
Copyright 2008 – J Banfelder, Weill Cornell Medical College Page 1

Quantitative Understanding in Biology
Module II: Model Parameter Estimation
Lecture III: Fitting Model Parameters to
Data, Part II
Let us consider how we might fit a power law model to some data. We will begin by simulating the
power law relationship y=αxβ.

> alpha.true <- 1.33
> beta.true <- 0.33
> d <- data.frame(x=rep(seq(1,20,0.2),10))
> d$y <- alpha.true * d$x ^ beta.true + rnorm(d$x, sd=0.05)
> plot(y ~ x, data=d)

Note that in this example, we’ve generated ten samples at each x value we consider. The motivation for
doing this in this example will become clear in few moments; however, an important point to make is
that if you have multiple data points like this, you should include all of them in your regression as we do
here. Some people mistakenly average the y values for each distinct x, and then regress over the
averaged y values. This hides variation in the data, and can lead to erroneous conclusions.

With this dataset in hand, and pretending that we do not know the true values of α and β, we proceed
to transform our model and data so it is amenable to linear regression. Our model becomes…

ln(y) = ln(α) + β ln(x)

…and we transform our data accordingly. Keep in mind that the function for the natural logarithm in R is

log(x); for log10 x, you would use log(x,10).

> d$x.t <- log(d$x)
> d$y.t <- log(d$y)

The regression is straightforward to perform in R…

> m <- lm(y.t ~ x.t, data=d)
> summary(m)

Call:
lm(formula = y.t ~ x.t, data = d)

Residuals:
 Min 1Q Median 3Q Max

Fitting Model Parameters to Data, Part II

Copyright 2008 – J Banfelder, Weill Cornell Medical College Page 2

-8.746e-02 -1.238e-02 9.213e-05 1.246e-02 8.074e-02

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.288477 0.002078 138.9 <2e-16 ***
x.t 0.329000 0.000917 358.8 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.02061 on 958 degrees of freedom
Multiple R-Squared: 0.9926, Adjusted R-squared: 0.9926
F-statistic: 1.287e+05 on 1 and 958 DF, p-value: < 2.2e-16

The estimate of β (which is the coefficient of the transformed x term) is 0.329, gratifyingly close to our
true value of 0.33. Looking back at the transformed model, we see that the estimate of the intercept
term is an estimate of ln(α); to determine the estimate for α we compute α=eln(α)=e0.288=1.33. We have
done a pretty good job of recovering the true values of both parameters.

 Whenever we perform a regression, it is always useful to plot the regressed, best-fit curve to the data.

The R function predict is useful for this task; you pass it a model and a dataframe containing the x-
values for which you want to generate predictions. We note that the linear model predicts ln(y) from
ln(x), so we must transform the x values going into the model, and untransform its results to make them
suitable for plotting against our original data.

> x <- 1:20; lines(x, exp(predict(m, newdata=data.frame(x.t=log(x)))),
col="blue", lwd=3)

Not surprisingly, the curve passes through our data quite nicely.

It is also informative to plot the transformed data, and the fitted curve through it. We use a shortcut

function, abline, which is suitable for plotting results only from straight-line regression.

> plot(y.t ~ x.t, data=d); abline(m, col="blue", lwd=3)

Here we notice something interesting; the data are more scattered at lower values of ln(x) than at
higher values of ln(x). This is a hint that there is a subtle problem we will encounter shortly.

Whenever we are performing a regression, it is always a good idea to plot the regressed curve through
your data whenever possible (this can be tricky when you have multiple explanatory variables). This is an
obvious and powerful way to assess how well your model describes the data.

Additionally, it is important to critically evaluate the residuals that your fit produced. A common
technique is to plot residuals against predicted values. For linear fits, this can be quickly done with the
command:

> plot(m, which=1)

Fitting Model Parameters to Data, Part II

Copyright 2008 – J Banfelder, Weill Cornell Medical College Page 3

You are looking for any pattern in the residuals (and hoping there will be none). To help, R draws a non-
parametric best-fit line through this plot. If your fit is good, the line will hew close to the x-axis. If there
is a pattern to the residuals, there is a strong indication that the model isn’t telling the whole story. In
our case, we see that the line does indeed hew close to the x-axis, but again we see that there is more
spread in the lower values of ln(y).

To demonstrate a poor fit, let’s try a similar plot for a fit of a straight-line model to the original,
untransformed data.

> plot(lm(y~x, data=d), which=1)

You probably didn’t need this residual plot to figure out that the fit to the data was awful. In many
cases, however, plots such as these can bring out subtle patterns in residuals that are not apparent
when looking at a best-fit curve through scattered data.

