Use of Bayesian Statistical Techniques in
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Since DNA defines the biochemical recipe for the genesis of
organisms, sequencing allows us to create molecular portraits

of development and disease at single-base resolution.
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Understanding the genome’s
mutation, selection, and/or drift
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What erudition do we have now on the functional
elements?

» Currently limited amount of
Old School EST info at NCBI

1.2 million sequence reads in brain

(1990-2009) »EST data is expensive, time-

consuming (cloning), and
exhibits 3’ bias.

dbEST libraries

o I ”I -------- »Much EST and cDNA data is
ShyEERaE SRS for whole brains, and few
libraries exist with region-
specific data.

New School:
One run of a NGS machine = billions of sequence reads in days




Description/Discussion of the Various
Technologies

* The goal of the Archon X prize in Genomics is to
enable a $1,000 genome,

e Currently at $3,000-550,000

e Certain platforms are better suited for certain
tasks:

— Counting applications (ChIP-Seq, RNA-Seq) need more
reads

— De novo assembly work needs longer reads

— Whole genome re-sequencing requires lower errors
rate and high processivity



But, there are many options:

Platform

Roche/454’s
GS FLX

Titanium

Illumina/
Solexa’s GA,

I

Life/APG’s
SOLID 3

Polonator
G.007

Helicos
BioSciences
HeliScope

Pacific
Biosciences
(target
release:
2010)

NGS
chemistry

Library/
template
preparation

Frag, MP/ PS
emPCR

Frag, MP/ RTs

solid-phase

Frag, MP/ Cleavable

emPCR probe SBL

MP only/ Non-

emPCR cleavable
probe SBL

Frag, MP/ RTs
single
molecule

Frag only/ Real-time
single

molecule

Read
length
(bases)

330*

75 or

100

50

26

32%

964*

Run
time

(days)

0.35

4,98

75,145

oS

8$

N/A

Gb
per
run

0.45

18%,
359

30%,
508

125

37%

N/A

Machine Pros

cost

(USS)
500,000

540,000

595,000

170,000

999,000

N/A

Longer reads
improve
mapping in
repetitive
regions; fast
run times

Currently the
most widely
used platform
in the field

Two-base
encoding
provides
inherent error
correction

Least
expensive
platform;
open source
to adapt
alternative

NGS

chemistries

Non-bias
representation
of templates
for genome
and seg-based
applications

Has the
greatest
potential
forreads

exceeding
1kb

Cons

High reagent
cost; high
error rates

in homo-
polymer
repeats

Low
multiplexing
capability of
samples

Long run
times

Users are
required to
maintain

and quality
control
reagents;
shortest NGS
read lengths

High error
rates
compared
with other
reversible
terminator
chemistries

Highest
error rates
compared
with other
NGS

chemistries

Biological
applications

Bacterial and insect
genome de novo
assemblies; medium
scale (<3 Mb) exome
capture; 16S in
metagenomics

Variant discovery

by whole-genome
resequencing or
whole-exome capture;
gene discovery in
metagenomics

Variant discovery

by whole-genome
resequencing or
whole-exome capture;
gene discovery in
metagenomics

Bacterial genome
resequencing for
variant discovery

Seq-based methods

Full-length
transcriptome
sequencing;
complements other
resequencing efforts
in discovering large
structural variants and
haplotype blocks

Refs

D. Muzny,
pers.
comm.

D. Muzny,

pers.
comm.

D. Muzny,
pers.
comm.

].
Edwards,
pers.
comm.

91

S. Turner,
pers.
comm.

Michael
Metzker,
2010



lllumina SBS Technology

Reversible Terminator Chemistry Foundation
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http://www.illumina.com/technology/sequencing_technology.ilmn




Fraction of base calls

Quality Scores vary
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Pyrosequencing

