B =
↵

N
(1)

Recall that a drawback of a Bonferroni correction is the approach is very ‘conservative’, i.e.
there is a low probability of making a Type I error but also low power. This is particularly
problematic in cases where the number of N markers (tests) and the sample size n is not
particularly large. Larger sample sizes are required to produce lower p-values. This means
that a Bonferroni correction using a large N can make the power of GWAS tests so low that
true positives do not produce significant results, i.e. the power is extremely low. However,
a Bonferroni correction is a good strategy for keeping Type I error extremely low and it
is often applied in GWAS studies, where significant tests at a Bonferroni correct Type I
error are considered to have a very low probability of being false positives.

A class of less conservative approaches for correcting Type I error makes use of the concept
of a False Discovery Rate (FDR). These approaches include many variants. To get some
intuition concerning an FDR, consider the following example. If we have N = 1, 000, 000
independent tests, we would expect 50,000 of them to incorrectly reject the null hypothesis
by chance with a Type I error rate set to ↵ = 0.05. What if we were to perform the GWAS
study and we reject the null in 100,000 cases? This is a far greater number than we would
expect to reject by chance if all of the tests were false positives. This may therefore indicate
that some of these tests that we rejected were actually true positives. A way of calculating
the proportion of these tests that are false positives is to calculate a False Discovery Rate
(FDR):

FDR =
N ⇤ ↵
R

(2)

where R is the number of tests where H0 was rejected. For our simplistic example, the FDR
would be 0.5, indicating that half or the cases where we rejected H0 reflect true positives.

Now unfortunately, we have now way of knowing which of the tests where we rejected
the null are the false positives, only the proportion, i.e. we can’t say for any one test
whether it is a false positive or not. However, a way to deal with this problem is to set
the FDR rate to some specified low level, e.g. FDR = 0.1. In such cases, the FDR is low
enough that the probability of a case where we rejected the null hypothesis of being a false
positive is so low, we can be relatively confident that it represents a true positive. We can
identify such a level by setting FDR in equation (12) to a desired level (say FDR = 0.1)
and considering ↵ in equation (12) to be the p-value for which we want to consider tests
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History and future of 
GWAS

• Modern age of GWAS started in ~2007 with the 
Wellcome Trust Case Control Consortium

• Since then, several hundred association hits have been 
been replicated (thousands have not been replicated)

• Of these several hundred, in a few cases we have a great 
candidate gene (and in even fewer a causal polymorphism!)

• So, one issue is how many of these hits are correct and 
actually useful



Another issue...



The next GWAS wave: 
consortiums and next-gen

CHARGE - S



Importance of GWAS

• Regardless of what we find in the next wave, people will 
always do GWAS analyses, i.e. it is a basic experiment and 
analysis that provides information on genetics!!

• They will always be useful for traits with simple genetics, 
i.e. Mendelian

• They are also the core of eQTL (xQTL) analyses 



=5<A<?202=A<?@��(56@�:.A�.==2.?21�A<�0<??2@=<;1�A<�A52�4.=
@22;�/2AD22;�A52�&%��.;1�A52�$'!�/F�9645A�:60?<@0<=F�
�	���������� �����
��
�� �����
���$3� A52� .==?<E6:.A29F

���			� 9<06� ?2=?2@2;A21� <;� A52��33F:2A?6E� C@��'#%�056=�
�	���� =.@@21� A52� >B.96AF� 0<;A?<9� 6;0<?=<?.A21� 6;A<� A52
"�� ��.94<?6A5:��$;2�.3320A21� @.:=92�D.@�0<;A.:6;.A21
.;1� D.@� 2E09B121� 3?<:� A52� .;.9F@6@�� �<:=.?6@<;� <3� AD<
1B=960.A21�@.:=92@��A<�.@@2@@�A52�0<;@6@A2;0F�<3�A52�"�� �
=?<4?.:��3<B;1������<3�A52�0.99@�A<�/2�612;A60.9�6;�A52�36?@A
1B=960.A2��.;1�������6;�A52�@20<;1�1B=960.A2��3<?�.;�.C2?.42
<3� ������� .;1� :<@A� :6@:.A0521� 0.99@� D2?2� /2AD22;� .;
B;09B@A2?21�0.99�.;1�.�1236;21�0.99�

