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The ‘Omics’ era 

 1995 – H. influenzae 1st cellular organism 

sequenced 

 1996 - 1st eukaryotic genome sequenced 
(S. cerevisiae) 

 1998 – 1st multicellular organism 
sequenced (C. elegans) 

 2001 – Human genome sequenced 
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The ‘Omics’ era 

High-throughput technologies allow for us to simultaneously query 

tens of thousands (even millions) of targets 

- Increased the amount of biology captured by one experiment 

- Significant amount of noise 

- Pose specific statistical problems 



- Collection of known ssDNA probes arrayed on a solid 
surface by covalent attachment to a chemically suitable 

matrix

- Quantitative and qualitative measurements of 
nucleic acids

- Rely on the ability of nucleic acids to hybridize to 
the DNA probes through base pair recognition 

under specific experimental conditions

Basic concepts on microarray technology 
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Microarray-based experiments: General design  
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hybridization



TextDifferent type of Biological platforms 

 Gene Expression: Changes in gene expression levels

 Array-based Comparative Genomic Hybridization(aCGH): 
DNA copy number variations

 ChIP-on-chip/ChIP-seq: Genomic localization of DNA-Protein 
interactions

 DNA Methylation: Localization of 5-methyl-Cy

 Genotyping: sequence variants



Some statistical considerations 

- Variables far exceed number of samples 

- e.g.: Test clinical response to a new drug for        

treatment of high blood pressure on 200 pts. 

vs.      Identify gene expression changes associated             

with the same drug in 200 pts. 

- Multiple comparisons 

- i.e. in order to identify genes that change in a statistically 

significant manner with the drug we will need to test each of 

the 37,000 genes on the array in parallel and then select 

the significant ones 



Treatment (+) Treatment (-) 

Multiple comparisons: a practical example 

1- Gene by gene Two-tailed T test 

2- Significance of p< 0.05 



Treatment (+) Treatment (-) 

Multiple comparisons: a practical example 

Conclusion: Gene 16 is upregulated with the treatment 

P-value 



But… let’s review a few things 

 p < 0.05: This means we accept the risk of erroneously rejecting the 

null hypothesis in 5% of the cases i.e. we are willing to accept 5% 

false positive calls. 

 In our example we did not do 1 comparison (treated vs. untreated), 

we in fact did 20 comparisons in parallel. 

 Each time we had a 5% error, so if we repeat the test 20 times we 

are likely to get at least 1 false positive. 

 Gene 16 may or may not change its expression level with the 

treatment, but we do not have enough evidence to claim that it does. 

 Our “example data set” was in fact generated with a random number 

generator. 



Probabilities of 1 or more false positives by chance 

# genes tested (N) False positives incidence 
Probability of calling 1 or 

more false + by chance 

1 1/20 5% 

2 1/10 10% 

20 1 64% 

100 5 99.4% 

If we set p-value at  < 0.05 

1-(1-0.05N)  



And on a genomics scale... 

 Suppose no genes really changed (e.g. in random 

samples from the same population) 

 ~10,000 genes on an array 

 Each gene has a 5% chance of exceeding the 

threshold at a p-value of 0.05 (Type I error) 

 So by chance alone… 

- the p-values for 500 genes should be significant!! 



Corrections for multiple comparisons 

- Most approaches for correcting for multiple comparisons 

work well for small number of parallel comparisons 

- But when tens of thousands of tests are performed most of 

these are too stringent (e.g. Bonferroni, Sidak, Holm’s) 

- The most accepted methods for multiple testing correction 

in the microarray field are: 

- the False Discovery Rate (FDR) determination 

(Benjamini-Hochberg) 

- the use of permutations (Westfall-Young, SAM) 



The Sensitivity vs. Specificity trade off 

Bonferroni  

Holm’s step down 

Westfall-Young 

Benjamin-Hochberg FDR 

None 

False (-) 

False (+) 





Ch3 
Ch3 

Ch3 Ch3 

Gene Expression Depends On Multiple Factors 

DNA Sequence DNA Methylation Histone Modifications 

Gene Transcription 

EPIGENETIC REGULATION GENETIC REGULATION 

Genetic expression depends on multiple factors 



Gives only a snapshot of genes transcribed at the time, with no 

information on their availability for transcription. 

Does not detect epigenetic/copy number changes 

Only genes with high expression levels stand out above the 

noise level 

Sometimes biologically significant changes are lost within the 

noise signal 

Gene expression profiling has limitations Gene expression profiling has limitations 



Aberrant DNA methylation is a hallmark of cancer  

Normal 

- Specific distribution of 

cytosine methylation 

- Promoter CpG island 

hypomethylation 

- Methylation of repetitive 

elements 

Cancer 

- Global hypomethylation 

- Promoter CpG island 
hypermethylation 

- Aberrant silencing of 
certain tumor suppressors 

- Aberrant hypomethylation 

of certain oncogenes 



Hypothesis 

 DNA methylation in AML is not random, but rather specific 

and distinct patterns of DNA methylation characterize distinct 

forms of the disease. 