Roche/454 — Pyrosequencing
1-2 million template beads loaded into PTP wells

Flow of single dNTP type across PTP wells ==>

Polymerase
APS

PP

Sulphurylase ATP

Luciferase Luciferin

Light and oxyluciferin

Flowgram

TCAGGTTTTTTAACAATCAACTTTTTGGATTAAAATGTAGATAACTG
CATARATTAATAACATCACATTAGTCTGATCAGTGAATTTAT

]— 5-mer
:|— 4-mer

3-mer
N F 2-mer

_:|- l-mer

Singl ded

2
DNA template

Sulfurylase

ATP
Luciferase
light

CDD camera

Signal detection

Pyrogram
~ Nucleotide added

ATACTG Nucleotide sequence

Metzker, 2010



Single Molecule Real-Time

Pacific Biosciences — Real-time sequencing

Phospholinked hexaphosphate nucleotides

Limit of detection zone

Fluorescence pulse

INtensity s

Epiflucrescence detection

Metzker, 2010



Direct Detection of Methylation

Approach: Kinetic detection of methylated bases during SMRT DNA sequencing

Example: N®-methyladenosine (MA)

Fluorescence
intensity (a.u.)

705 710 715 720 725 730 735 740 745

Ay, Time (s)
° 4001 G T G A T AAGT A A
P e A
T ¢ G A Ss
LRI T T |
0 ‘W""“l‘

1045 1050 1055 1060 1065 1070 1075 1080 1085
— Time (s)




detect other base modifications

5-methylcytosine (™C)
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Watch Translation in Real-Time
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Full-length cDNA sequencing

PacBio Reads Mapping to ARL6IP1 mRNA Splice Variants
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Essentially,
11 million
very small
pH meters

“Post-Light,”
Semi-Conductor Sequencing

\A—T =A —v\
nuclecphilic attack from

P} C=G O’\.\‘I Fydroxy! group
P2/ ¢ %
O [-ofoo
o} o O
-

Hydrogen bonded incoming dGTP

DNA(nucleotide + 1) +

PYROSPHOSPHATE + MAGESIUM+PROTON

Purushothaman et al, 2005
lonTorrent, Inc.



{JNANOPORE DNA Sequencing
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Exonuclease-Seq Strand-Seq

MinION GridION



@1 LU e eS8 Other (Maybe Killer) Apps

Robust polymer bilayers on array chip designed
for complex samples eg@ I serum ~

Analyte

Direct RNA Sequencing Small molecule



Each Platform has various sources of
noise, and thus Error

De-Phasing

— Lagging strand dephasing from incomplete
extension

— Leading strand dephasing from over-extension
Dark Nucleotides
Polymerase errors (10> to 107)

Platform-specific errors
— lllumina more likely to have error after ‘G’
— PCR-based methods miss GC- and AT-rich regions



Alignment to the genome

chr7: 3242227a| 32422275| s2422310|
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Solexa reads from various regions of the eav"lu numan brain
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UCSC Gene Fredictions Based on RefSed, UniFrot, GenBank,
Refseq Genes

and Comparat ive Genomics
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Known and Predicted RNA Transcription in the ENCODE Regions
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Analyzing High-Resolution Data

* Bayesian Methods

* Hidden Markov Models

* Permutation Testing

* Circular Binary Segmentation
* Seed-seeking

* Least Squares Regression

* Democratic Voting




Prior

« The prior function Pr (H) gives the probability of different possible
values of the quantity of interest before the data are considered —
that is, it represents the state of knowledge prior to the data.

Prior may be broad or flat if we have few data (non-informative prior),
or peaked if we have more information (informative prior).
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Unknown quantity of interest

(Population size, length at sexual maturity,
haplotype frequency, model parameter)




Likelihood

« The likelihood function Pr (data | H) gives the probability of
obtaining the data, given different possible values of the
unknown quantity of interest (the “hypothesis™ H).

The likelihood is calculated using a statistical model, which
represents the process that produced the data. The likelihood
function connects the parameters of the model to the data.

Likelihood

Unknown quantity of interest

(Population size, length at sexual maturity,
haplotype frequency, model parameter)




Posterior

The posterior function Pr (H | data) gives the probability of different
possible values of the quantity of interest after the data are considered —
that is, it represents the state of knowledge posterior to the data.

The posterior is a combination of the prior (what we knew before) and the
likelihood (what the data told us).

The difference between the prior and the posterior indicates how much
we learned from the data.

7N

Unknown quantity of interest

Probability

(Population size, length at sexual maturity,
haplotype frequency, model parameter)



Paradigm for Bayesian inference

posterior likelihood x prior

new state information current state
of knowledge from new data of knowledge

Thus, in Bayesian reasoning, new data update the current
state of knowledge through Bayes’ Theorem. The result is
a new state of knowledge represented by the posterior.




