
Models of visual neuron 
function
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Dan Butts
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10  neurons

1,000-10,000 
inputs

Electrical activity: nerve impulses
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What is the “neural code"?
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How does neural activity 
relate to brain function?

?

Well characterized

Intuitive function
Use visual system: 

Lateral Geniculate Nucleus
(LGN) Population input to the cortex
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The Visual 
Cortex

Lateral Geniculate Nucleus
(LGN)

Starting point: recordings in the LGN

Retina

Extracellular recordings
 (Jose-Manuel Alonso Lab)

1. Still relatively simple non-linear 
transforms on stimulus

2. Population input to the visual cortex
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Visual stimulus

“Cat-cam” movies 
from Peter 

Koenig’s Lab

(Kayser et al, 2004)
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500 ms

LGN neuron responses
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Understanding and Decoding Neural Signals
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Outline
1. Introduction to “receptive fields”

2. Building a visual neuron model

3. The problem of temporal precision and the need for 
    new statistical methods

4. Research: Application of maximum-likelihood modeling 
    to explain precise timing of neuronal responses

The LN (Linear-Non-linear) model 

Maximum-likelihood modeling
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Coding like the muscle

Muscle picture
with motoneuron

Little
contraction

Lots of
contraction
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LGN

The receptive field

Spatial receptive field

Retina

LGN responses related to how 
much the stimulus matches the 

receptive field

+

Center Surr.

RF

Stim

+ -

Linear comparison:
R =

∑

!x

Ksp(!x) S(!x)

+

+ -

+ +

Multiplication

+

Spatial stimulus
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LGN

The receptive field

Spatial receptive field

Retina
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Center Surr.

RF
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Multiplication
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Linear comparison:
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!x

Ksp(!x) S(!x)

LGN responses related to how 
much the stimulus matches the 

receptive field
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LGN

The receptive field

Spatial receptive field

Retina

Spatial features of image 
matter in relation to RF

++

Center Surr.

RF

Stim

+ -
-

-

+

Multiplication

- -

Neuron is tuned for a given 
stimulus over a certain range.Spatial stimulus
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Circuitry of the retina
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...but vision involves 
motion

Motion in the
visual scene/
self motion

Eye movements
• saccades, microsac.
• ocular drift
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PSTH: peri-stimulus time histogram

LGN response during movie
Raster plot
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Raster Plot

1.2 1.6 2.0 2.4 2.8
Time (sec)

What does neural activity look like 
during a time-varying stimulus?

16



Visual neuron function: the 
spatiotemporal receptive field

What stimuli are represented 
by a neuron’s response?

Spike-Triggered Average (STA)
stimulus: “receptive field”

-200 ms -100
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Visual neuron function: the 
spatiotemporal receptive field

What stimuli are represented 
by a neuron’s response?

Spike-Triggered Average (STA)
stimulus: “receptive field”

-200 ms -100
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Implicit Problems with Modeling
> Too many parameters
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Full-field stimuli
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Spatiotemporal Stimuli

The “temporal receptive field”
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Outline
1. Introduction to “receptive fields”

2. Building a visual neuron model

3. The problem of temporal precision and the need for 
    new statistical methods

4. Research: Application of maximum-likelihood modeling 
    to explain precise timing of neuronal responses

The LN (Linear-Non-linear) model 

Maximum-likelihood modeling
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Full-field stimuli
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The “temporal receptive field”
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How measure the receptive field?
The spike-triggered average

Full-field stimuli

-100

Time (ms)

A
v

erag
e tem

p
o

ral stim

k(τ) ∝
∫

dt r(t) s(t− τ)

Stimulus-response cross-correlation
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100 150 200 250 ms

Temporal Stimulus
(full-field)

Filtered
stimulus

x

=
Temporal

Receptive Field

Linear model predictions

rest(t) = r0 +
∫

dτ k(τ) s(t− τ)
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Mathematical result

Layman’s summary:
In the presence of Gaussian noise (uncorrelated) 
stimuli, the best linear model for the neuron is 
proportional to the spike triggered average.

