Mathematical Modeling of Cardiac Arrhythmias

May 27, 2009 Keigo Kawaji and Tian Liu Quantitative Biology Final Project

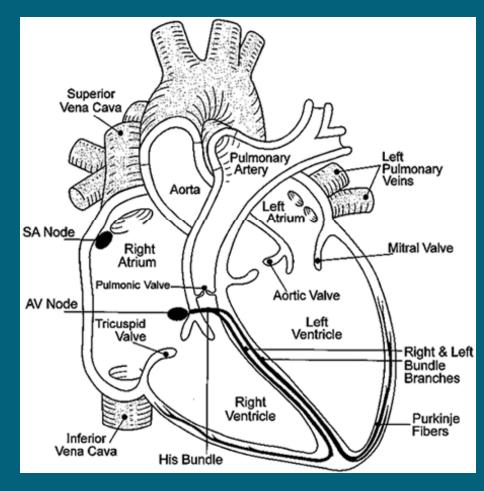
Cardiac Arrhythmia: the Dry Definition

- Any disorder of your heart rate or heart rhythm, such as beating too fast (tachycardia), too slow (bradycardia), or irregularly.
 - NIH Medical Encyclopedia

- Can lead to:
 - Angina
 - Heart Attack
 - Heart Failure
 - Stroke

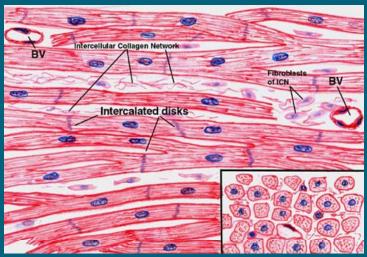
Review of Physiology: Anatomy

- Anatomy:
 - 4 Chambers
 - Ventricles
 - Atria
 - SA Node
 - AV Node
 - Bundle of His
 - Purkinje Fibers



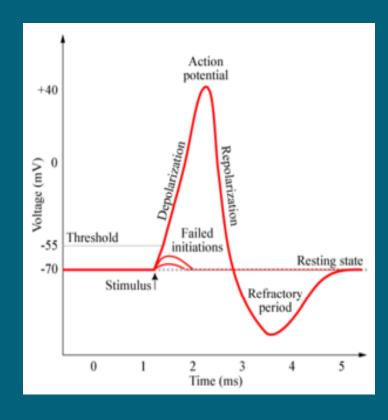
Review of Physiology: Myocardium Composition

- Myocardial Cells have properties of:
 - Muscle Cells
 - Contract when stimulated
 - Nerve Cells
 - Propagate Action Potential



Review of Physiology: Nanoscale Structure

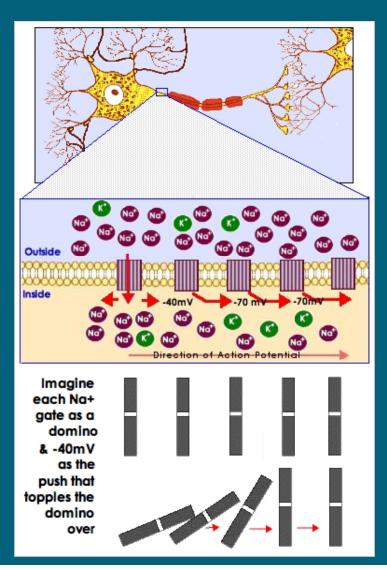
- At the nano level
 - Cascade of ion channels
 - K and Na ion concentration change
 - Nernst potential gives V_m, membrane potential



Review of Physiology: Nanoscale

Structure

- At the nano level
 - Cascade of ion channels
 - K and Na ion concentration change
 - Nernst potential gives V_m, membrane potential



Understanding Arrhythmias

- Understand the underlying mechanism of how Action Potential results in Arrhythmias
- Examine a mathematical model
- Understand what happens in a healthy model
- 3. Change conditions to identify diseased heart

Outline of the Presentation

- Modeling an Action Potential
 - Hodgkin-Huxley Model
 - Cable Theory
- Simulations in MATLAB
 - Linear, Ring, and 2D Mesh Models
 - ECG (Extracellular Potential)
 - Defibrillator
- Discussion and Conclusion

Review of Dr. Clancy's Lectures: Hodgkin and Huxley

Sir Alan Hodgkin

- Physiologist and Biophysicist
- 1914 1998

Sir Andrew Huxley

- Nobel Laureate, 1963
- 1917 -



Loligo forbesi, the Squid

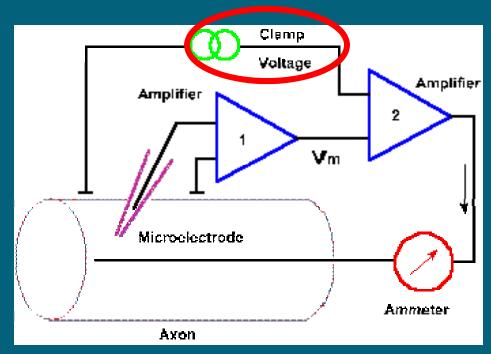
- 1 mm diameter axon
- Axon used in experiment