�6@52?��E.0A�.;.9F@6@��0<:=.?6;4�42;<AF=2@�<3�0.@2@�A<
0<;A?<9@��612;A63621�.;�.@@<06.A6<;�@64;.9�<;����
����64B?2���
2EA2;16;4�<C2?���"/�.;1�6;09B16;4����'#%@�A5.A�2E022121�A52
�<;32??<;6� 0<??20A21� @64;6360.;02� A5?2@5<91� ��!<4
	�=�
?.;42�����I
	�	��� (./92� ���� (52� =2.8� =�C.9B2� ��
!<4
	�=��
	�	��� D.@� @5.?21� /F� @6E� '#%@� 0<:=?6@6;4� .;
6;A2?C.9� <3� .==?<E6:.A29F� �� "/� ����
��� �����	���	I
���
���
���� �99� .3320A21� 1<4@� D2?2� 5<:<GF4<B@� .A� A52@2
'#%�9<06��@B442@A6;4�.�?202@@6C2�:<12�<3�6;52?6A.;02��*6A5
A5.A� 6;�:6;1��.99�42;<AF=2�0.99@�<;����
��D2?2�.964;21� A<
612;A63F� .� 5<:<GF4<@6AF� /9<08�� A5.A� 6@��D52?2� .99� 42;<AF=2
0.99@� 3<?� .99� .3320A21� 1<4@� D2?2� 5<:<GF4<B@�� /2AD22;

�64B?2����&2@B9A@�<3�42;<:2�D612�.@@<06.A6<;�@AB1F�6;�0.;6;2�0<;2�?<1�1F@A?<=5F����(52�@A.A6@A60.9�@64;.9��F�.E6@��;24.A6C2�!<4
	�,�6@52?
2E.0A�A2@A���A.6921�=?</./696AF-��3<?�.@@<06.A6<;�/2AD22;�0.;6;2�@6;492�;B092<A612�=<9F:<?=56@:��'#%��42;<AF=2�.;1�0.;6;2�0<;2�?<1�1F@A?<=5F
���0?1���=52;<AF=2��=9<AA21�.4.6;@A�'#%�05?<:<@<:.9�9<0.A6<;������12:<;@A?.A2@�.�16@A6;0A�=2.8�<;�0.;6;2�05?<:<@<:2�
������
�����?22;
1<A@�.?2�'#%@�3<?�D5605�A52�.@@<06.A6<;�@64;.9�2E022121�A52��<;32??<;6�A5?2@5<91�3<?�42;<:2�D612�@64;6360.;02���5?<:<@<:2�+�6@�?2=?2@2;A21
/F�A52�;B:/2?@����.;1�	���<:<GF4<@6AF�.;.9F@6@�<3�'#%�42;<AF=2@�����6;�A52�?246<;�<3����
��F62916;4�A52�=2.8�.@@<06.A6<;�@64;.9��?2C2.9@
52A2?<GF4<@6AF�A5?<B45<BA�A52�6;A2?C.9�6;��
�;<;.3320A21�0<;A?<9�1<4@��.;1�12:<;@A?.A2@�.�����"/�5<:<GF4<@6AF�/9<08�6;��	�0?1��.3320A21
1<4@���2;<AF=2@�.?2�0<9<?�0<121�.@�3<99<D@��=6;8�.;1�4?22;�?2=?2@2;A�A52�:.7<?�.;1�:6;<?�42;<AF=2@�</@2?C21�6;�.3320A21@��?2@=20A6C29F�
F299<D�6@�52A2?<GF4<B@��.;1�D56A2�6@�:6@@6;4�1.A.���9.08�96;2@�/<?12?�A52�����"/�5<:<GF4<@6AF�/9<08��&23@2>�42;2@�@0?22;21�.@�=<A2;A6.9
=<@6A6<;.9� 0.;161.A2@� 3<?� 0?1�� 6;� A52� =?2@2;A� @AB1F� �.??<D52.1@��� .;1����"� 3.:69F� 42;2@� 612;A63621�D6A56;� A52� 0?1��:6;6:.9� 96;8.42
16@2>B696/?6B:�6;A2?C.9��.??<D@��.?2�6;160.A21�D6A5�.;;<A.A6<;�.;1�<?12?�0<;@6@A2;A�D6A5�A52��.;�.:��0.;6;2�42;<:2�.@@2:/9F�����;<A�1?.D;
A<�@0.92��

�
�����������
	���������
���	����	��5AA=���DDD�:<9C6@�<?4�:<9C6@�C
��.
��� H��	
	�"<920B9.?�)6@6<;


��	

Mendelian disease: Canine cone-rod 
dystrophy (crd3) in Glen of Imaal 

Terriers



expression Quantitative Trait 
Locus (eQTL) analysis

• Lung Cancer. 2009 Feb;63(2):180-6. Genetic variants in 
GTF2H1 and risk of lung cancer: a case-control analysis in a 
Chinese population.



That’s it!