(take functional derivative of MSE)

rest(t) = r0 +
∫

dτ k(τ) s(t− τ)

k(τ) ∝
∫

dt r(t) s(t− τ)

Stimulus-response cross-correlationMean Squared Error (MSE)

MSE =
∑

t

[r(t)− rest(t)]2
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100 150 200 250 ms

Temporal Stimulus
(full-field)

Filtered
stimulus

x

=
Temporal

Receptive Field

Linear model predictions
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Observed firing rate

100 150 200 250 ms

0
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Hz
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How map linear function to firing 
rate?

F
ir
in

g
 R

a
te

Observed firing rate

100 150 200 250 ms

0

500

Hz

inear Kernel

Stimulus s(t)

Firing Rate
λ(t) K(τ)

L
on-linearity

ν(g)
Ng(t)

“LN” (Linear-Non-Linear) model of encoding
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Measuring reliability of RF “model”: 
the non-linearity

0 150 ms

g 0

2
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Pr{g}

Pr{g|spike}
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Generating Function g
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Measuring reliability of RF “model”: 
the non-linearity

inear Kernel

Stimulus s(t)

Firing Rate
λ(t) K(τ)

L
on-linearity

ν(g)
Ng(t)

LN Model of Encoding

Pr{g}

Pr{g|spike}
Pr{spike|g}
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Bussgang’s Theorem

Layman’s summary:
In the context of simple non-linearities, the “optimal” 
receptive field is STIL given by the spike-triggered 
average in the context of Gaussian white noise ***
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100 150 200 250 ms

Temporal Stimulus
(full-field)

Filtered
stimulus

x

=
Temporal

Receptive Field

Receptive field predictions

Fi
rin

g 
Ra

te LN Model
Observed firing rate

100 150 200 250 ms
0

500

Hz

31



How quantify quality of model fit?

Matlab Interlude
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Problems with visual neuron 
modeling

3.  r2 is not the best measure for evaluating a non-
linear system

(also, it requires multiple repeats to estimate a good firing rate)

2.  Non-linearities “force” the use of Bussgang’s 
theorem -> only use STA, and need noise stimuli

1.  Looking at higher time resolution reveals that 
the LN model is insufficient
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Outline
1. Introduction to “receptive fields”

2. Building a visual neuron model

3. The problem of temporal precision and the need for 
    new statistical methods

4. Research: Application of maximum-likelihood modeling 
    to explain precise timing of neuronal responses

The LN (Linear-Non-linear) model 

Maximum-likelihood modeling
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Maximum Likelihood Approach
Stimulus

Response
(Spike Train)

inear KernelL

on-linearityN

oisson 

           process
P

f 

k

Does data (LGN spike times) support 
refractory period explanation of precision?

0

500

Hz

Pr
ob

ab
ili

ty
of

 s
pi

ke

Likelihood: probability that model explains data

Find the “maximum likelihood”:
The probability that the spikes were generated 
by a model with a certain choice of parameters

LL =
∑

tspk

log Pr{spk|tspk}−
∑

t

Pr{spk|t}

Firing rate when there
 is an  observed spike

Firing rate when there
 is no observed spike
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Problem: complicated function to 
maximize!
The maximum likelihood:

LL =
∑

tspk

log Pr{spk|tspk}−
∑

t

Pr{spk|t}

Stimulus

Response
(Spike Train)

inear KernelL

on-linearityN

oisson 

           process
P

f 

k

Paninski (2004):

No local minima in likelihood surface given 
certain forms of non-linearity (f)

Matlab can solve for optimal 
parameters in very little time!