Review of Dr. Clancy's Lectures: Voltage Clamp

- User sets clamp potential, V_{clamp}
- Voltage electrode records V_m
- Current amp injects

 + or current if V_m is

 different from V_{clamp}
- 4. Injected current compensates fast enough such that V_m stays at V_{clamp}

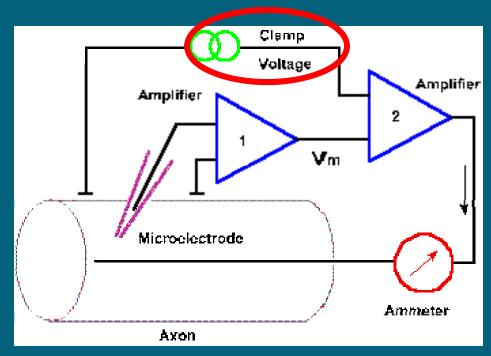


Review of Dr. Clancy's Lectures: Voltage Clamp

5. Measure V_m and current I.

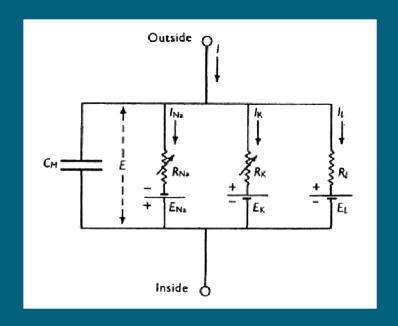
Advantages:

Can measure E_K , I_K , E_{Na} , or I_{Na}



Review of Dr. Clancy's Lectures: Membrane Circuit Assumptions

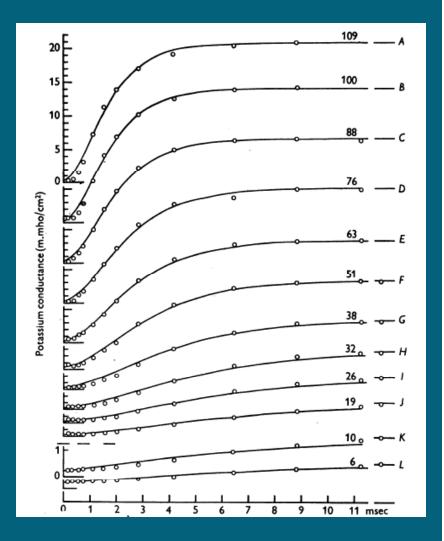
- Membrane Circuit
 - Circuit representation of the membrane
 - K component
 - Na Component
 - Loading Component



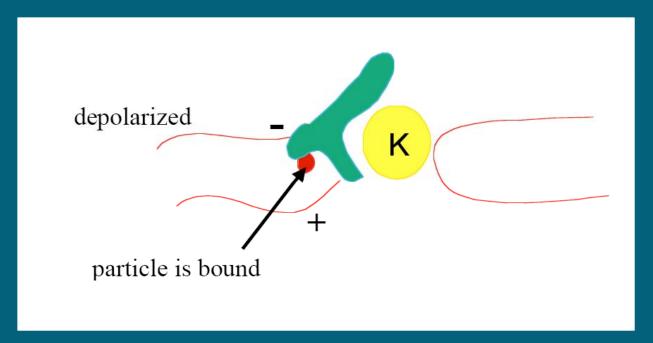
- For the K channel
 - Developed response to clamped Voltage
 - Conductance g_K vs t plotted for different V_c

Fixed

$$g_K = I_K / (V_c - E_K)$$



Hypothesized Voltage Gate for Potassium



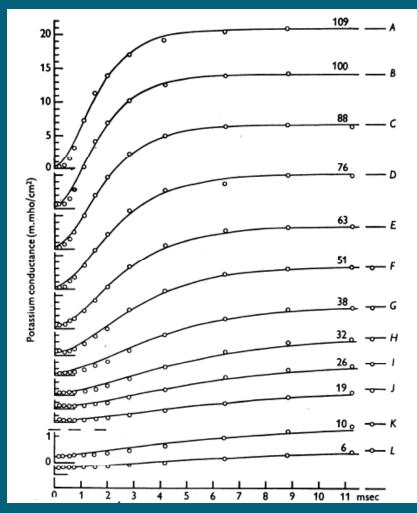
• Defined n : (1-n) as ratio between bound to unbound particle, where n is a fraction.