Bayes’ Theorem

(H) The Hypothesis (the unknown) and x = data
p (H)

p (data)

p (H| data) =

posterior = x prior




2 fundamental Bayesian concepts:

1. Things that are unknown are represented by
probability distributions.

2. Things that are known (data) are used to
improve the knowledge of unknowns through
Bayes’ Theorem.




Bayesian view ot cancer

* 1% ot women at 40 yrs have breast cancer
(Prio1)

* Mammography diagnoses 8/10 correctly
(true positive rate, talse negative rate)

* 10% of mammographies are talse positives

* If you get a positive result, what are your
odds of having breast cancer?




10,000 patients
/\

healthy
9,900

patients

10% false

negatives

8/10 true
positives

C healthy

80 990
patients patients




Bayes Theorem depends on the prior

probability (pr(A)):

Pr(B|A) Pr(A) A = have cancer
Pr(B) B = positive result

Pr(A|B) =

.8*.01
8*.01 +.1*.99

=7.5%




patient

1,000,000 patients
/\

8/10 true
positives

C healthy

~.8 9,999
patients patients

healthy

999,999
patients

10% false

negatives

0.8

10,000

=0.0008%




Q. What is the Bayesian Conspiracy?

A. The Bayesian Conspiracy is a multinational, interdisciplinary, and shadowy group of scientists
that controls publication, grants, tenure, and the illicit traffic in grad students. The best way to
be accepted into the Bayesian Conspiracy is to join the Campus Crusade for Bayes in high school
or college, and gradually work your way up to the inner circles. It is rumored that at the upper
levels of the Bayesian Conspiracy exist nine silent figures known only as the Bayes Council.

http://yudkowsky.net/rational/bayes



Applications of Bayes to DNA-Seq



GATK single sample genotype likelihoods

Likelihood of the
Likelihood for Prior for the data given the

the genotype genotype genotype Independent base model

Bayesian
model

LGID)=PG)P(DIG)= ] POIG)
b E{goud a base.s'}
* Priors applied during multi-sample calculation; P(G) =1

* Likelihood of data computed using pileup of bases and
associated quality scores at given locus

* Only “good bases” are included: those satisfying minimum
base quality, mapping read quality, pair mapping quality, NQS

* P(b | G) uses a platform-specific confusion matrix
* L(G|D) computed for all 10 genotypes



Each Platform is slightly different, and so
intrinic errors are different

900

800 -

B Roche
700 - m Hel
LIF
000 - W ILM non stranded
500 - M LM stranded

300 1 L

200 - I

100 - {{—(

Number of Mismatches per Million Alighed Bases
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T

T

T
Del A
Del C
DelG |
Del T
Ins A
Ins C
Ins G
Ins T

Type of Mismatch
SeQC Consortium



The Broad Unified Genotyper SNP caller multiple-
sample allele frequency and genotype estimates

Sample-associated reads Genotype likelihoods
— Allele frequency
— T Individual 1 ™\
Individual 2 . Joint estimate SNP
across samples S
- Individual N | N

Genotype frequencies

* This approach allows us to combine weak
single sample calls to discover variation
among samples with high confidence

See http://www.broadinstitute.org/gsa/wiki/index.php/Unified genotyper for more information




SNIP-Seq SNP calling

For each potential variant site in the sequenced region:

Set the base quality value for each base call to the lllumina
quality value

Fork=1, 2,...
a. Sample a genotype for each individual from the posterior
distribution using a heterozygote prior of 0.001.
b. Recalibrate the quality score for each base call using genotypes
for all individuals.
If the genotype of any individual is different from the
reference, identify position as a SNP.

Sample a genotype for each individual from the posterior
distribution computed using a heterozygote prior of 0.2.

Bansal et al, 2010



Population-based models can
overcome systematic errors, but...



Population Stratification 1s from the
migration patterns of haplotypes
throughout human history

S




North-south in PC1-PC2 space ©
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Applications of Bayes to RNA-Seq



Microarrays vs. RNA-Seq

RNA-Seq: An assessment of technical reproducibility and
comparison with gene expression arrays

Marioni and Mason et. al, Genome Research, 2008




Data Analysis: What genes are
differentially expressed?

e Barly days—fold change cutoffs (e.g., 2x difference or better)
* not a very satisfying approach:
-doesn’t take into account variance

-misses any small changes

fold change

i

Here, “A” has a fold change
>2.5, but varies greatly between
replicate experiments. “B” has a
fold change of only 1.75, but
changes reliably each time the
experiment is performed.



