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Outline

Part I  : Basics of Medical image Filtering and 
Convolution
Part II : Estimation Theory and examples
Part III: Detection Theory and examples
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Convolution Basics

Convolution is defined as

3

Practically achieved as follows:
Flip h(t)
Slide it into x(t) by amount tau
At each position tau, calculate the area of overlap 
between x and h
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Example

4
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Filtering and Convolution

5
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Convolution For Interpolation and 
Resampling

Sometimes need to “fill in” missing data
Interpolation – to resample image on finer grid
Resampling is used to change the “nonminal” 
resolution of images
Example: if multi-slice images with non-isotropic 
resolution, resampling can make it isotropic
IMPORTANT: resampling, filtering or interpolation 
does NOT increase “actual” resolution

6
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Resampling example
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k-space and image-space

k-space & 
image-
space are 
related by 
the 2D FT
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How many points do we need to 
sample?

Δ k = 1/FOV
Why?  Due to the Sampling Theorem

“Suppose a signal I(x) is non-zero only within [-W/2, 
W/2].  Then its Fourier transform F(I)(kx) must be 
sampled at least as densely as Δ kx = 1/W.”

Note this works regardless of direction of 
transform (Duality property)
What happens if this is violated?  ALIASING
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Aliasing Example
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Truncation
Truncation = sampling central part of k-space
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Truncation

Both blurring and ringing are a result of 
truncation
Intrinsic resolution = size of the blur
To reduce blur (hence increase resolution) we 
need to sample up to a larger k-space radius
Can characterise resolution by the point spread 
function (PSF) which is simply the blurring kernel
Note: zero-padding can increase matrix size but 
can not increase resolution!
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Ringing

ringing can be reduced by multiplying the signal 
by a smooth window  - called windowing
Popular window choices: 
– Kaiser-Bessel
– Hanning
– Raised cosine
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Ringing Example



Part II : Estimation Theory and 
Examples

Introduction to optimal estimates

Different types of optimal estimates

Estimation examples from MR
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Estimation Theory

Consider a linear process
y = H θ + n

y = observed data
θ = set of model parameters
n = additive noise
Then Estimation is the problem of finding the 
statistically optimal θ, given y, H and knowledge 
of noise properties
MR is full of estimation problems 
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Different approaches to estimation

Minimum variance unbiased estimators
Least Squares
Maximum-likelihood
Maximum entropy
Maximum a posteriori

has no 
statistical 

basis

uses knowledge 
of noise PDF

uses prior 
information 

about θ



IDEA Lab, Radiology, Cornell 22

Least Squares Estimator
Least Squares: 

θLS = argmin ||y – Hθ||2

Natural estimator– want solution to match observation
Does not use any information about n
There is a simple solution (a.k.a. pseudo-inverse):

θLS = (HTH)-1 HTy

What if we know something about the noise?
Say we know Pr(n)…
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Maximum Likelihood Estimator

Simple idea: want to maximize Pr(y|θ)
Can write Pr(n) = e-L(n) , n = y – Hθ, and

Pr(n) = Pr(y|θ) = e-L(y, θ)

if white Gaussian n, Pr(n) = e-||n||2/2 σ2 and 
L(y, θ) = ||y-Hθ||2/2σ2

θML = argmax Pr(y|θ) = argmin L(y, θ)
– called the likelihood function

θML = argmin ||y-Hθ||2/2σ2

This is the same as Least Squares!



IDEA Lab, Radiology, Cornell 24

Maximum Likelihood Estimator

But if noise is jointly Gaussian with cov. matrix C 
Recall C , E(nnT).  Then

Pr(n) = e-½ nT C-1 n

L(y|θ) = ½ (y-Hθ)T C-1 (y-Hθ)
θML = argmin ½ (y-Hθ)TC-1(y-Hθ) 

This also has a closed form solution
θML = (HTC-1H)-1 HTC-1y

If n is not Gaussian at all, ML estimators become 
complicated and non-linear
Fortunately, in MR noise is usually Gaussian
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Example - estimating T2 in 
repeated spin echo data
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Example – estimating T2 in 
repeated spin echo data

s(t) = e-t/T2 dr ρ(r)

Need only 2 data points to estimate T2:
T2est = [TE2 – TE1] / ln[s(TE1)/s(TE2) ]

However, not good due to noise, timing issues
In practice we have many data samples from 
various echoes
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Example – estimating T2

θ LS = (HTH)-1HTy
T2 = 1/rLS

H
ln(s(t1))
ln(s(t2))