> From Plot:

Found Eqn.

$$g_K = \overline{g}_K n^4$$

HH found n⁴ fitted data well.

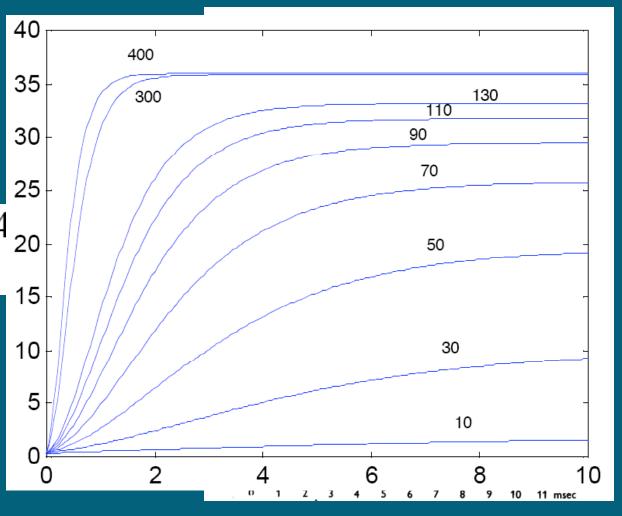


From Plot:

Found Eqn.

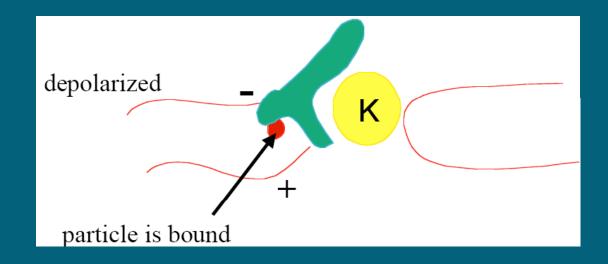
$$g_K = \overline{g}_K n^4$$

HH found n⁴ fitted data well.



Q. Why do we have an n⁴?

A. n^4 means 4 particles needed to open gate Thus, P(open gate) = $n \times n \times n \times n = n^4$



Q. How do we get n in:

$$g_K = \overline{g}_K n^4$$

A. Define n, a function of time as:

$$n(t) = n_{\infty} - (n_{\infty} - n_0)e^{-t/\tau_n}$$

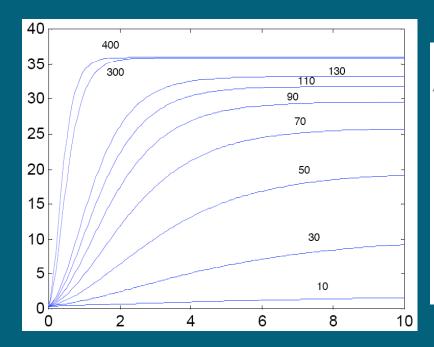
Its derivative takes form:

$$\frac{dn}{dt} = \alpha_n (1 - n) - \beta_n n$$

Q. How do we get n in:

$$g_K = \overline{g}_K n^4$$

A. Find time constant τ and n_{∞} from plot



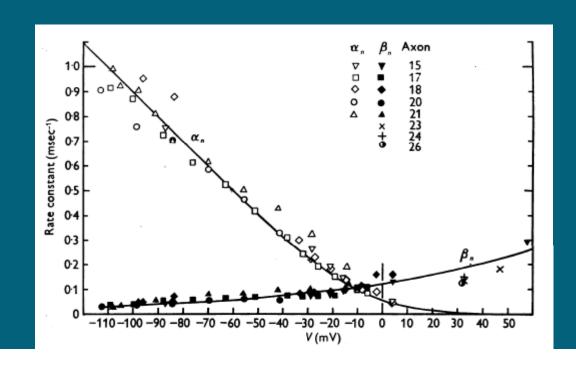
$$\tau_{n} = \frac{1}{\alpha_{n}(V_{Clamp}) + \beta_{n}(V_{Clamp})}$$

$$n_{\infty} = \frac{\alpha_{n}(V_{Clamp})}{\alpha_{n}(V_{Clamp}) + \beta_{n}(V_{Clamp})}$$