Experimental Design:
Liver vs. Kidney

Liver sample Kidney sample

| |

Total RNA Total RNA

L

MRNA purification MRNA purification

| |
=

Hybridization of each sample Sequencing each sample
to Affymetrix microarrays in 3 using Sofexa on 7 lanes

technical replicates across two plates

\ /

Analysis to find differentially expressed genes and
comparison between technologies




Metric for RNA-Seq Expression

RPKM:
Reads per Kilobase per Million Reads
Normalizes for (1) gene size and (2) sequencing depth
(~0.1-1 transcript/cell)

N reads o 1 gene o 1000 bp 1 Millionreads
X
1 gene B bp 1Kb Y total reads

RPKM =

Y = (exons, introns, intergenic reads)

FPKM=fragments-PKM Mortazavi, Williams, et al.
is for paired-end data Nature Methods, 2008



Comparing GA and Affy arrays

Comparing Solexa and Affymetrix

@O

er) -

0g2 fold change (kidney/

T

Spearman correlation = 0.72

002 foid change (udneyiliver) - Affymatrix




13,072 Differentially Expressed (DE) Genes




Bias 1s introduced 1if these
ratios are not kept:

Good
Run

Bad
Run

Good
Run

RPKM = 128.4

Bad RPKM = 72.7 Mortazavi, Williams, et al.
Run Nature Methods, 2008



Normalization is needed

Define Y, as the observed count for gene g in library k summarized from the raw reads,
as the true and unknown expression level (number of transcripts), L, as the length of gene g
and N, as total number of reads for library k. We can model the expected value of Y, as:

Mokl
ElVg] = grEg

N

G
where Sy, = Z Foick g;

g=1
S, represents the total RNA output of a sample. Ihe problem underlying the analysis of RNA-
seq data is that while N, is known, S, is unknown and can vary drastically from sample to
sample, depending on the RNA composition.

Vgk /N

M, =log, 2=



(@) 2

Density
0.4

0.0

_—

b)

0.4

Density
0.2

0.0

Normalization is needed

|
—_
O
~
o
s
-
o

logz(Kidney1/Ng;) — loga(Kidney2/Nyz)

M = logz(Liver/N_) - logz(Kidney/Nk)

® Housekeeping genes
@ Unique to a sample

|
-10

logz(Liver/N,) - logz(Kidney/N) A =log(yLiver/N, -Kidney/Ny)

Robinson and Oshlack Genome Biology 2010 11:R25



Normalization is needed
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MISO / Probabilistic analysis and design of RNA-Seq experiments
for identifying mRNA 1soform regulation

»

Home | Paper | Software | Documentation | Datasets | Contact

About MISO

About MISO

MISO (Mixture of Isoforms) is a probabilistic framework that quantitates the expression level of alternatively spliced genes from RNA-Seq data, and identifies
differentially regulated isoforms or exons across samples. By modeling the generative process by which reads are produced from isoforms in RNA-Seq, the MISO
model uses Bayesian inference to compute the probability that a read originated from a particular isoform.

MISO uses the inferred assignment of reads to isoforms to quantitate the abundances of the underlying set of alternative mRNA isoforms. Confidence intervals over
estimates can be obtained, which quantify the reliability of the estimates.

I I I = ey Harvard Contact
) Iniversity
I I . University Department of Biology MIT
Depts. of Biology and Biological Dept. of Statistics 31 Ames Street, 68-271A
Enaineering FAS Center for Systems Biology Cambridge, MA 02139-4307

Dept. of Brain and Cognitive Sciences
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Katz et al, 2010



Coverage Requirements:
How many lanes/plates/wells?