M

ln(s(tn))

1   -t1

1   -t2

M

1   -tn

=
a
r

θ

y

Least Squares estimate:

Can we do better by ML estimate? 
- if noise is correlated across time
- if noise variance changes over time
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Estimation example - Denoising

Suppose we have a noisy MR image y, and wish 
to obtain the noiseless image x, where

y = x + n
Can we use Estimation theory to find x?
Try: H = I, θ = x in the linear model
Both LS and ML estimators simply give x = y!

we need a more powerful model
Suppose the image x can be approximated by a 
polynomial, i.e. a mixture of 1st p powers of r:

x = Σi=0
p ai ri
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Example – denoising

θ LS = (HTH)-1HTy

x = Σi=0
p ai ri

H

θ

y

Least Squares estimate:

Can we do better by ML estimate?  YES
Noise in MR can be spatially correlated
- ML with covariance matrix C is better
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Multi-variate FLASH

Acquire 6-10 accelerated FLASH data sets at 
different flip angles or TR’s
Generate T1 maps by fitting to:

( ) ( )
( )

1*
2

1

1 exp
exp sin

1 cos exp
TR T

S TE T
TR T

α
α

− −
= −

− −
• Not enough info in a single voxel

• Noise causes incorrect estimates

• Error in flip angle varies spatially!



IDEA Lab, Radiology, Cornell 32

Spatially Coherent T1, ρ estimation

First, stack parameters from all voxels in one big vector x
Stack all observed flip angle images in y
Then we can write y = M (x) + n
Recall M is the (nonlinear) functional obtained from

( ) ( )
( )

1*
2

1

1 exp
exp sin

1 cos exp
TR T

S TE T
TR T

α
α

− −
= −

− −

Solve for x by non-linear least square fitting, PLUS spatial prior:
xest = arg minx || y - M (x) ||2 + μ2||Dx||2     

Minimize via MATLAB’s lsqnonlin function
How? Construct δ = [y - M (x); μ Dx]. Then E(x) = ||δ||2

E(x)

Makes M(x) close to y Makes x smooth
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Multi-Flip Results – combined ρ, T1
in pseudocolour
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Multi-Flip Results – combined ρ, T1
in pseudocolour
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Maximum a Posteriori Estimate

This is an example of using an image prior
Priors are generally expressed in the form of a 
PDF Pr(x)
Once the likelihood L(x) and prior are known, we 
have complete statistical knowledge
LS/ML are suboptimal in presence of prior
MAP (aka Bayesian) estimates are optimal

Bayes Theorem:

Pr(x|y) =   Pr(y|x) . Pr(x) 

Pr(y)

likelihood

prior
posterior
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Other example of Estimation in MR

Image denoising: H = I
Image deblurring: H = convolution mtx in img-space
Super-resolution: H = diagonal mtx in k-space
Metabolite quantification in MRSI
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What Is the Right Imaging Model?

y = H x + n,    n is Gaussian   (1)

y = H x + n,   n, x are Gaussian  (2)
MAP Sense

MAP Sense = Bayesian (MAP) estimate of (2)

Presenter
Presentation Notes
Now, if you take a horizontal line and look at the intensity profile, it is reasonable to assume that artery is brighter than background within each scan line
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Intro to Bayesian Estimation

Bayesian methods maximize the posterior probability:
Pr(x|y) Pr(y|x) . Pr(x)

Pr(y|x) (likelihood function)  = exp(- ||y-Hx||2)
Pr(x) (prior PDF) = exp(-G(x))
Gaussian prior:

Pr(x) = exp{- ½  xT Rx
-1 x}

MAP estimate:
xest = arg min ||y-Hx||2 + G(x)

MAP estimate for Gaussian everything is known as 
Wiener estimate
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Regularization = Bayesian 
Estimation!

For any regularization scheme, its almost always possible to 
formulate the corresponding MAP problem
MAP = superset of regularization

42

Prior model Regularization schemeMAP

So why deal with regularization??
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Lets talk about Prior Models

Temporal priors: smooth time-trajectory
Sparse priors: L0, L1, L2 (=Tikhonov)
Spatial Priors: most powerful for images
I recommend robust spatial priors using Markov 
Fields
Want priors to be general, not too specific
Ie, weak rather than strong priors

43
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How to do regularization

First model physical property of image, 
then create a prior which captures it, 
then formulate MAP estimator,
Then find a good algorithm to solve it!