Q. How do we get n in:

$$g_K = \overline{g}_K n^4$$

A. Make a plot of rate constants α and β for each V_C



Q. How do we get n in:

$$g_K = \overline{g}_K n^4$$

A. Curve fit for α and β to obtain:

$$\alpha_{n} = 0.01 \frac{10 - V_{m}}{\exp\left(\frac{10 - V_{m}}{10}\right) - 1}$$

$$\beta_n = 0.125 \exp\left(\frac{-V_m}{80.0}\right)$$

Q. How do we get n in:

$$g_K = \overline{g}_K n^4$$

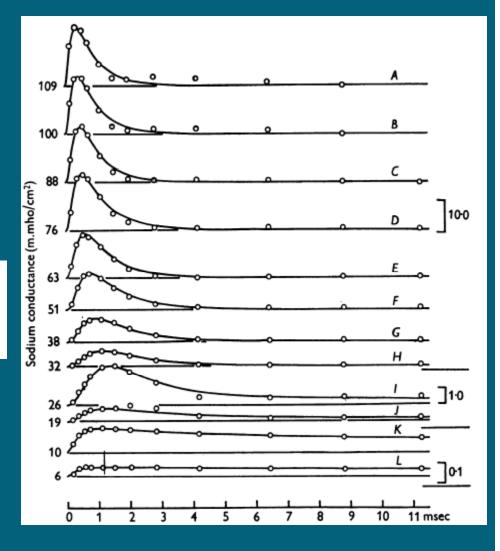
A. Substitute back α and β to obtain:

$$\frac{dn}{dt} = \alpha_n (1 - n) - \beta_n n$$

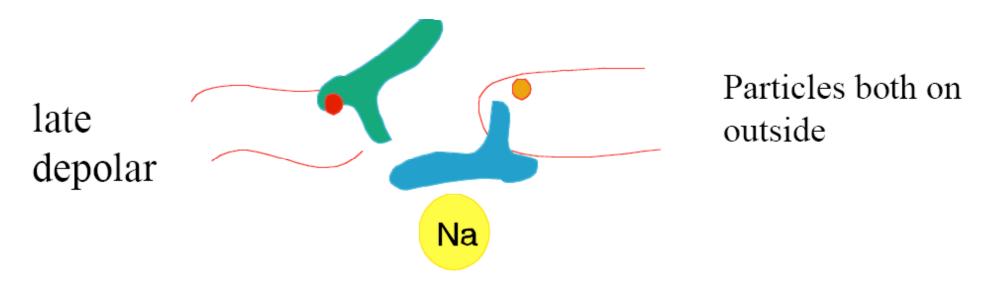
Integrate this to finally obtain n.

- For the Na channel
 - Found g_{Na}
 - Hypothesized Na gate satisfied the equation:

$$g_{Na} = \overline{g}_{Na} m^3 h$$



 \overline{Q} . Why do we have an m and h this time?



 Defined m: (1-m) and h: (1-h) as ratios for each of bound to unbound particles

Q. How to get m, h in:

$$g_{Na} = \overline{g}_{Na} m^3 h$$

A. Find α_m , β_m and α_h , β_h just like last time:

$$\frac{dm}{dt} = \alpha_m (1 - m) - \beta_m m$$

$$\frac{dh}{dt} = \alpha_h (1 - h) - \beta_h h$$

Q. How to get m, h in:

$$g_{Na} = \overline{g}_{Na} m^3 h$$

A. Find α_m , β_m and α_h , β_h just like last time:

$$\frac{dm}{dt} = \alpha \int_{0}^{10} \int_{0}^$$

Q. How to get m, h in:

$$g_{Na} = \overline{g}_{Na} m^3 h$$

A. Find α_m , β_m and α_h , β_h just like last time:

$$\frac{dm}{dt} = \alpha$$

$$\frac{dh}{dt} = \alpha$$

The HH Model of AP

• Putting it all together:

$$\frac{dv_m}{dt} = -\frac{1}{C_m} (I_{Na} + I_K + I_L) \qquad I_{Na} = \overline{g}_{Na} m^3 h(v_m - e_{Na})$$

$$\frac{dm}{dt} = \alpha_m (1 - m) - \beta_m m \qquad I_K = \overline{g}_K n^4 (v_m - e_K)$$

$$\frac{dh}{dt} = \alpha_h (1 - h) - \beta_h h \qquad I_L = \overline{g}_L (v_m - e_L)$$

$$\frac{dn}{dt} = \alpha_n (1 - n) - \beta_n n$$

The HH Model of AP

• Putting it all together:

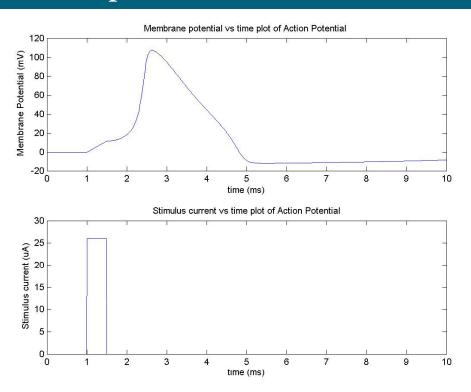
$$\frac{dv_m}{dt} = \begin{cases}
\alpha_m = 0.1 \frac{25 - V_m}{\exp\left(\frac{25 - V_m}{10}\right) - 1} & \alpha_n = 0.01 \frac{10 - V_m}{\exp\left(\frac{10 - V_m}{10}\right) - 1} \\
\beta_m = 4.0 \exp\left(\frac{-V_m}{18.0}\right) & \beta_n = 0.125 \exp\left(\frac{-V_m}{80.0}\right)
\end{cases}$$

