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Markov Modeling

Stochastic process

State machine assumption
Transitions probabilistic
Markov assumption

— Current state depends only on a finite history of
previous states

— 1st order: current state depends only on previous
state = P(X,|Xq...1) = P(X;|X,.4)



Markov Process

 To define 1%t order process need
— States

e sunny, cloudy, rainy

— Initial probabilities (rt vector)
e [sunny cloudy rainy] = [0.8 0.1 0.1]

— Transition probabilities (A matrix)
Today

[ sun  cloud  rain |
SU1 0.50 0.375 0.125
cloud | 0.25 0.125 0.625
rain [ 0.25 0.375 0.375 |

Yesterday




What is a HMM?

 Markov process with unobserved states

Do observe output dependent on state
— Hermit forecast weather

e HMM definition
— Initial probabilities (mt vector)

— Transition probabilities (A matrix)

— Emission probabilities (B matrix) —

Dry Drylsh Damp Soggy

Sun [ 0.80 020 0.15 0.05

weather Coud | 0.85 025 0.85 0.85
Ren | 0.05 010 0.3 0.50

http://www.comp.leeds.ac.uk/roger/HiddenMarkovModels/html_dev/main.html



HMM Uses

e Evaluation
— Match most likely system to observations
— Forward algorithm
e Decoding
— Find most probable sequence of hidden states
— Viterbi algorithm
* Learning

— Define HMM parameters to a given data set
— Forward-backward algorithm



Evaluation

* Probability of observed sequence given HMM

e Number of paths needed increases
exponentially with time

e Solution: Use time invariance of probabilities

Sunny Sunny Sunny




Forward Algorithm

e Reduce complexity with recursion
— NT vs N°T

e Partial probability o = sum of all possible paths
to a state

— a,,; (j )= Pr(observation | hidden state is j) x Pr(all
paths to state j at time t)

0y () = b, ; ol Day

kll-l iml
— Special case:t=1

o, () = W)-bﬂl




Decoding

 Find most probable sequence of hidden states

— Maximize Pr(observed sequence | hidden state
combination)

— Again, reduce complexity with recursion!

Sunny Sunny Sunny




Viterbi Algorithm

e Partial probability & = most likely path to a
state

e Overall best path = state with the max 6 and
its partial best path

O 0 L0 ONO
OO O 00
OO0 OO0 OO

Partial best paths, each with a 6



Viterbi Algorithm

* Probability of most probable path to state X

— Pr(Xattime t) = max;_, g ¢ Pr(i.;) x Pr(X]i) x
Pr (obs. at time t|X)

64(6) = mpx(Bi-1(agibin,)
— Special case:t=1
81(3) = = (3)bin,
e If | am here, by what route is it most likely |
arrived?

— “Remember” past best states with backpointers
¢:(i) = argmaz; (8:-1(7)as)



Viterbi Algorithm

e Termination: determine state at final t

it = argmaz(67(s))
e Back-track
— Fort=t-1=21
$t = Pp41(8241)
 Advantages

— Reduce complexity (NT vs N2T)

— Robust to noise

e Looks at whole sequence before deciding on most likely final
state =» back-track to best path



HMM Applications

e Speech recognition

Emission probabilities (B)

 Bioinformatics

\

A=0.25 A=0.05 =04
C=0.25 Cc=0 =0.1
G=0.25 G=0.95 =0.1
T=025 T=0 =04

OEnd
Transition Probabilities (A)

0.9

Sequence: CTTCATGTGAAAGCAGACGTAAGTCA
E EEEEE
[ |

State path: EEEEEE EEE FTTT T logP
I 1CE 1 —41.22

-43.90
-43.45
-43.94
-42.58
-41.71
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Parsing:

46%
Posterior . 28%
decoding: _ e 11£ _ e

Eddy SR. Nature Biotechnology 22:1315(2004)




HMM Applications

e Single-molecule imaging

— Molecular movements
diffraction-limited

(hidden)

— Infer conformational
changes from observed
changes in fluorescence
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http://www.olympusfluoview.com



FRET

* Fluorescence Resonance Energy Transfer

e Used as a spectroscopic ruler

— Measure real-time changes in molecular
conformations
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FRET Example - Ribosome
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Simulation

 See how well model captures underlying
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Summary

HMMs are useful to infer underlying Markov
states of a system

Many applications (speech to science)
Advantage: computationally friendly

Disadvantage: assumes time invariance in
parameters



Additional Questions?