[e.g., 2 minutes of data, 0.5 ms resolution
~ 20 seconds]

36



LN model is fit “optimally” using 
maximum likelihood

Quick Matlab Interlude
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Outline
1. Introduction to “receptive fields”

2. Building a visual neuron model

3. The problem of temporal precision and the need for 
    new statistical methods

4. Research: Application of maximum-likelihood modeling 
    to explain precise timing of neuronal responses

The LN (Linear-Non-linear) model 

Maximum-likelihood modeling
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100 150 200 250 ms

Temporal Stimulus
(full-field)

Filtered
stimulus

x

=
Temporal

Receptive Field

Neuronʼs
Firing Rate

“LN Model”

0

500

Hz

Actual

Receptive field predictions
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Neuron's Response

"Function-based" Prediction

Spike Rasters

Receptive field predictions

Neuronʼs
Firing Rate

“LN Model”

0

500

Hz

Actual
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0

500

Hz

Neuron is “tuned” 
to the stimulus

Need to “suppress” neuron’s response during 
periods of stimulus that matches RF

“Refractory”
effects

30 ms

Refractoriness and
Neural Precision
e.g., Berry and Meister, 1998

Brillinger, 1992
Keat et al., 2001
Paninski, 2004

Pillow et al., 2005
...

How to generate precision?
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Generalized Linear Model (GLM)
Stimulus

Response
(Spike Train)

inear KernelL

on-linearityN

oisson 

           process
P

f 

k

Spike History

Term

+

w
RP

Does data (LGN spike times) support 
refractory period explanation of precision?

Optimal solution for model parameters 
(no matter how many parameters!)

Paninski (2004):

But, spike history term does not explain the 
temporal resolution of the data.
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GLM model does not explain
LGN temporal precision

Data (60 reps x-validated)

LN
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ISI distributions
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Data
LN Model
+spike history
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0

500

Hz
What about “network” suppression?

“Tuned” Stimulus

LGN neuron
spikes

Suppression
after spikes

Others neurons in 
network active

Refractoriness and 
precision model

Network suppression 
model

Stimulus

Response
(Spike Train)

RF

Spike
generation

“Spike-Refractory

E!ects”
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0

500

Hz
What about “network” suppression?

Refractoriness and 
precision model

Network suppression 
model

Stimulus

Response
(Spike Train)

RF

Spike
generation

“Spike-Refractory

E!ects”

Stimulus

Response
(Spike Train)

RF1

Spike
generation

RF2

(Recti!ed)
Suppression
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Directly fit *multiple* receptive fields

Does data (LGN spike times) support 
refractory period explanation of precision?

Stimulus

Response
(Spike Train)

RF1

Spike
generation

RF2

(Recti!ed)
Suppression

-- Alternative to spike-
triggered covariance

-- Application to neurons 
that process stimuli

non-linearly (e.g., on-off 
cells in mouse retina)

-- Simplest way to 
incorporate two RFs
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“Precision” explained by suppression
Data (60 reps x-validated)

LN
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2 minutes of FF 
stimulation

30 sec unique sequence 
repeated 60 times

...

Fit model to 2 min Model test

Cross-validation
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Significant improvement across all recorded neurons
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Stimulus

Response
(Spike Train)

RF1

Spike
generation

RF2

(Recti!ed)
Suppression

Precision computation
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!ring rate
-100 -80 -60 -40 -20 0

Linear Filter
Suppressive !lter **
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Exc: bipolar cell
Inh: spiking amacrine

General role of local inhibition?

Retina

+
+

-
local inhibitory
interneuron

lo
ng

-ra
ng

e 
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ry
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ct
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n

Exc: RGC input
Inh: interneurons

LGN
Exc: LGN input
Inh: interneurons

V1
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Circuitry of the retina

Role in spatial
processing?

Role in temporal
processing?

OUTER PLEXIFORM
LAYER

INNER PLEXIFORM
LAYER
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Conclusions/Parting Thoughts
1. Visual neuron modeling

Don’t forget the LN model -- it is everywhere
Basis for sensory models in neuroscience (“minimal model”)

2. Neuroscience has been (but no longer is?) stuck with
    standard statistics

Brought field to where it is (VERY USEFUL) but ... could not go much further
Neuroscience-statisticians are having large impact on basic science
(Emory Brown, Liam Paninski, Rob Kass, Valerie Ventura, Han Amarsingham,... )

3. Maximum likelihood modeling
System of models that have smooth likelihood surface
Ability to solve higher-order models with limited data
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