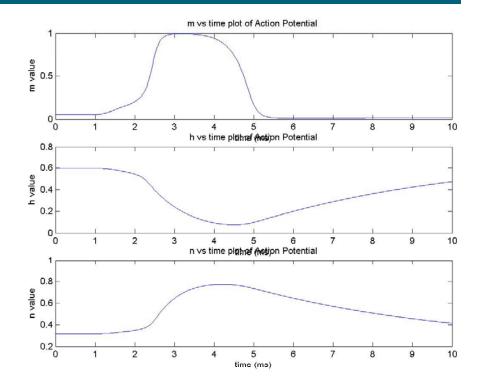
$$\frac{dh}{dt} = c \qquad \alpha_h = 0.07 \exp\left(\frac{-V_m}{20.0}\right)$$

$$\frac{dm}{dt} = c \qquad \beta_h = \frac{1}{\exp\left(\frac{30 - V_m}{10}\right) + 1}$$

The HH Model of AP

• Implementation in Matlab over 10 ms.





How do we propagate the AP?

Idea 1: Traveling Wave Solutions

Eg. Fitzhugh-Nagumo Equation

$$egin{array}{ll} rac{dV_m}{dt} &= F_v = & V_m \left(rac{V_m}{V_t} - 1
ight) \left(1 - rac{V_m}{V_p}
ight) - W \ & rac{dW}{dt} &= F_q = & C(v_m + A - BW) \end{array}$$

V = membrane potential W = recovery variable

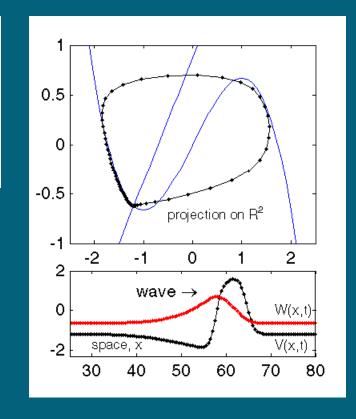
How do we propagate the AP?

Idea 1: Traveling Wave Solutions

$$egin{array}{ll} rac{dV_m}{dt} &= F_v = V_m \left(rac{V_m}{V_t} - 1
ight) \left(1 - rac{V_m}{V_p}
ight) - W \ rac{dW}{dt} &= F_q = C(v_m + A - BW) \end{array}$$

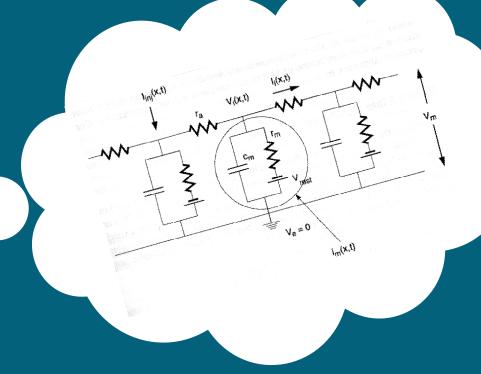
But... Incompatible with HH

We'd be happy to discuss this another day (please don't ask)



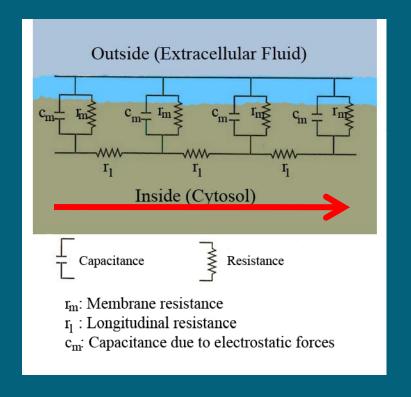
How do we propagate the AP?

• Idea 2: Cable Theory!



Introduction to Cable Theory

- We want to see how an action potential travels forward through a fiber.
- Line up Resistor-Capacitor in parallel
- Potential propagates from left to right



Combining Cable with HH

Q. Can we run an action potential through a cable fiber?

$$C_m \frac{\partial v_m}{\partial t} = \frac{a}{2R_i} \frac{\partial^2 v_m}{\partial x^2} - \frac{v_m}{R_m}$$

We can program this in MATLAB and solve for a system of differential equations.

