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yaatttcatttg ATTATCCCTCTTCCTAACAMACACACTGTCCGCAGACGCACTCTCCATTGT ctgcagatttctgaactgttttctttecctgea aagcatccatgtcttcactgtt
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Since DNA defines the biochemical recipe for the genesis of
organisms, sequencing allows us to create molecular portraits
of development and disease at single-base resolution.
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Understanding the genome’s

mutation, selection, and/or drift
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What erudition do we have now on the functional
elements?

» Currently limited amount of
Old School EST info at NCBI

1.2 million sequence reads in brain
(1990-2009)

»EST data is expensive, time-
consuming (cloning), and
exhibits 3’ bias.

dbEST libraries

”lll“!"i"' el »Much EST and cDNA data is
for whole brains, and few
libraries exist with region-
specific data.

tissue

New School:
One run of a NGS machine = billions of sequence reads in days



Description/Discussion of the Various
Technologies

 The goal of the Archon X prize in Genomics is to
enable a $1,000 genome,

e Currently at $5,000-550,000

e Certain platforms are better suited for certain
tasks:

— Counting applications (ChIP-Seq, RNA-Seq) need more
reads

— De novo assembly work needs longer reads

— Whole genome re-sequencing requires lower errors
rate and high processivity



But, there are many options:

Platform

Roche/454’s
GSFLX

Titanium

llumina/
Solexa’s GA,

Life/APG’s
SOLID 3

Polonator

G.007

Helicos
BioSciences

HeliScope

Pacific
Biosciences
(target
release:

2010)

Library/
template
preparation

Frag, MP/
emPCR

Frag, MP/
solid-phase

Frag, MP/
emPCR

MP only/
emPCR

Frag, MP/
single
molecule

Frag only/
single
molecule

NGS

chemistry

F5

RTs

Cleavable

probe SBL

Non-

cleavable
probe SBL

RTs

Real-time

Read
length
(bases)

330*

750r
100

26

32*

964*

Run
time

(days)

0.35

4¢, Qs

75145

Gs

8#

N/A

Gb
per
run

0.45

18%,
359

30%
508

125

37%

N/A

Machine Pros

cost

(US$)
500,000

540,000

595,000

170,000

999,000

N/A

Longer reads
improve
mapping in
repetitive
regions; fast
run times

Currently the
most widely
used platform
in the field

Two-base
encoding
provides
inherent error
correction

Least
expensive
platform;
open source
to adapt
alternative

NGS

chemistries

Non-bias
representation
of templates
for genome
and seq-based
applications

Has the
greatest
potential
forreads

exceeding
1kb

Cons

High reagent
cost; high
error rates

in homo-
polymer
repeats

Low
multiplexing
capability of
samples

Long run
times

Users are
required to
maintain

and quality
control
reagents;
shortest NGS
read lengths

High error
rates
compared
with other
reversible
terminator
chemistries

Highest
error rates
compared
with other
NGS

chemistries

Biological
applications

Bacterial and insect
genome de novo
assemblies; medium
scale (<3 Mb) exome
capture; 165 in
metagenomics

Variant discovery

by whole-genome
resequencing or
whole-exome capture;
gene discovery in
metagenomics

Variant discovery

by whole-genome
resequencing or
whole-exome capture;
gene discovery in
metagenomics

Bacterial genome
resequencing for
variant discovery

Seq-based methods

Full-length
transcriptome
sequencing;
complements other
resequencing efforts
in discovering large
structural variants and
haplotype blocks

Refs

D. Muzny,
pers.
comm.

D. Muzny,
pers.
comm.

D. Muzny,
pers.
comm.

].
Edwards,
pers.
comm.

91

S. Turner,
pers.
comm.

Michael
Metzker,
2010



Illumina SBS Technology

Reversible Terminator Chemistry Foundation
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Pyrosequencing

Roche/454 — Pyrosequencing
1-2 million template beads loaded into PTP wells

Flow of single dMTP type across PTP wells —=

Polymerase

Sulphurylase ATP

Luciferin

Luciferase

Light and oxyluciferin

d Flowgram

TCAGGTTTTTTAACAATCRAACTTTTTGGATTARARATGTAGATARCTG
CATARATTAATAACATCACATTAGTCTGATCAGTGAATTTAT

ded

Single-st
DNA template

Signal detection

Pyrogram
~ Nucleotide added

ATACTG Nucleotide sequence

- &-mer
T 5-rmer
T 4-mer
- 3-mer
| 2-mer
T 1-mer

Metzker, 2010



Single Molecule Real-Time

Pacific Biosciences — Real-time sequencing

Phospholinked hexaphosphate nucleotides

Limit of detection zone

Fluorescence pulse

Intensity —

Epiflucrescence detection

Metzker, 2010



Direct Detection of Methylation

Approach: Kinetic detection of methylated bases during SMRT DNA sequencing

Example: N®-methyladenosine (MA)
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detect other base modifications