44

How NOT to do regularization

DON’T use regularization scheme without bearing on 
physical property of image!
Example: L1 or L0 prior in k-space!
Specifically: deblurring in k-space (handy b/c convolution 
becomes multiply)
BUT: hard to impose smoothness priors in k-space no 
meaning
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Spatial Priors For Images - Example
Frames are tightly distributed around mean
After subtracting mean, images are close to Gaussian

time frame Nf

frame 2
frame 1

Prior: -mean is μx
-local std.dev. varies as a(i,j)

mean

mean μx(i,j)

variance

envelope a(i,j)
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Spatial Priors for MR images

Stochastic MR image model:
x(i,j) = μx (i,j) + a(i,j) . (h ** p)(i,j) (1)

** denotes 2D convolution
μx (i,j) is mean image for class
p(i,j) is a unit variance i.i.d. stochastic process
a(i,j) is an envelope function
h(i,j) simulates correlation properties of image x

x = ACp + μ (2)

where A = diag(a) , and C is the Toeplitz matrix generated by h
Can model many important stationary and non-stationary cases

stationary 
process

r(τ1, τ2) = (h ** h)(τ1, τ2)
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MAP-SENSE Preliminary Results

Unaccelerated 5x faster: MAP-SENSE

Scans acceleraty 5x
The angiogram was computed by:

avg(post-contrast) – avg(pre-contrast)

5x faster: SENSE
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Spatially Constrained High Angular Resolution Diffusion 
Imaging

Ashish Raj, PhD
Radiology

Joint work with:
Pratik Mukherjee, MD, PhD
Christopher Hess, MD, PhD

Sri Nagarajan, PhD
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MR Diffusion Imaging

Diffusion MRI has revolutionized in vivo imaging of brain 
A new contrast mechanism in addition to T1 or T2
Measures the directionally varying diffusion properties of 
water in tissue
Anisotropy of diffusion is an important marker of extant 
fiber organization
Enables non-invasive characterization of white matter 
integrity
Enables probing of fiber connectivity in the brain, through 
tractography
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Diffusion Tensor Imaging (DTI)
DTI involves taking 6 directional diffusion 
imaging measurements
Then it fits a 3D ellipsoid to these measurements 
Anisotropy of the ellipsoid is correlated with white 
matter fiber integrity

Cannot resolve crossing fibers
Fitting an ellipsoid to crossings gives isotropic spheres
– Erroneously low FA at crossing fibers
– Messes up tractography, as well as voxel-wise 

comparisons
Need much more than 6 directional measurements to 
resolve crossing fibers
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•Gs

•Gx

•Gy

•RF

•qx

•qy

•qz

•Data Acquisition Strategy

Presenter
Presentation Notes
HARDI adopts a more general representation in order to allow the intravoxel diffusion function to take on more complex morphologies. Data acquisition is similar to DTI, where large diffusion gradients are applied on both sides of the 180 degree pulse in a spin-echo EPI sequence. Unlike DTI, however, dozens or even hundreds of diffusion directions are obtained with large  b values often exceeding 1000.

The excitation for each diffusion gradient direction produces an image which encodes the mobility of water parallel to that direction. By cycling the diffusion gradients in each dimension, these images are effectively acquired on the surface of a sphere in diffusion space. The images are then combined to generate a three-dimensional reconstruction of diffusion in each voxel.
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•High Angular Resolution Diffusion Imaging

•Diffusion-encoding Geometries

•131 
directions

•55 directions •282 
directions

•Gradient directions are determined using an “electrostatic repulsion” model,
•for the most uniform sampling of 3D space:

•http://www.research.att.com/~njas/electrons/
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• Multi-tensor fitting  Tuch et al, MRM 2002
• Generalized DTI  Özarslan et al, MRM 2003
• Persistent angular structure  Jansons et al, Inv. Prob. 2003
• Spherical encoding  Lin et al, ISMRM 2003
• Spherical harmonic “ADC profile” Frank, MRM 2002; Alexander DC et al, MRM 2002
• Circular spectrum mapping  Zhan et al, Neuroimage 2004
• Spherical deconvolution  Tournier et al, Neuroimage 2004
• q-ball imaging Tuch et al, Neuron 2003; Tuch MRM 2004
• Harmonic q-Ball Hess et al, ISMRM 2005; MRM 2006

•S(φ,θ) •F(φ,θ)
•Goal: 

•Construct a spherical function that 
characterizes the angular structure 

of diffusion anisotropy in each voxel.