Discretization in space and in time

Discretization in space

$$0 = \frac{1}{r_i} \frac{\partial^2 v_m}{\partial x^2} - \frac{v_m}{r_m}$$

$$\frac{\partial^2 v_m}{\partial x^2} = \frac{\Phi(x + \Delta x) - 2\Phi(x) + \Phi(x - \Delta x)}{\Delta x^2}$$

Discretization in space and in time

Discretization in space

BC	BC	0	0	0	BC	Ф(1)		$ \Phi(1) $
1	-2	1	0	0	0	$\Phi(2)$	$=\frac{\Delta x^2 r_i}{1}$	$\Phi(2)$
0	1	-2	0	0	0	$\Phi(3)$		$\Phi(3)$
0	0	1	-2	1	0	$\Phi(4)$		$\Phi(4)$
0	0	0	1	-2	1	$\Phi(5)$		$\Phi(5)$
BC	0	0	0	BC	I	Ф(6)	l	$ \Phi(6) $

Markov-based Equation

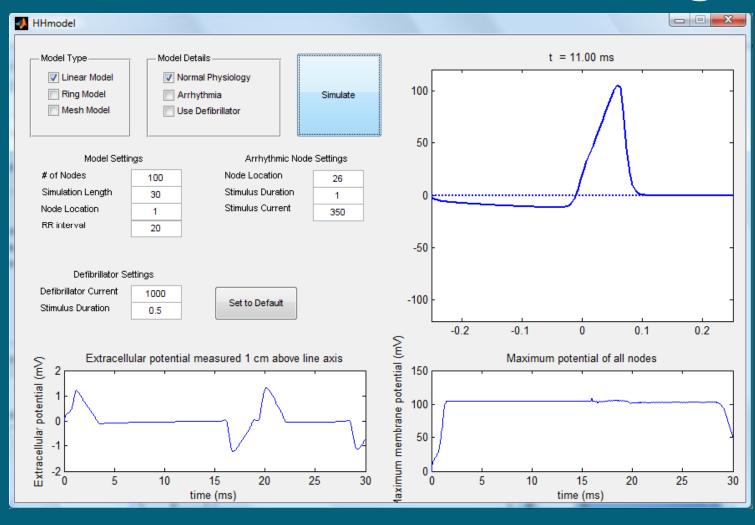
Discretization in time

$$C_m \frac{\partial v_m}{\partial t} = \frac{a}{2R_i} \frac{\partial^2 v_m}{\partial x^2} - \frac{v_m}{R_m}$$

$$C_m \frac{\partial v_m}{\partial t} = \frac{a}{2R_i} \frac{\partial^2 v_m}{\partial x^2} - \frac{v_m}{R_m} \qquad C_m \frac{v_m^{t+1} - v_m^t}{dt} = \frac{a}{2R_i} \frac{\partial^2 v_m^t}{\partial x^2} - \frac{v_m^t}{R_m}$$

$$v_m^{t+1} = v_m^t + \frac{dt}{C_m} \left(diag \left(\frac{a}{2R_i} \right) A v_m^t - \frac{v_m^t}{R_m} \right)$$

Simulations: Linear and Ring



ElectroCardioGram (ECG)

- We can measure the extracellular potential
 - Need the position of the probe and the nodes
 - Principle of superposition

$$M(x) = \pi a^2 \sigma_i \frac{\partial^2 v_m}{\partial x^2}$$

$$\Phi = \frac{1}{4\sigma_e} \left(\frac{M_1}{r_1} + \frac{M_2}{r_2} + \frac{M_3}{r_3} + \cdots \right)$$

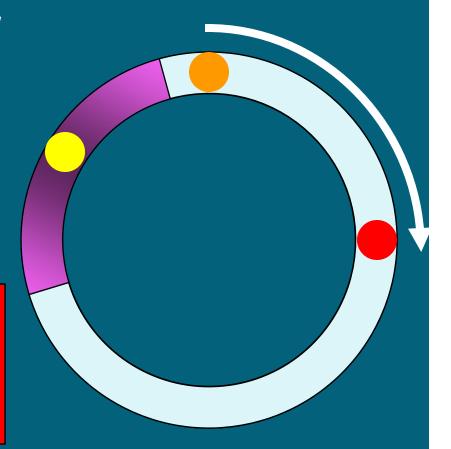
Mechanism of an Arrhythmia

- Reentry
 - Normally the impulse spreads through the heart quickly enough that each cell will only respond once
 - If conduction velocity is abnormally slow in some areas, part of the impulse will arrive late and will be treated as a new impulse, which can then spread backward.