Depends on:
1.Read Length
2.Size of Transcriptome

3.Complexity of Transcriptome
4.Complexity of Tissue
5.Biological Variance
6.Errors (random and systematic)



Plateau of Information Starts @ ~500Mb

Number of lanes Differentially expressed Overlap with genes Correlation of fold changes
compared genes called from the array between Solexa and the array
One vs One 5670 4208 0.67
Two vs Two 7994 5340 0.70
Three vs Three 9482 5909 0.71
Four vs Four 10580 6278 0.72
Five vs Five 11493 6534 0.73
Liver Kidney
No genes  Percentage No genes Percentage
Five Lanes 20080 100 Five Lanes 20921 100
Four Lanes 19695 97.9 Four Lanes 20552 98.2
Three Lanes 19170 95.5 Three Lanes 20064 96.0
Two Lanes 18390 91.6 Two Lanes 19355 92.5
One Lane 16973 84.5 One Lane 18080 86.4

Marioni,Mason et al, Genome Research, 2008



Number of ORFs detected

4a

000

000 -
000 4
000
04
0

Coverage Requirements

—— ORFs detected
— 80% coverage
50% coverage

2 3 1 5 6 7 8 9

Number of uniquely mapped tags (million)

Unique start sites (million)

20 0 40 50 60 70 80

Number of mapped tags (million)

Nature Reviews | Genetics

Wang, Gerstein, and Snyder, 2008



Number of Genes

No current visible end of gene discovery

25,000

20,000

15,000 -

I”'IIIII
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—— Expressed (10 reads/gene)
—— Expressed (5Xreads/gene)

10,000

—O— Expressed (1X reads/gene)

- 0 =Showing New Alternative Splice Forms

5,000 -

Millions of Reads
(total 75bp reads from GA2, analyzed with IPAR 1.4, ENSEMBL v53 annotation)




How many replicates do | need?

Calculation of the number of replicates depends on:
1. An estimate of 0 obtained from previous experiments.
2. The size of the difference (6) to be detected.

3. The assurance with which it is desired to detect the difference (i.e., Power of
the test = 1-B).

4. The level of significance to be used in the actual experiment (i.e., Type | error).
5. The test required, whether a one-tail or two-tail test.

To determine the number of replicates use the following formula :

2
#reps = Z(Z% +Zﬂ)(%)

where: Za/2 is associated with the Type | error (two-tailed)
ZB is associated with the Type Il error
0 is the true difference to be detected, and
o is the known variance obtained from previous experiments



Bayes in Chip-seq too!

Research article Highly accessed

BayesPeak: Bayesian analysis of ChIP-seq data

Christiana Spyroul.3 2%, Rory Stark3 24, Andy G Lynch4 24 and Simon Tavaré2,4 24
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4 Department of Oncology, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, UK

B author email 2 corresponding author email
BMC Bioinformatics 2009, 10:299  doi:10.1186/1471-2105-10-299

The electronic version of this article is the complete one and can be found online at: http://www.biomedcentral.com
[/1471-2105/10/299
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What' s the problem with Bayesian statistics?
(according to non-Bayesians)

1. Priors can introduce subjective judgment into
data analysis.

2. Priors affect the result. Different people can get
different answers from the same data.

3. It' stoo hard. There are no simple point-and-
click programs.



This requires a lot of space
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Meta-genomic phenotypes can persist for years,
and “passenger genomes” can be a phenotype, as
well as their distributions.

Normal throat

Throat + antibiotics

Jakobsson et al, 2010




Risk factors for diseases usually involve many
genes and pathways
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There are other factors than these!

natur e International weekly journal of science
Search

nature.com » journal home » current issue » letter » full text

This journal

Genome, epigenome and RNA sequences of monozygotic
twins discordant for multiple sclerosis SHOW NO DIFFERENCE

Sergio E. Baranzini, Joann Mudge, Jennifer C. van Velkinburgh, Pouya Khankhanian, Irina
Khrebtukova, Neil A. Miller, Lu Zhang, Andrew D. Farmer, Callum J. Bell, Ryan W. Kim, Gregory D.
May, Jimmy E. Woodward, Stacy J. Caillier, Joseph P. McElroy, Refujia Gomez, Marcelo J. Pando,
Leonda E. Clendenen, Elena E. Ganusova, Faye D. Schilkey, Thiruvarangan Ramaraj, Omar A. Khan,
Jim J. Huntley, Shujun Luo, Pui-yan Kwok, Thomas D.Wu + efal.
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Nature 464, 1351-1356 (29 April 2010) | doi:10.1038/nature08990
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Systems biology requires spatiotemporal monitoring of the genome, epigenome,
transcriptome, proteome, metabolome, and the environment, to see the interactome