A third technique to assess the quality of your model is to assess the distribution of the residuals.
Ideally, the residuals will be normally distributed around zero (if the mean is not around zero you would
have seen this in the previous plot). For linear fits, R makes this exceptionally convenient:

> plot(m, which=2)

Here we see a non-trivial deviation from normality; another, perhaps not-so-subtle clue that something
is up.

At this point, you might be wondering why we are so concerned about the scatter of the residuals when
it is clear that the best-fit line does a very good job of predicting our data. After all, the plot of the
regressed curve went through our data very well, and we did an excellent job of recovering the
parameters that we know to be correct in our exercise.

The reason is that our statistical regression model can do more than just fit a curve and give us
estimates of our parameters. It also gives us confidence intervals for those parameters, and for
predicted values!

> confint(m)
 2.5 % 97.5 %
(Intercept) 0.2844003 0.2925546
x.t 0.3272006 0.3307996

The CI for β can be interpreted directly. Again, for α we must untransform each end of the interval.

 > exp(confint(m)[1,])
 2.5 % 97.5 %
1.328965 1.339846

Fitting Model Parameters to Data, Part II

Copyright 2008 – J Banfelder, Weill Cornell Medical College Page 4

Note that the CI for this transformed parameter is not symmetric; that is OK and to be expected when
fitting involves non-linear transformations.

So not only do we get our best-fit parameters, but we get an estimate of their uncertainty. However,
these CIs are only valid if the model meets our expectation of normally distributed residuals; this is
formally known as homoschedasticity. In our case, the heteroschedasticity is not too bad and our CIs are
probably usable as a rough and somewhat optimistic estimate of the uncertainty in the parameters; the
correct CIs are probably a bit wider than those reported here.

In addition to reporting CIs of our model parameters, we can also use the variance information
contained in our model to estimate the CIs of new values predicted by the model. For example, if we
wish to know the 95% CI for measuring a new value of y at x=10, we could compute:

> exp(predict(m, newdata=data.frame(x.t=log(10)), interval="p"))
 fit lwr upr
[1,] 2.846324 2.733447 2.963861

This tells us that if we sample a new point at x=10, there is a 95% chance that the y value will be
between 2.73 and 2.96. Repeated application of this reasoning allows us to compute and plot an error
band around our best fit curve…

> eb <- exp(predict(m, newdata=data.frame(x.t=log(x)), interval="p"))
> lines(x,eb[,2], col="blue", lty=3)
> lines(x,eb[,3], col="blue", lty=3)

Now we can see the deleterious effect of heteroschedasticity in our transformed model. We see that the
error band predicted by the transformed fit is thicker at high values of x and thinner at low values of x.
Note that when we refer to the thickness of error band here, we refer to its height (the vertical space
between the blue dashed lines in the plot). Don’t make the mistake of interpreting the thickness as the
width normal to the regressed curve. In fact, this thickness varies by over a factor of 2.5 across the range
of values that we worked with:

> (eb[96,3]-eb[96,2])/(eb[1,3]-eb[1,2])

[1] 2.669181

However, we know that the error band should be a constant thickness; look back to how we generated
the simulated data:

> d$y <- alpha.true * d$x ^ beta.true + rnorm(d$x, sd=0.05)

We used the normal distribution with an SD of 0.05 on every term, so we know that the thickness of our
error band should be constant. [Challenge question: what should the thickness of the error band be?]

Fitting Model Parameters to Data, Part II

Copyright 2008 – J Banfelder, Weill Cornell Medical College Page 5

The error band that we drew is analogous to the standard deviation of the distribution. In other words,
it answers (approximately, in this case) the question: given a value for x, what is the range in which we
expect 95% of y values will fall.

A different error band can also be computed that is analogous to the SEM, and answers this question:
given a value for x, what is the 95% CI for the mean of y at this point. To compute and plot this error

band, specify interval=”c” when you use the predict function.

> eb.c <- exp(predict(m, newdata=data.frame(x.t=log(x)),
interval="c"))
> lines(x,eb.c[,2], col="red", lty=3)
> lines(x,eb.c[,3], col="red", lty=3)

As can be seen, there is not much uncertainty in the best-fit curve; we had quite a bit of data to work
with: 10 points for each x value. You should be able to predict what would happen to the blue and the
red bands if we repeated this exercise with only one point per x value.

In this example, heteroschedasticity was introduced by the logarithmic transformation that we
performed to enable us to do a linear regression. This is not always going to be the case; sometimes a
variable transformation will fix a heteroschedasticity problem. If it does, the transformation is
encouraged as good practice. Furthermore, this may be a hint that the “natural variables” for the system
are the transformed ones, not the originally measured ones.

