Hidden Markov Modeling

Michael Wasserman

Quantitative Understanding in Biology

June 3, 2009

Markov Modeling

- Stochastic process
- State machine assumption
- Transitions probabilistic
- Markov assumption
 - Current state depends only on a finite history of previous states
 - 1st order: current state depends only on previous state → $P(X_t|X_{0:t-1}) = P(X_t|X_{t-1})$

Markov Process

- To define 1st order process need
 - States
 - sunny, cloudy, rainy
 - Initial probabilities (π vector)
 - [sunny cloudy rainy] = [0.8 0.1 0.1]
 - Transition probabilities (A matrix)

			Today	
		$\int sun$	cloud	rain
Ye sterday	sun	0.50	0.375	0.125
	cloud	0.25	0.125	0.625
	rain	0.25	0.375	0.375

What is a HMM?

- Markov process with unobserved states
- Do observe output dependent on state
 - Hermit forecast weather
- HMM definition
 - Initial probabilities (π vector)
 - Transition probabilities (A matrix)
 - Emission probabilities (B matrix)

 Seaweed

 Dry Dryleh Damp Soggy

 Sun

 Weather Cloud Rein

 Rein

 Seaweed

 0.60 0.20 0.15 0.05
 0.95 0.25 0.95
 0.95 0.50

HMM Uses

- Evaluation
 - Match most likely system to observations
 - Forward algorithm
- Decoding
 - Find most probable sequence of hidden states
 - Viterbi algorithm
- Learning
 - Define HMM parameters to a given data set
 - Forward-backward algorithm

Evaluation

- Probability of observed sequence given HMM
- Number of paths needed increases exponentially with time
- Solution: Use time invariance of probabilities

Forward Algorithm

- Reduce complexity with recursion
 - $-N^{T}$ vs $N^{2}T$
- Partial probability α = sum of all possible paths to a state
 - $-\alpha_{t+1}(j)$ = Pr(observation | hidden state is j) x Pr(all

paths to state j at time t)

$$\alpha_{t+1}(j) = b_{jk_{t+1}} \sum_{i=1}^{n} \alpha_{i}(i) a_{ij}$$

– Special case: t = 1

$$\alpha_1(j) = \pi(j).b_{jk_1}$$

Decoding

- Find most probable sequence of hidden states
 - Maximize Pr(observed sequence | hidden state combination)
 - Again, reduce complexity with recursion!

Viterbi Algorithm

- Partial probability δ = most likely path to a state
- Overall best path = state with the max δ and its partial best path

Partial best paths, each with a δ

Viterbi Algorithm

- Probability of most probable path to state X
 - $Pr(X \text{ at time } t) = max_{i=A,B,C} Pr(i_{t-1}) \times Pr(X|i) \times Pr \text{ (obs. at time } t|X)$

$$\delta_t(i) = \max_j (\delta_{t-1}(j) a_{ji} b_{ik_t})$$

– Special case: t = 1

$$\delta_1(i) = \pi(i)b_{ik_1}$$

- If I am here, by what route is it most likely I arrived?
 - "Remember" past best states with backpointers

$$\phi_t(i) = argmax_j(\delta_{t-1}(j)a_{ji})$$

Viterbi Algorithm

• Termination: determine state at final t

$$i_t = argmax(\delta_T(i))$$

- Back-track
 - For t = t-1 → 1

$$i_t = \phi_{t+1}(i_{t+1})$$

- Advantages
 - Reduce complexity (N^T vs N²T)
 - Robust to noise
 - Looks at whole sequence before deciding on most likely final state → back-track to best path

HMM Applications

Speech recognition

HMM Applications

- Single-molecule imaging
 - Molecular movements diffraction-limited (hidden)
 - Infer conformational changes from observed changes in fluorescence

FRET

- Fluorescence Resonance Energy Transfer
- Used as a spectroscopic ruler
 - Measure real-time changes in molecular conformations

FRET Example - Ribosome

Simulation

 See how well model captures underlying states

Time

Summary

- HMMs are useful to infer underlying Markov states of a system
- Many applications (speech to science)
- Advantage: computationally friendly
- Disadvantage: assumes time invariance in parameters

Additional Questions?