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HT analysis for personalized genomic medicine

* Generate, analyze and integrate various types of data to understand the
mechanistic details of the underlying cellular processes in disease states.

* (1) Development of novel HT data analysis techniques based on the concepts
of biophysics, genetics, genomics, ngineering and statistics, including
modeling, reverse engineering, network analysis and visualization and
combinatorial optimization.

* (2) Integrative analysis of various —omics and other HT databases using
optimization and machine learning technologies to identify disease-specific
features, such as biomarkers.

* (3) Utilization of our or other methods to address mechanisms in cancer and
neurodegenerative disease.

* In specific areas, such as in neurodegeneration, the goal of the cumulative effort is
to find causal changes related to disease pathogenesis, and identify therapy targets
that lead to the design of therapeutic methods and their implementation in
personalized medicine. Within this framework, | will present how, fitting model
parameters to data, sensitivity and robustness tests of ODEs fit into our research.
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Integrative data analysis

The Cancer Genome Atlas @E sndersianding genom.cs

to improve cancer care

* A massively large scale multi-institute undertaking to increase our understanding
of the molecular basis of cancer to aid diagnosis, treatment and prevention.

e Started in 2005; National Cancer Institute and National Human Genome Research
Institute selected participating people and laboratories.

* Unique in (i) the number of patients (500/cancer, 500/normal) and (ii) number of
high-throughput genomic techniques used to analyze patient samples:
— (~80% cases)
— Gene expression profiling
— miRNA expression profiling
— DNA methylation profiling
— SNP genotyping
— Copy number variation profiling
— Exon sequencing
— Whole genome-sequencing (some tumors)
— whole exon-sequencing (~80% of cases)
Phenotype information (age, gender, tumor stage)

* 20-25 tumor types

* InFY 2010, new centers funded to characterize these tumors:
— Genome Characterization Centers (GCCs)
— Genome Data Analysis Centers (GDACs) *dedicated funding to bioinformatics

http://cancergenome.nih.gov/



TCGA Objective: Identify all the changes in DNA of cancer cell. Why?

TCGA laying the foundation for Personalized Medicine.

Catalogs all the changes in the genomes and epigenomes of many samples

Data from several different technology platforms, producing different type of genomic information

— single base pair changes, extra copies or deletion of genes, increased or decreased gene expression, changes
in chemical marks on DNA (methylation)

Specific genomic changes connected to specific outcome helps develop more effective,
individualized therapies
Changes may reflect
— affected areas of the genome
— functions/pathways controlled by those areas
— What drugs can target them?
Or a change is linked to
— how fast the disease progresses or comes back after treatment
— Disease subtype, patient phenotype
— Specific signatures may respond differently to various treatments

Many steps needed to translate genomic data to patient care:
— which genomic changes are truly responsible for the disease
— identifying or developing therapies to correct the impact of those changes.

This type of Personalized Medicine is not yet common, but studies like TCGA will make it a reality
in the future.

We are utilizing the TCGA data to identify biomarkers for Colon Cancer prognosis.



Th e C ancer G enome AtIaS @ Understanding genomics

to improve cancer care

Copy Gene miRNA
COAD Total Number Methylation  Expression Expression
Tumor 333 333 166 154 186
Matched Normal 386 386 37 12 0
Unmatched Normal 29 19 3 9 0

TCGA Colon Cancer Samples

e 423 Patients with samples

Unmatched
Normal

e 333 Downloadable Tumor
Samples

B Matched
Normal

B Tumor

(Last Update 09/02/11)

http://cancergenome.nih.gov/
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Experimental and computational studies at various scales

Molecular

Cellular

Organismal

Mechanisms of hallucinogenic drugs of abuse?

Mathematical models of receptor-mediated signaling properties
used to connect to experimentally determined signaling.

Molecular complexes and interactions of these compounds with
serotonin receptors in the G protein coupled receptors GPCRs
family and follow the mechanisms through ensuing interaction
processes with other components of signaling cascades such as
membrane proteins (e.g. PIP2) and PDZ domains.



Example: What are the signaling mechanisms of
hallucinogenic drugs of abuse?

HO * Hallucinogens: psychedelics, dissociatives, and deliriants.

 Models necessary to develop a clear understanding of signal
propagation into the cell.

* Example: experimental & computational study to understand the
[ design principles of cell signaling mechanisms of hallucinogens
HN NH; binding to serotonin receptors that cause ERK1/2 activation.
(Chang, Gumus, Weinsten 2009).

serotonin . . :
*  Computational: develop a mathematical model of receptor-mediated

ERK1/2 activation in cells expressing 5-HT1A, 5-HT2A subtype
serotonin receptors individually and together.

*  Experimental: measure activation of ERK1/2 by action of selective
HEK-293 Cells agonists on these receptors.

* Investigation performed in HEK293 cells originally derived from
Human Embryonic Kidney cells grown in tissue culture (source a
healthy aborted fetus).