•Solutions:

Reconstruction Problem

Presenter
Presentation Notes
HARDI aims to overcome the limitations of the tensor model by describing the angular dispersion of diffusion. The goal can be stated as defining the likelihood of diffusion in any particular direction in spherical coordinates, phi and theta, representing azimuth and elevation, respectively. With HARDI, raw data are acquired along the surface of a sphere in q-space. Data are heavily diffusion-weighted in order to interrogate diffusion on a smaller spatial scale, with b values usually greatly exceeding 1000. 

The HARDI reconstruction problem can then be defined as one of mapping one function on the sphere in the measurement space S into another function on the sphere F, where F acts as a surrogate for the angular probability distribution function. Several methods have been proposed to synthesize HARDI measurements, including model-based techniques, generalized tensor methods, and persistent angular structure. The proposed method combines features of the three final approaches: spherical harmonic ADC, spherical deconvolution, and Q-ball imaging.
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•High Angular Resolution Diffusion Imaging:

Spherical Harmonic Q-ball

•Hess CP, Mukherjee P, Han ET, Xu D, Vigneron DB 
•Magn Reson Med 2006; 56:104-117

4 6 8 10 12 14 16

20

40

60

4 6 8 10 12 14 16

1.5

2

2.5

(b) 

•Point Spread Functions •Simulated
•ODFs

•Model Order vs
•Angular Resolution

• more computationally efficient
• more numerically stable

• more analytically tractable
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• Middle cerebellar peduncle (MCP)
• Superior cerebellar peduncle (SCP)
• Pyramidal tract (PT)
• Trans pontocerebellar fibers (TPF)

Hess CP, Mukherjee P, Han ET, Xu D, Vigneron DB 
Magn Reson Med 2006; 56:104-117

Presenter
Presentation Notes
Additional results in the brainstem with higher spatial resolution will be presented tomorrow by my colleague, Dr. Mukherjee. One example in the pons is shown here, where the transverse pontocerebellar fibers are known to interdigitate with the pyramidal tract in histologic studies. On this color-coded anisotropy map, the up-down orientation of the pyramidal tract fibers is depicted in blue and the transversely-oriented pontocerebellar fibers are closer to red. With HARDI, we can resolve the 2-way crossing of fibers at the boundaries of these two tracts. Again, where there is a single fiber orientation as in the medial lemniscus or superior cerebellar peduncle, HARDI produces a unimodal surface.	
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Berman JI, Chung S, Mukherjee P, Hess CP, Han ET, Henry RG. Neuroimage (2007)

Clinically Feasible HARDI Tractography

• Bootstrapping to generate probability distribution function for orientations
• Probabilistic streamline tracking
• 55 direction HARDI protocol, 1x1x2 mm resolution at b=3000 s/mm2

Harmonic q-ball DTI
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Problems

ODF reconstruction suffers from noise
Matrix is ill-conditioned
– i.e. its inverse “magnifies” small noise values into 

large ones

There are not enough diffusion directions
HARDI with high b very low SNR (<20)
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Current Solutions

Use efficient representation of ODFs
– Spherical harmonic basis
– Radial basis

Limit the order of the basis to use as few basis functions as 
possible
– Currently we use spherical harmonics only up to order 4 

or 6.
– Higher order harmonics contain mostly noise

(but this limits the angular resolution achievable, thus 
negating the motivation for HARDI)
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Linear System

Capture the model (whether RBF, SH, …) into the 
linear model (matrix) H

y = Hx + n
Then solve for x by inverting H
Usually inversion of H is ill-posed, so add a 

regularization term
This process is the same for ALL linear estimation 

problems!

63
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Regularization

Regularization of matrix inverse
– Tikhonov
– Laplace-Beltrami

Tikhonov Regularization penalizes all harmonic 
coefficients
Laplace-Beltrami penbalizes higher harmonic 
coefficients more
Both methods serve to limit the effective angular 
resolution of reconstructed ODFs
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A New Approach: add spatial 
constraints

Fibers are not arbitrarily arranged in space
Organized structure – follow coherent fiber tracts
ODFs also have this organized structure
ODF at one voxel is therefore related to ODF at its neighbours

1. How to characterize this neighbourhood relationship?
2. How to exploit these spatial constraints to improve ODF 

reconstruction?
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Adding Spatial Constraints

Neighbours are “like” each other, likely to have similar ODFs
But need to allow for discontinuous boundaries
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Iterative Algorithm
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Iterative Algorithm
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Results – simulation

sh-QBI reconstruction
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Results – simulation

sh-QBI + smoothing
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Results – simulation