5-methylcytosine (™C)
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Watch Translation in Real-Time
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Full-length cDNA sequencing

PacBio Reads Mapping to ARL6IP1 mRNA Splice Variants

chr16: | 18804000/  18805000|  18806000| 18807000/  18808000|  18809000)  18810000| 18811000  18812000|

PBread-1
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Human mRNAs from GenBank
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“Post-Light,”
Semi-Conductor Sequencing
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Each Platform has various sources of
noise, and thus Error

De-Phasing

— Lagging strand dephasing from incomplete
extension

— Leading strand dephasing from over-extension
Dark Nucleotides
Polymerase errors (10> to 1077)

Platform-specific errors

— lllumina more likely to have error after ‘G’
— PCR-based methods miss GC- and AT-rich regions



Alignment to the genome
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Analyzing High-Resolution Data

* Bayesian Methods

* Hidden Markov Models

* Permutation Testing

* Circular Binary Segmentation
* Seed-seeking

* Least Squares Regression

* Democratic Voting



Prior

The prior function Pr (H) gives the probability of different possible
values of the quantity of interest before the data are considered —
that is, it represents the state of knowledge prior to the data.

Prior may be broad or flat if we have few data (non-informative prior),
or peaked if we have more information (informative prior).

Probability

. B

Unknown quantity of interest

(Population size, length at sexual maturity,
haplotype frequency, model parameter)



Likelihood

» The likelinood function Pr (data | H) gives the probability of
obtaining the data, given different possible values of the
unknown quantity of interest (the “hypothesis” H).

 The likelihood is calculated using a statistical model, which
represents the process that produced the data. The likelihood
function connects the parameters of the model to the data.

Likelihood

Unknown quantity of interest

(Population size, length at sexual maturity,
haplotype frequency, model parameter)



Posterior

« The posterior function Pr (H | data) gives the probability of different
possible values of the quantity of interest after the data are considered —
that is, it represents the state of knowledge posterior to the data.

* The posterior is a combination of the prior (what we knew before) and the
likelihood (what the data told us).

« The difference between the prior and the posterior indicates how much
we learned from the data.

posterior
Qprior

Unknown quantity of interest

Probability

(Population size, length at sexual maturity,
haplotype frequency, model parameter)



Paradigm for Bayesian inference

posterior likelihood x prior

new state information current state
X
of knowledge from new data of knowledge

Thus, in Bayesian reasoning, new data update the current
state of knowledge through Bayes’ Theorem. The result is
a new state of knowledge represented by the posterior.



Bayes’ Theorem

(H) The Hypothesis (the unknown) and x = data
p (H)

p (H|data) =
p (data)

posterior = x prior



2 fundamental Bayesian concepts:

1. Things that are unknown are represented by
probability distributions.

2. Things that are known (data) are used to

Improve the knowledge of unknowns through
Bayes  Theorem.



Bayesian view of cancer

* 1% of women at 40 yrs have breast cancer

* Mammography diagnoses 8/10 correctly
(true positive rate, false negative rate)

* 10% ot mammographies are talse positives

* If you get a positive result, what are your
odds of having breast cancer?



10,000 patients
A

8/10 true
positives

i/—
80 990
patients patients

9,900
patients

10% false
positives

80_ .,
oo =T5%



Bayes Theorem depends on the prior

probability (pr(A)):

Pr(B|A) Pr(A) A = have cancer
Pr(B) ' B = positive result

Pr(A|B) =

8*.01_
8*.01 + .1*.99

=7.5%



1,000,000 patients
A

999,999
patient patients

10% false
positves

—— 0.8 i
I-’ 10,000 =0.0008%
~.8 9,999

patients patients

8/10 true
positives



Q. What is the Bayesian Conspiracy?

A. The Bayesian Conspiracy is a multinational, interdisciplinary, and shadowy group of scientists
that controls publication, grants, tenure, and the illicit traffic in grad students. The best way to
be accepted into the Bayesian Conspiracy is to join the Campus Crusade for Bayes in high school
or college, and gradually work your way up to the inner circles. Itis rumored that at the upper
levels of the Bayesian Conspiracy exist nine silent figures known only as the Bayes Council.