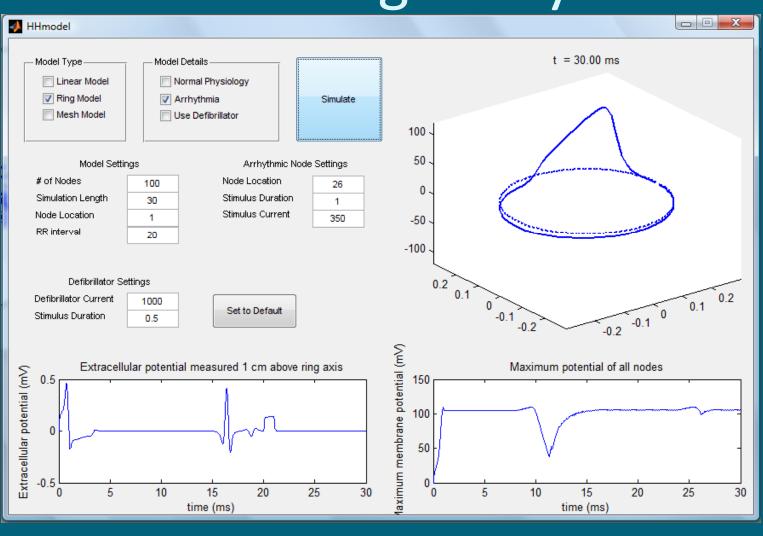
Diseased Ring Model

- Unidirectional Block and Reentry
 - Increased resistance values of select nodes (slows down)
 - Adjusted elements in MatrixA
 - All nonzero values in A were kept nonzero

$$\frac{dv_k}{dt} = v_{k-1} - v_k + v_{k+1}$$



Simulations: Ring Arrhythmia



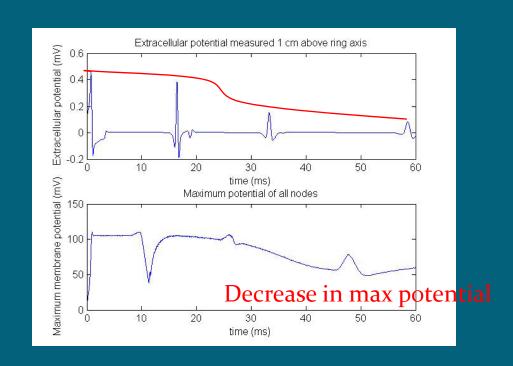
Summary of Arrhythmia Model

- Model Strengths:
 - Able to demonstrate a simplistic mathematical model of how an arrhythmia works.
- Model Weaknesses:
 - Single stimulus from select nodes prone to reentry
 - Unlikely in reality due to geometry of ring w/ respect to heart
 - Relative Geometry/location of unidirectional block IMPORTANT
 - Oversimplification of complex physiology

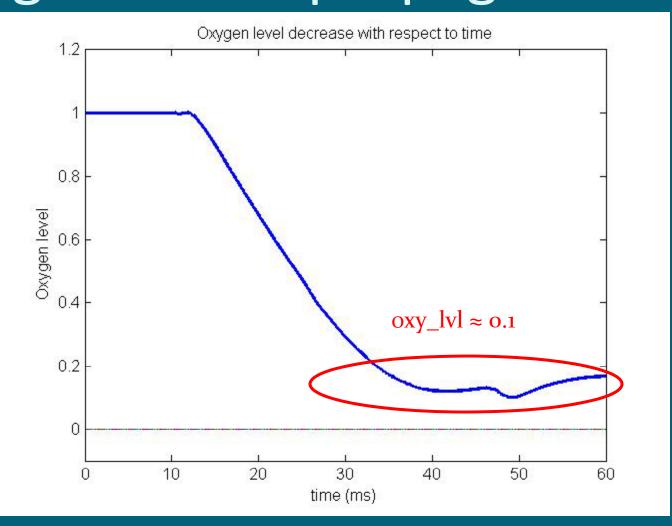
Programming a Defibrillator

- With ECG signal, can we program a defibrillator to shock our model out of arrhythmia?
- At first, this did not work
 - Needed additional parameter