* HEK293 are ideal in investigation of protein-protein interaction: (i)
extremely easy to culture and to transfect; (ii) used simply as a test
tube with a membrane, where the cell behavior itself is not of
interest..

www.altogen.com




MAPK cascade activation by serotonin receptors: topological network
(5-HT1A and 5-HT2A)
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MAPK cascade ubiquitously expressed in diverse biological processes

MAPK signal transduction pathways mediate
— short-term effects (modulation of potassium channel and glutamate receptor function)
— Long-term effects (cell differentiation, long-term potentiation, learning and memory)

— Signaling through MAPK pathway positively regulates immediate early genes
— Tightly regulated in a variety of cells by multiple feedback loops

— basic structure of all MAPK cascades is the same, but differences in feedback control enable them to generate a
plethora of biological responses, including oscillations, gradual and ultrasensitive responses



Why do modeling?

5-HT2A receptors... direct targets of hallucinogens... but balance of signaling
activities that produce hallucinogenic effect remains unknown.

How are activated receptors integrated into signaling pathways?

How can specific conformations of the activated receptor establish the distinct
patterns of signal transduction observed when they bind different ligands?

E.g. hallucinogens produce entirely different transcriptome fingerprints compared
to non-hallucinogenic congeners.

Which of the reactions in these complex networks are important?

Where are the cross-talk points regulated by upstream, downstream
components?

Essential to acquire qualitative information on which interactions take place and
guantitative data on their strength and modeling to integrate such information.
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Representative Western blot (A, C, D) and quantitative analysis (B) of time-course activation of MAPK in
HEK293 cell lines, stably expressing only human 5-HT1A or 5-HT2A receptors. Note that B is the
guantitative result of three experiments in HEK293-h5-HT1AR cells with 1uM of Xaliproden HCI (shown by
solid squares). Serum (Bovine Calf Serum) was used as the positive control. C and D show experiments in
which the HEK293-h5-HT2A receptors were treated with 1nM TCB-2 and 10uM a-methyl-5-HT,
respectively. Both C and D indicate that 5-HT2AR activation resulted in a sustained ERK activation.



ERK-activation

e Xaliproden HCl: 5-HT1AR agonist.
* TCB-2: high-affinity 5-HT2AR agonist.
* Ketanserin: 5-HT2AR antagonist.



Western blot of time-course activation of ERK byl uM
Xaliproden HCI (1AR agonist) and 10 nM TCB-2 (2AR
agonist) in HEK293-h5-HT1AR/2AR cells
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Time-course activation of ERK in HEK293 cell lines, stably expressing both human 5-HT1A and 5-HT2A receptors. Representative Western blots are
shown in A, C and quantitative analyses of three experiments are displayed in B, D. The agonists Xaliproden HCI (1 uM) and TCB-2 (10 nM) were used
to activate 5-HT1A and 5-HT2A receptors, respectively, in the presence (C, D) or absence (A, B) of 50nM Ketanserin. In panel B, solid squares denote
5-HT1A-specific response; open triangles denote the 5-HT2A response; and open circles denote the combined response of the two receptors. In panel
D, solid squares denote the combined response of 5-HT1A and 5-HT2A in the presence of Ketanserin; open triangles denote the 5-HT2A-mediated
ERK activation; open circles denote the same response in the presence of Ketanserin.



MAPK cascade activation by serotonin receptors: mathematical model
(5-HT1A and 5-HT2A)
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Integrative representation of currently known kinetics.

light grey area is cell-type specific/not demonstrated in HEK293.

Network representations are incomplete; parameters have significant uncertainties

* Model simulations can aid ongoing efforts to construct an increasingly comprehensive mechanistic
understanding by validating/eliminating specific assumptions, answering particular questions and guide
experiments by producing testable hypotheses.



The mathematical model & simulation

* 112 species
* 228 parameters
* 128 real reactions

*  Simulate at
— (i) steady state (no

concentration changes prior
to stimulation) iy
Time course (variables are D
determined as at time D
series upon ligand
treatment, using the steady- 004 <
state concentrations as il iy .
starting values) : /
Simulate each receptor
alone, and together. .
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Simulation of time-course MAPK activation in cells stably expressing human 5-HT1A and 5-HT2A receptors.

A: Phosphorylated ERK (ERK_PP) 5-HT1AR stimulation by ligands w/ different efficacy/ receptor activity values.

B: ERK_PP after stimulation of 5-HT2AR by ligands w/ 2 different efficacy/receptor activity values.
C & D: results of parameter optimization. Circles-average experimental values from three experiments in cells expressing both receptors, stimulated

with either 1A agonist (in C) or 2A agonist (D). In both, solid- initial results, interrupted - result from optimization of the most sensitive parameter (k51
in C; k82 in D). Dotted- results of simulation with optimized parameters (all parameters with |S| > 0.3 from the sensitivity analysis). Final R? values for

this simulation are 0.983 in 6C, and 0.995 in 6D.