Identifying aberrant epigenetic patterns in AML will: 

I. provide critical insight into the biological complexity 

of the disease 

II. help identify new and clinically relevant disease   

    subtypes 



HpaII 

Ligation of Linkers 
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Differential Restriction Digestion 

    A            B            C               D                             E 

    A            B            C                D                             E 

HpaII 

MspI  

 2000 bp 

200 bp 

Khulan et. al. Genome Res, 2006 
S

ig
n
a
l 
In

te
n
s
it
y 

S
ig

n
a
l 
In

te
n
s
it
y 

HAF size 

The HELP Assay for Genome-wide 5me-Cy detection 
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HpaII Amplifiable fragment array 



Validation of HELP data by MassARRAY EpiTyper 

Log(HpaII/MspI) 
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Patients’ characteristics 

344 patients from Erasmus MC 

HOVON trials 04, 29, 32, 42 and 43 

Median follow-up: 87.4 months (0.1-214.5 m.) 

Median age: 48 years (15-77 years) 

Male: 188; Female: 156 

Molecular analysis available (cytogenetics, FISH, sequencing) 

CD34+ bone marrow cells from 8 healthy donors 



Methods 

Unsupervised 

analysis 

- Hierarchical clustering to explore internal complexity 

of the data 

- Class discovery approach 

Survival 

analysis 
- Determine associated risk with different methylation 

clusters 

- Understand the biology associated with each methylation 

cluster 

- Identify common epigenetic abnormalities 

Supervised 

analysis 



AMLs cluster into sixteen unique subtypes 

Inv(16) 

t(8;21) 

t(15;17) 

11q23 

CEBPA-dm 

CEBPA-mut 

CEBPA-sil 
NPM1 I 

NPM1 II 

NPM1 III 

NPM1 IV 



DNA methylation profiling identifies five novel AML subtypes 

* 

* 
* 
* 

* 



Supervised 

analysis 
- Understand the biology associated with each methylation cluster 

Comparison of each cluster to 

normal CD34 + cells 

Identify aberrant DNA methylation 

signature for each cluster 

Pathway  and Gene ontology analysis 

to understand associated biology 

Methods 



Supervised 

analysis 
- Understand the biology associated with each methylation cluster 

Methods 

K0 = Normals K1 (K…) K16 

Gene 1 

Gene 2 

(Gene…) 

Gene 25,626 

Multiple testing 

problem #1 

Multiple testing 

problem #2 



Supervised 

analysis 
- Understand the biology associated with each methylation cluster 

Methods 

K0 = Normals K1 (K…) K16 

Gene 1 

Gene 2 

(gene …) 

Gene 25,626 

ANOVA x 25,626 

+ 

BH correction 

Dunnett’s method 



Combining statistical and biological significance 

-  Increases our chances of capturing biologically significant 

changes 

- Still requires that we correct the p value for multiple testing 



AML methylation profiles consist of  both hyper and 

hypomethylation   

Normal CD34+                         AML



AML presents a common epigenetic signature 

- ZNF proteins
- Nuclear import proteins
- Regulators of myeloid cytokines
- Members of the mediator complex

- Retinoic acid signaling
- Membrane anchor proteins
- Tumor suppressors
- Regulators of STAT signaling



AML presents a common epigenetic signature 

49% 

27% 

11% 

13% 

Downregulated or Silenced in 

AML 
Silenced in all 

Bidirectional promoters 

Expressed equally in AML and 

Normals 



Q-PCR in Different Patient Cohort 

Unpublished data redacted 



Summary 

i) We demonstrated that unique and distinct DNA 

methylation patterns characterize distinct forms of AML 

ii) identified novel, epigenetically defined subgroups of AML 
with distinct clinical behavior 

iii)  revealed the presence of a consistently aberrantly 

methylated signature across AML subtypes, with 

confirmed silencing of the genes involved 

iv)  report a 15-gene methylation classifier predictive of OS 
in an independent patient cohort, and confirmed as an 

independent risk factor when adjusted for known 

covariates.  



So going back to the general issue of 

trying to be right against the odds… 

36 



Common concerns 

“If I correct I do not get any significant genes, so I am better off not 

correcting” 

Wrong! If you do not correct, your “significant” genes are probably not 

significant at all. This is like cheating your own self! 

“My hypothesis was wrong because I do not have any significant 

genes after correction” 

This may or may not be the case. You may just have insufficient 

power in your design to detect small changes. You can: 

1- Increase the number of replicates/samples 

2- Select a smaller number of genes to begin your analysis with (high 

variance genes, high SNR) and in this way the stringency of your 

correction will be reduced 



In Summary 

• High-throughput methods are very useful in biology. 

• However, there is a risk for drawing the wrong conclusions if we are 

not careful. 

• Conventional statistical approaches may not always be the most 

appropriate for these data sets. 

• When selecting an analytical approach we need to remember the 

nature of the data we are analyzing (high number of correlated 

genes, lack of normality, etc) 

• For multiple testing: B-H FDR and permutation-based methods are 

acceptable ways of dealing with this 

• Nothing can replace experimental validations!! 