http://yudkowsky.net/rational/bayes



Applications of Bayes to DNA-Seq



GATK single sample genotype likelihoods

Likelihood of the
Likelihood for Prior for the data given the

the genotype genotype genotype Independent base model

Bayesian
model

L(GID)=P(G)P(DIG) = H P(b1G)
bE{goodibases}
* Priors applied during multi-sample calculation; P(G) = 1

* Likelihood of data computed using pileup of bases and
associated quality scores at given locus

* Only “good bases” are included: those satisfying minimum
base quality, mapping read quality, pair mapping quality, NQS

 P(b | G) uses a platform-specific confusion matrix
* L(G|D) computed for all 10 genotypes



Each Platform is slightly different, and so
intrinic errors are different

Figure Redacted
Unpublished Proprietary Data

Thierry-Mieg, SeQC Consortium



The Broad Unified Genotyper SNP caller multiple-
sample allele frequency and genotype estimates

Sample-associated reads Genotype likelihoods
Allele frequency
Individual 1
Individual 2 . .
Joint estimate
across samples SNPs
Individual N

Genotype frequencies

* This approach allows us to combine weak
single sample calls to discover variation
among samples with high confidence

See http://www.broadinstitute.org/gsa/wiki/index.php/Unified genotyper for more information




SNIP-Seq SNP calling

For each potential variant site in the sequenced region:

Set the base quality value for each base call to the lllumina
quality value

Fork=1, 2,...

a. Sample a genotype for each individual from the posterior
distribution using a heterozygote prior of 0.001.

b. Recalibrate the quality score for each base call using genotypes for
all individuals.

If the genotype of any individual is different from the
reference, identify position as a SNP.

Sample a genotype for each individual from the posterior
distribution computed using a heterozygote prior of 0.2.

Bansal et al, 2010



Population-based models can
overcome systematic errors, but...



Population Stratification 1s from the
migration patterns of haplotypes
throughout human history
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Prediction accuracy
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Applications of Bayes to RNA-Seq



Microarrays vs. RNA-Seq

RNA-Seq: An assessment of technical reproducibility and
comparison with gene expression arrays

Marioni and Mason et. al, Genome Research, 2008



Data Analysis: What genes are
differentially expressed?

o Early days—fold change cutoffs (e.g., 2x difference or better)
e not a very satisfying approach:
-doesn’t take into account variance

-misses any small changes

fold change

5-

4

Here, “A” has a fold change
>2.5, but varies greatly between
replicate experiments. “B” has a
fold change of only 1.75, but
changes reliably each time the
experiment is performed.



Experimental Design:
Liver vs. Kidney

Liver sample Kidney sample

| |

Total RNA Total RNA

s

MRNA purification MRNA purification

| |
=

Hybridization of each sample Sequencing each sample
to Affymetrix microarrays in 3 using Sofexa on 7 lanes

technical replicates across two plates

\ /

Analysis to find differentially expressed genes and
comparison between technologies




Metric for RNA-Seq Expression

RPKM:
Reads per Kilobase per Million Reads
Normalizes for (1) gene size and (2) sequencing depth
(~0.1-1 transcript/cell)

N reads o 1 gene o 1000 bp o 1 Million reads
1 gene B bp 1Kb Y total reads

RPKM =

Y = (exons, introns, intergenic reads)

FPKM:f_ragmentS'PKM Mortazavi, Williams, et al.
Is for paired-end data Nature Methods, 2008



Comparing GA and Affy arrays

Comparing Solexa and Affymetrix
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Spearman correlation = 0.72

loge fold change (kidney/liver) - Affymetrix




13,072 Differentially Expressed (DE) Genes

(37%)
DE in
Solexa
4,959




Bias 1s introduced 1if these
ratios are not kept:

Y _
Good Inter-
Run genic
Bad Inter-
Run genic

Good

RUN RPKM =128.4

Bad RPKM = 72.7 Mortazavi, Williams, et al.

Run Nature Methods, 2008



Normalization is nheeded

Define Y, as the observed count for gene g in library k summarized from the raw reads, p,,
as the true and unknown expression level (number of transcripts), L, as the length of gene g
and N, as total number of reads for library k. We can model the expected value of Y, as:

Haklg
ElV..] = =—EN
gk Sk k

G
where Sy = Z Hotlgl
o1

S, represents the total RNA output of a sample. The problem underlying the analysis of RNA-
seq data is that while N, is known, S, is unknown and can vary drastically from sample to
sample, depending on the RNA composition.

