Models of visual neuron function

Quantitative Biology Course Lecture Dan Butts

What is the "neural code"?

Electrical activity: nerve impulses

How does neural activity relate to brain function?

Use visual system:

Well characterized

Intuitive function

Lateral Geniculate Nucleus (LGN)

Population input to the cortex

 $\gamma >$

Starting point: recordings in the LGN

Visual stimulus

"Cat-cam" movies from Peter Koenig's Lab

(Kayser et al, 2004)

LGN neuron responses

Understanding and Decoding Neural Signals

Outline

1. Introduction to "receptive fields"

2. Building a visual neuron model
The LN (Linear-Non-linear) model

3. The problem of temporal precision and the need for new statistical methods

Maximum-likelihood modeling

4. Research: Application of maximum-likelihood modeling to explain precise timing of neuronal responses

Coding like the muscle

Little contraction

Muscle picture with motoneuron

Lots of contraction

The receptive field

 $R = \sum_{\vec{x}} K_{sp}(\vec{x}) S(\vec{x})$

The receptive field

Spatial stimulus

The receptive field

Spatial stimulus

Neuron is tuned for a given stimulus over a certain range.

Circuitry of the retina

...but vision involves motion

Motion in the visual scene/ self motion

Eye movements

saccades, microsac.ocular drift

LGN response during movie Raster plot

What does neural activity look like during a time-varying stimulus?

Time (sec)

Visual neuron function: the spatiotemporal receptive field

What stimuli are represented by a neuron's response?

Spike-Triggered Average (STA) stimulus:"receptive field"

Visual neuron function: the spatiotemporal receptive field

Implicit Problems with Modeling

The "temporal receptive field"

Spatiotemporal Stimuli

Outline

1. Introduction to "receptive fields"

2. Building a visual neuron model The LN (Linear-Non-linear) model

3. The problem of temporal precision and the need for new statistical methods

Maximum-likelihood modeling

4. Research: Application of maximum-likelihood modeling to explain precise timing of neuronal responses

The "temporal receptive field"

How measure the receptive field? The spike-triggered average

Linear model predictions

$$r_{est}(t) = r_0 + \int d\tau \ k(\tau) \, s(t-\tau)$$

Mathematical result

(take functional derivative of MSE)

Layman's summary:

In the presence of Gaussian noise (uncorrelated) stimuli, the best linear model for the neuron is proportional to the spike triggered average.

$$r_{est}(t) = r_0 + \int d\tau \ k(\tau) \ s(t - \tau)$$

Mean Squared Error (MSE)

$$MSE = \sum_{t} [r(t) - r_{est}(t)]^2$$

Stimulus-response cross-correlation

$$k(\tau) \propto \int dt \ r(t) \, s(t-\tau)$$

Linear model predictions

now map linear tunction to tring rate?

"LN" (Linear-Non-Linear) model of encoding

Measuring reliability of RF "model": the non-linearity

Measuring reliability of RF "model": the non-linearity

Bussgang's Theorem

Layman's summary:

In the context of simple non-linearities, the "optimal" receptive field is STIL given by the spike-triggered average in the context of Gaussian white noise ***

Receptive field predictions

How quantify quality of model fit?

Matlab Interlude

Problems with visual neuron modeling

I. Looking at higher time resolution reveals that the LN model is insufficient

2. Non-linearities "force" the use of Bussgang's theorem -> only use STA, and need noise stimuli

3. r2 is not the best measure for evaluating a nonlinear system

(also, it requires multiple repeats to estimate a good firing rate)

Outline

1. Introduction to "receptive fields"

2. Building a visual neuron model The LN (Linear-Non-linear) model

3. The problem of temporal precision and the need for new statistical methods

Maximum-likelihood modeling

4. Research: Application of maximum-likelihood modeling to explain precise timing of neuronal responses

Maximum Likelihood Approach

Stimulus

Likelihood: probability that model explains data

Find the "maximum likelihood":

The probability that the spikes were generated by a model with a certain choice of parameters

$$LL = \sum_{t_{spk}} \log Pr\{spk|t_{spk}\} - \sum_{t} Pr\{spk|t\}$$

Firing rate when there is an observed spike Firing rate when there is no observed spike

Problem: complicated function to Maximize!

The maximum likelihood:

$$LL = \sum_{t_{spk}} \log Pr\{spk|t_{spk}\} - \sum_{t} Pr\{spk|t\}$$

PANINSKI (2004):

No local minima in likelihood surface given certain forms of non-linearity (f)

Matlab can solve for optimal parameters in very little time!

[e.g., 2 minutes of data, 0.5 ms resolution ~ 20 seconds]

LN model is fit "optimally" using maximum likelihood

Quick Matlab Interlude

Outline

1. Introduction to "receptive fields"

2. Building a visual neuron model
The LN (Linear-Non-linear) model

3. The problem of temporal precision and the need for new statistical methods

Maximum-likelihood modeling

4. Research: Application of maximum-likelihood modeling to explain precise timing of neuronal responses

Receptive field predictions

Receptive field predictions

Neuron's Response

How to generate precision?

Need to "suppress" neuron's response during periods of stimulus that matches RF

Refractoriness and Neural Precision

e.g., Berry and Meister, 1998 Brillinger, 1992 Keat et al., 2001 Paninski, 2004 Pillow et al., 2005

_ _ _

Generalized Linear Model (GLM)

PANINSKI (2004):

Optimal solution for model parameters (no matter how many parameters!)

But, spike history term does not explain the temporal resolution of the data.

GLM model does not explain LGN temporal precision

Response (Spike Train) **Suppression**

after spikes

What about "network" suppression?

Refractoriness and precision model

Network suppression model

Directly fit *multiple* receptive fields

-- Alternative to spiketriggered covariance

-- Simplest way to incorporate two RFs

-- Application to neurons that process stimuli non-linearly (e.g., on-off cells in mouse retina)

"Precision" explained by suppression

Cross-validation

Significant improvement across all recorded neurons

General role of local inhibition?

Retina

Exc: bipolar cell Inh: spiking amacrine

local inhibitory interneuron

╈

long-range excitatory proj_{ection}

�

LGN

Exc: RGC input Inh: interneurons Exc: LGN input Inh: interneurons

V1

Circuitry of the retina

OUTER PLEXIFORM LAYER

Role in spatial processing?

INNER PLEXIFORM LAYER

Role in temporal processing?

Conclusions/Parting Thoughts

1. Visual neuron modeling

- Don't forget the LN model -- it is everywhere
- Basis for sensory models in neuroscience ("minimal model")

2. Neuroscience has been (but no longer is?) stuck with standard statistics

- Brought field to where it is (VERY USEFUL) but ... could not go much further
- Neuroscience-statisticians are having large impact on basic science (Emory Brown, Liam Paninski, Rob Kass, Valerie Ventura, Han Amarsingham,...)

3. Maximum likelihood modeling

- System of models that have smooth likelihood surface
- Ability to solve higher-order models with limited data