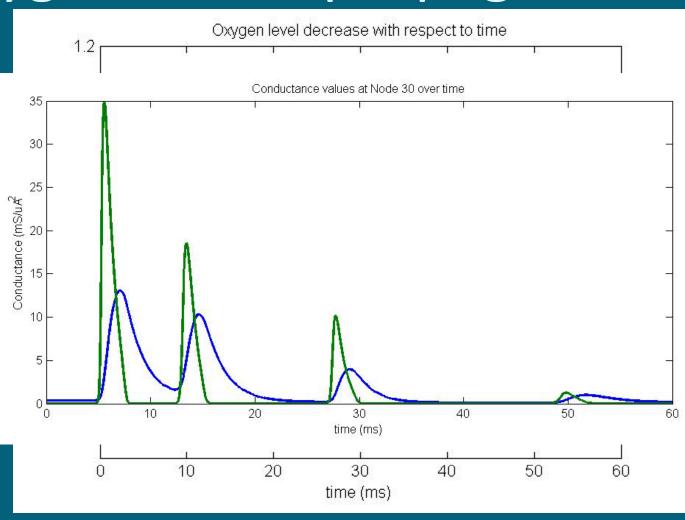
Oxygen-based propagation



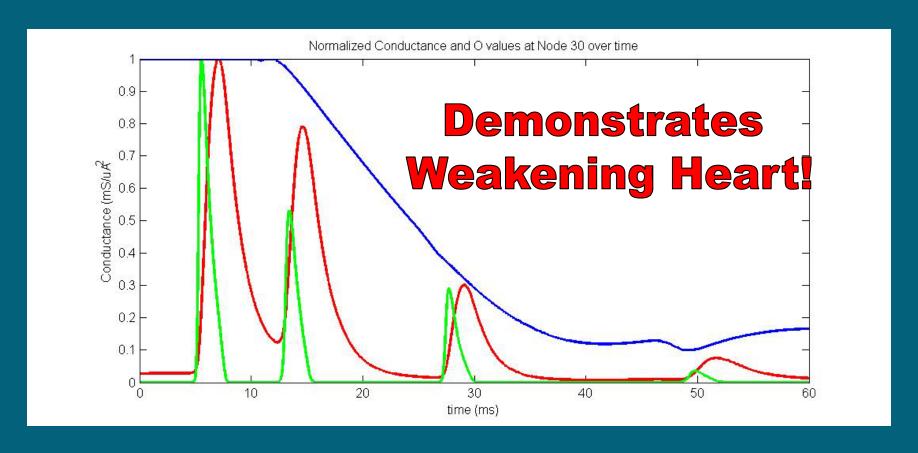
Oxygen-based propagation



Oxygen-based propagation

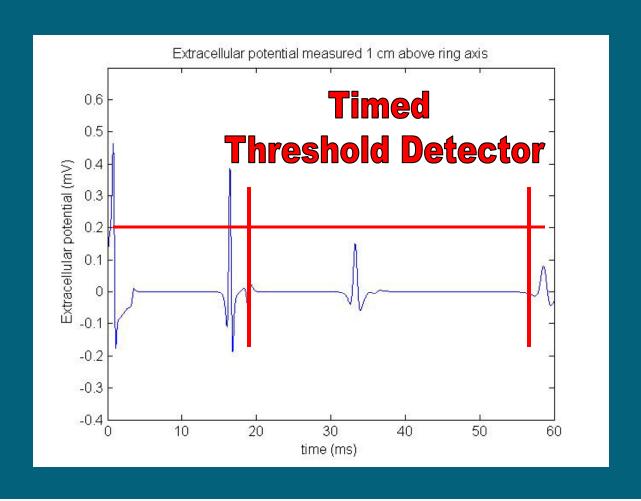


Model of Ventricular Fibrillation

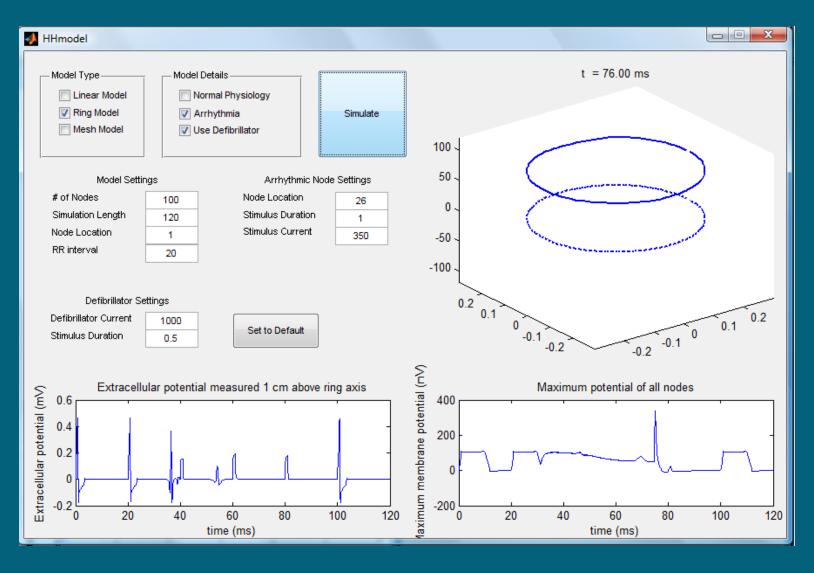


Defibrillator Algorithm

- Reality: Correlation of ECG with known VF ECG
- Our model:



Simulation with Defibrillator



Conclusion

- Successful created AP propagating HH Model
- Ring Model demonstrates concept of reentry and cardiac arrhythmia
- Using Electromagnetic Equations, we successfully simulated ECG
- Can use ECG-triggered defibrillator with dying heart model