Yak £

M = ———
) Dgz Ii""g,f{'.-"fN,f{'



Normalization is needed
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Robinson and Oshlack Genome Biology 2010 11:R25



(a)

Normalization is needed
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(b)

Number of false discoveries
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MISO / Probabilistic analysis and design of RNA-Seq experiments
for identifying mRNA isoform regulation

»

Home | Paper | Software | Documentation | Datasets | Contact

About MISO

About MISO

MISO (Mixture of Isoforms) is a probabilistic framework that quantitates the expression level of alternatively spliced genes from RNA-Seq data, and identifies
differentially regulated isoforms or exons across samples. By modeling the generative process by which reads are produced from isoforms in RNA-Seq, the MISO
model uses Bayesian inference to compute the probability that a read originated from a particular isoform.

MISO uses the inferred assignment of reads to isoforms to quantitate the abundances of the underlying set of alternative mRNA isoforms. Confidence intervals over
estimates can be obtained, which quantify the reliability of the estimates.

I I I N - Harv. Contact
$ Harvard
I I ~ University Department of Biology MIT
Depts. of Biology and Biological Dept. of Statistics 31 Ames Street, 68-271A
Enagineering FAS Center for Systems Biology Cambridge, MA 02139-4307

Dept. of Brain and Coagnitive Sciences
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Coverage Requirements:
How many lanes/plates/wells?

Depends on:
1.Read Length
2.Size of Transcriptome
3.Complexity of Transcriptome
4.Complexity of Tissue
5.Biological Variance
6.Errors (random and systematic)




Plateau of Information Starts @ ~500Mb

Number of lanes Differentially expressed Overlap with genes Correlation of fold changes
compared genes called from the array between Solexa and the array
One vs One 5670 4208 0.67
Two vs Two 7994 2340 0.70
Three vs Three 0482 5909 0.71
Four vs Four 10580 6278 0.72
Five vs Five 11493 6534 0.73
Kidney
No genes Percentage No genes Percentage
Five Lanes 20080 100 Five Lanes 20921 100
Four Lanes 19695 97.9 Four Lanes 20552 98.2
Three Lanes 19170 95.5 Three Lanes 20064 96.0
Two Lanes 18390 91.6 Two Lanes 19355 92.5
One Lane 16973 84.5 One Lane 18080 86.4

Marioni,Mason et al, Genome Research, 2008
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Number of Genes
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How many replicates do | need?

Calculation of the number of replicates depends on:
1. An estimate of 02 obtained from previous experiments.
2. The size of the difference (6) to be detected.

3. The assurance with which it is desired to detect the difference (i.e., Power of
the test = 1-B).

4. The level of significance to be used in the actual experiment (i.e., Type | error).
5. The test required, whether a one-tail or two-tail test.

To determine the number of replicates use the following formula :

2
#reps = 2(2% +Zﬂ)(%)

where: Za/2 is associated with the Type | error (two-tailed)
ZB is associated with the Type Il error
0 is the true difference to be detected, and
o is the known variance obtained from previous experiments



Bayes in Chip-seq too!

BayesPeak: Bayesian analysis of ChIP-seq data
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What' s the problem with Bayesian statistics?
(according to non-Bayesians)

1. Priors can introduce subjective judgment into
data analysis.

2. Priors affect the result. Different people can get
different answers from the same data.

3. It'stoo hard. There are no simple point-and-
click programs.



This requires a lot of space
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Meta-genomic phenotypes can persist for years,
and “passenger genomes” can be a phenotype, as
well as their distributions.

Normal throat

Throat + antibiotics

Jakobsson et al, 2010



Risk tactors for diseases usually involve many

genes and pathways
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There are other factors than these!

natur e International weekly journal of science
Search

nature.com » journal home » current issue » letter » full text

Genome, epigenome and RNA sequences of monozygotic
twins discordant for multiple sclerosis SHOW NO DIFFERENCE

Sergio E. Baranzini, Joann Mudge, Jennifer C. van Velkinburgh, Pouya Khankhanian, Irina
Khrebtukova, Neil A. Miller, Lu Zhang, Andrew D. Farmer, Callum J. Bell, Ryan W. Kim, Gregory D.

May, Jimmy E. Woodward, Stacy J. Caillier, Joseph P. McElroy, Refujia Gomez, Marcelo J. Pando,

Leonda E. Clendenen, Elena E. Ganusova, Faye D. Schilkey, Thiruvarangan Ramaraj, Omar A. Khan,
Jim J. Huntley, Shujun Luo, Pui-yan Kwok, Thomas D.Wu + efal.

Affiliations | Contributions | Corresponding authors

Nature 464, 1351-1356 (29 April 2010) | doi:10.1038/nature08990
Received 25 July 2009 | Accepted 11 March 2010

Systems biology requires spatiotemporal monitoring of the genome, epigenome,
transcriptome, proteome, metabolome, and the environment, to see the interactome
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