Discovering regulatory sequences from expression data

- Unsupervised clustering
- Information theory
- Optimization
- Non-parametric statistical testing
- Multiple testing
- Overfitting

Transcriptional and post-transcriptional regulation of gene expression

Transcription factor binding sites are ~6-12 bp-long

Genes regulated by the same TF will be co-expressed

S,

Microarray Experiments

Several microarray experiments (conditions, time points, treatments)

Microarray experiment

• • •

Creating co-expression clusters

Unsupervised clustering approaches:

- K-means
- Self-organizing maps
- Hierarchical clustering

K-means clustering

Hierarchical clustering

Self-organizing map

Clusters of co-expressed genes

Mutual Information

$$I(X;Y) = \sum_{x} \sum_{y} P(x,y) \log \frac{P(x,y)}{P(x)P(y)}$$

I(X;Y) quantifies the amount of information that a variable X contains about another variable Y

• • •

$$I(M;E) = 0.34 bits$$

MI estimator is biased (sample size bias)

MI estimator is biased (sample size bias)

Can correct for sample size bias, e.g. Slonim et al,
 2002 ... slow ... not very precise ... not necessary if:

 Keep sample size the same so that we can compare MI values

 Estimate how large an MI value is compared to expectated MI

Algorithm for finding informative motifs

motif representations

	Accuracy	Search space	
Degenerate code	good	large	
[AC]CGATGAG[TC]	good		
Words (k-mers)	acceptable	small	
GCGATGAG	accptable		

Motif Search Algorithm

1

Optimizing k-mers into more informative degenerate motifs

Optimizing k-mers into more informative degenerate motifs

1

Optimization iterations (visited motif positions)

A schematic view of the optimization process

A schematic view of the optimization process

A schematic view of the optimization process

Is a given motif more informative than expected by chance?

• • •

• • •

Maximum of 10,000 expressionshuffled mutual information values

P-value: probability of obtaining by chance a result at least as extreme as observed result P(X>=x)

Maximum of 10,000 expressionshuffled mutual information values

P<10⁻⁴

Why non-parametric test?

We don't know what the null distribution of mutual information is like ... depends on sample size, etc.

Null Distribution of T-statistic

Null Distribution of information values

So we estimate it using simulation.

Yeast stress gene expression program (Gasch et al, 2000)

- 173 microarray conditions
- ~ 5,500 genes
- 80 co-expression clusters
- Runtime ~ 1h (standard PC)

Expression Clusters # CTCATC_{TO} 5. #1- AMM 5' £1- O SAN 3'UTR #1-] 3'UTR # COO 5' A S' ACCOLAÇE 5' 3'UTR 3'UTR # 1 FOCACE 5" AC AC # 1 A COLT 6 5' # CA 5' # 1 00000 5' I CAACOO 5' 21 c C Ac 5' 21- 1- 10 Vê. 5' 21 COTO 2 3'UTR #1- CANCO 5' # JUAN 3'UTR #1-C 051

Predicted

Motifs

17 motifs in 5' upstream regions 6 motifs in 3'UTRs

P-value of **over-representation** of a motif in a cluster of genes

$$P(X \ge i) = \sum_{x=i}^{min(s_1,s_2)} \frac{\binom{s_1}{x}\binom{N-s_1}{s_2-x}}{\binom{N}{s_2}}$$

Hypergeometric distribution

17 motifs in 5' upstream regions 6 motifs in 3'UTRs

How many of these motifs are false positives?

Predicted Motifs

Where do false positives come from?

- Multiple hypothesis testing (k-mers)
- Overfit by the optimization procedure

Motif Search Algorithm

Does the algorithm overfit motifs to the expression?

Cluster 0 : 112 genes Cluster 1 : 132 genes

Randomly split cluster 1 into cluster 1A and 1B

Cluster 0 : 112 genes

Cluster 1A: 66 genes

Cluster 0 : 112 genes

Cluster 1B: 66 genes

Best motif, MI=0.38 bits

[CT]CC[AG][ACT]AC[AG][CT]

MI=0.301 bits when evaluated

on this dataset

MI=0.29 bits when evaluated on this dataset

Best motif, MI=0.33 bits

[ACG][CT]CC[AG][CT][AG]C[AC]

Estimating the false discovery rate

- Run motif discovery algorithm (kmers+optimization) on random expression profile
- Count how many motifs we get
- Repeat a large number of times, calculate average number of motifs

Expression Clusters E- CTCATCAR 5. # 5° Z1- WAG 3'UTR 2 3° UTR 2. OOO 5. 1 COC 5' 1 C CA 5' E Jemala 5 a'UTR 3'UTR # 1 - COMO 5" 2 CAC 1 51 1 A CO C 5' E ACCAN SA 1 - CO CO E CAACOO 5' 21- COMAC 5' # 5' 2 COTO 2 3'UTR #1- chick 5' #1- JAACOA 3'UTR

Predicted

Motifs

17 motifs in 5' upstream regions 6 motifs in 3'UTRs

~ 0.05 "motifs" when shuffling the gene labels of the clustering partition

Entropy

$$H(X) = -\sum_{x} P(x) \log P(x)$$

```
X P(X)
0 0.5 H(X)=1 bit
1 0.5
```

```
X P(X)
0 0.8 H(X)=0.72 bits
1 0.2
```

Х	P(X)	
0	1.0	H(X)=0 bits
1	0.0	

Mutual Information

$$I(X;Y) = H(Y) - H(Y|X)$$

Uncertainty about Y

the amount of uncertainty remaining about Y after X is known