Signal transmission mechanisms

(i) protein protein interactions and enzymatic reactions such as

protein phosphorylation and dephosphorylation
(ii) protein degradation or production of intracellular messengers.
Basic chemical reaction schemes:

A+B<—% 5 AB
A+ B2 5C4D

ky

The reactions are completely specified by rate constants and initial
concentration of each reactant (A, B, C, D).

How do you estimate the parameters?
— published experimental studies
— Optimization
— The mathematical/kinetic pathway model should yield results very similar
to experimental data



Sensitivity analysis

* To capture essential model characteristics

 To determine critical parameters that control peak phosphorylation of
ERK1/2:

— Initial conditions of species states
— Kinetic rate constants

— Plot time-dependent sensitivities of phosphorylated ERK1/2 to
changes in parameters and identify sensitivity values at the time point
of phosphorylated ERK1/2 peaks
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In silico experiment of parameter perturbation for state variables ERK activation. A. Increase of Raf in the
5-HT1AR-triggered pathway, B. Variation of MKP in the 5-HT2AR-triggered pathway; C &D. Changes of
PP2A (in C) and of PKC (in D) in the combined pathways triggered by the two receptors (5- HT1A/2AR).
Note that concentrations of ligands in models are as used in the experiment: 1 uM Xaliproden HCI for the
5-HT1A receptor; 10 nM of TCB-2 for the 5-HT2A receptor.



Parameter Estimation

Mathematical model: a set of coupled ODEs; parametric reaction rate constants; initial concentrations.

Can modifying critical parameters lead to a better model fit of experimental ERK1/2 data?

—  Min. sum of squared errors between experimental and simulated phosphorylated ERK1/2 concentration at different
time points by manipulating these parameters.

— Assume experimental error normally distributed with zero mean and covariance matrix same in each time point and
diagonal.

— ldentify a set of parameter combinations that lead to observed phosphorylated ERK1/2 behavior.

—  Best parameter combination is not unique: different sets of combinations can lead to the same observed output, an
inherent property of multi-paramet4er nonlinear systems biology models.

. D 2
min ; (ERKp, ,, — ERK pr )

dy,

st.—L =g (y,k,t),ViEel
" g (y.k,t)

V,(ty) =y, Vi€l
t€[t,.1,1.yEly .y k€K k"]
ERK,, €y.

i -index of components with explicit time derivatives in the model of size |,

y -vector of time-dependent species concentrations (state variables);

yO0- initial concentration of at t0;

K- vector of rate constants to be estimated;

ERK_PPM- experimental and simulated values of phospho-ERK1/2 at mth data point,

Function g involves changes of species upon time and rate constants.

Four experimental data points of phospho-ERK1/2: 0, 5, 15, 45 minutes, each based on the average of three experimental results. Lower and upper bounds of y and k are indicated by L and U,
respectively.

Convex objective function , but the reaction rate terms in constraints g are nonlinear and nonconvex; problem is nonconvex.
Mminimization is over both the rate constants (k) and the state variables (y), this is true for constraints involving even the simplest
linear reaction rate term , which is bilinear (nonconvex).

Solution of this nonconvex problem with local optimizers leads to a local optimum.



Simulations and Optimization Algorithm

* Simulations carried out using SimBiology
Toolbox within MATLAB

e Differential equations were integrated using
odel5s function, which as a variable order
solver, based on the numerical differentiation
formulas and designed for stiff systems

e Local optimization performed using fmincon
and Isgnonlin functions in SimBiology toolbox



Mechanisms of signal transfer

Regulation by protein-protein interactions
Protein phosphorylation

Regulation of enzymatic activity
Production of second messengers

Cell surface signal transduction systems

Networking results in persistent activation of protein kinases

after transient stimulus— implicated in diverse processes such
as neoplastic transformation and learning and memory.
Mutations or altered gene expression can lead to persistent
activation.

Do connections between pre-existing signaling pathways result

in persistently activated protein kinases capable of eliciting
end-point biological effects?



Conclusions

Detailed topological representation of 5-HT1A and 5-HT2A receptors-
mediated ERK activation

Based on known reactions and assumptions derived from canonical
pathways

Translate into mathematical equations that describe the network topology
Computationally simulate the equations

Lead to predictions of species concentration profiles that vary with respect
to time upon ligand stimulation

Cells that express both receptors produce dynamics distinct from
receptors that are expressed alone.

When both are expressed, 5-HT2A dominates the ERK signal.

Treatment with 5-HT2A antagonist (Ketanserin) produces a switch in ERK
activation pattern from sustained to transient.

Individual pathway models produce results in qualitatively good
agreement with the experimental data, and parameter optimization
establishes quantitative agreeement.



Conclusions

Important parameters and intrinsic behaviors of the system are further revealed by
sensitivity analysis and parameter optimization.

Models suggest that constitutive activity combined with specific drug efficacy may
determine distinct dynamics of 5-HT receptors mediated ERK1/2 pathway, affecting
the receptor activation phenotypes.

In silico experiments provide insights to the underlying mechanisms of ERK
pathways via 5-HT receptors which can be further valided by inhibitors or
activators, siRNA or trasfections to influence the activity and expression of target
genes.