Spatial HARDI
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Monte Carlo simulations

Repeated multiple times for multiple, random 3D tracts 
within a 15 x 15 x 15 voxel volume
Repeated for varying :
– SNR
– Algorithm parameters (lambda, mu)

Evaluation criteria:
– RMSE
– Generalized FA
– Orientation accuracy
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Monte Carlo simulations



IDEA Lab, Radiology, Cornell 76

Monte Carlo simulations

Joint RMSE/orientation accuracy Performance
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In vivo results

Sh-QBI
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In vivo results

Spatial HARDI



Part IV : Detection Theory and 
Examples

Introduction to optimal detection

Matched filter detectors

Detection examples from MR
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What is Detection

Deciding whether, and when, an event occurs
a.k.a. Decision Theory, Hypothesis testing
Presence/absence of
– signal
– activation (fMRI)
– foreground/background
– tissue – WM/GM/CSF (segmentation)

Measures whether statistically significant change 
has occurred or not
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Detection

“Spot the Money”
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Hypothesis Testing with Matched 
Filter

Let the signal be y(t), model be h(t)
Hypothesis testing:

H0: y(t) = n(t)             (no signal)
H1: y(t) = h(t) + n(t)   (signal)

The optimal decision is given by the Likelihood 
ratio test (Nieman-Pearson Theorem)

Select H1 if L(y) = Pr(y|H1)/Pr(y|H0) > γ

It can be shown (Kay 01) to be equivalent to
y(t) * h(t) > γ’

Matched Filter
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Matched Filters

If the profile of a certain signal is known, it can 
be detected using the Matched Filter
If the question is not IF but WHERE…
Maximum of MF output denotes the most likely 
location of the object h(t)
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Matched Filters

Example 1: activation in fMRI
– Need profile model: hemodynamic response 

function

Example 2: Detecting malignant tumours in 
mammograms
– need profile model: temporal response to contrast 

agent

Example 3: Edge detection
Example 4: detecting contrast arrival in CE-MRA
In each case need a model to “match” the signal
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Edge Detection

Edge information can be used for segmentation
Detect edges by finding areas of max intensity 
change
DoG (Derivative of Gaussian):

2 (I(x,y) * G(x,y,σ))
G(x,y,σ) = Gaussian

2 = Laplacian operator
Marr-Hildreth, Canny, Roberts, etc
Problems: very sensitive to noise, choice of σ



IDEA Lab, Radiology, Cornell 87

Edge Detection
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Edge Detection example using 
MATLAB

bw = edge(I, ‘canny’, sigma);
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Mask subtraction in MRA 
gives vasculature

-

=

Part I:Example: Contrast Arrival in CE-
MRA

Presenter
Presentation Notes
These are two examples of image series that Time-resolved background subtracted CEMRA generates.
The problem is that time-resolved background subtracted CEMRA gives too many images to look at.
On the other hand, surgeon prefers to look at just one image that shows everything that he or she needs.
Therefore, it would be very nice if we could create a a single best subtraction image and that is our goal.
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MRDSA relies on good estimate of contrast arrival
Completely unsupervised, reliable automatic method
>90% accuracy, c.f. earlier reported method (~60% accuracy)

matched filter - spatial metric
keyhole - frequency metric

Vasculature strongly 
oriented horizontally

Automatic Detection of Contrast 
Arrival

Presenter
Presentation Notes
First, we detect when the contrast arrives. Based on that, we pick the best mask and best arterial phase pair.
After  that, we select the best mask set and the best arterial phase set. I’ll explain each steps in the subsequent slides.
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Matched Filter Keyhole

Results :   Our method Earlier method

fre
qu

en
cy

fre
qu

en
cy

accurate     ----- inaccurate accurate     ----- inaccurate

Presenter
Presentation Notes
The current implementation is being used in our daily use. Only in the rare case that the automatic selection program gives unsatisfactory results, we use the manual method. Even in that case, we start from the selection given by the automatic selection program rather than starting from scratch.




Estimation and Detection of MR 
Signals

Ashish Raj
MR Unit, SFVAMC
email: ashish@itsa.ucsf.edu
ph: 221-4810 x 4800
Visit: 
http://www.cs.cornell.edu/~rdz/SENSE.htm

This concludes today’s lecture.  
Next week: Classification, Image 
segmentation, Registration

mailto:ashish@itsa.ucsf.edu
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