The alternative to transforming the model to make it amenable to linear regression is to perform a non-
linear regression. This is a computationally more intensive procedure that usually involves an iterative
optimization. Fortunately, the computer will take care of most of the details (although things can go
wrong). As an exercise you can perform a non-linear regression of the original model in R; we will
investigate an alternative model just to mix things up a bit.

A simple inspection of a plot of our synthesized power law data might suggest alternative models. One
possible example is an exponential approach to an asymptote following the mathematical form:

Fitting this model to our data using non-linear regression in R is similar to the linear regression case:

> em <- nls(y ~ alpha * (1 - beta * exp(-gamma * x)),
start=list(alpha=5, beta=1, gamma=1), data=d)
> summary(em)

Formula: y ~ alpha * (1 - beta * exp(-gamma * x))

Parameters:
 Estimate Std. Error t value Pr(>|t|)
alpha 3.992355 0.019491 204.8 <2e-16 ***
beta 0.690711 0.001720 401.7 <2e-16 ***
gamma 0.089368 0.001458 61.3 <2e-16 ***

Fitting Model Parameters to Data, Part II

Copyright 2008 – J Banfelder, Weill Cornell Medical College Page 6

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.0616 on 957 degrees of freedom

Number of iterations to convergence: 6
Achieved convergence tolerance: 8.332e-06

When performing a non-linear regression, we use the nls (non-linear least squares) function in R. The
model formula doesn’t do any of the odd things that it would in the lm function; here all of the terms
are interpreted as written. Additionally, since non-linear regression implies an iterative optimization, we
need to specify a starting point for the parameters of the model. R will repetitively adjust these
parameters to drive the SSQ of the residuals to a minimum. While a very accurate guess is not required,
a reasonable starting point is helpful. All of the dangers of numerical optimizations apply here:
optimizations can wander off into irrelevant parameter space, find a local minimum instead of the global
optimum, fail to converge, etc.

Assuming all goes well with our non-linear regression, we begin again by plotting the regressed curve
against our data.

> lines(x, predict(em, newdata=data.frame(x=x)), col="blue", lwd=3)

The curve passes through the data, but there are clearly systematic deviations. A plot of residuals
against predicted values will make this quite explicit. Sadly, R does not have an automated plotting
routine for non-linear models, so we’ll have to do the work ourselves.

> plot(residuals(em) ~ predict(em))
> fit <- loess(residuals(em) ~ predict(em))
> x <- seq(1.5,3.5,0.1)
> lines(x, predict(fit, newdata=data.frame(x)), col="red")

Here we see a clear pattern in the residuals. This is an indication that the model is not explaining the
data well. While we could probably use the pattern detected in the residuals to inform additional terms
in the model that would result in a better fit, it is also good practice to reconsider the system under
study and think about extended or alternative mechanisms and the models they would imply.

In the example above, we introduced the loess function. This is yet another fitting model that R
provides. It is useful for smoothing data, and handy when all you want is ‘artistic’ curve fitting.

You can also produce QQ plots of the residuals from a non-linear regression; recall the qqnorm and
qqline function. We won’t do that here because we’ve already rejected this model based on the
previous plot.

Fitting Model Parameters to Data, Part II

Copyright 2008 – J Banfelder, Weill Cornell Medical College Page 7

The confint function also works for models returned from non-linear regression. Again, we don’t do
this here because the model has already been rejected. However, if you choose to do the exercise of
performing non-linear regression on the power law model, you’ll want to use the results of this function.
These would be your best estimates for the model parameters, as the plots of residuals should confirm
the model as being appropriate to describe this data.

Sadly, while the predict function works for model objects from non-linear regression, the interval
argument is not supported. So while you can report CIs for your model parameters, you can’t easily
work up error bands for your plots. Hopefully, R will gain this ability soon, as the help page for

predict.nls indicates.

Danger: The Regression Fallacy
In regression studies, you need to be careful that x and y represent separate measurements. Here is an
example of how you can get into trouble.

> trap <- data.frame(x=rnorm(1000), y=rnorm(1000))
> trap$delta <- trap$y - trap$x
> plot(y~x, data=trap)
> plot(delta~x, data=trap)
> fallacy <- lm(delta~x, data=trap)
> abline(fallacy)
> summary(fallacy)

Call:
lm(formula = delta ~ x, data = trap)

Residuals:
 Min 1Q Median 3Q Max
-3.61428 -0.67244 0.01784 0.64110 3.31028

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.02894 0.03171 -0.913 0.362
x -0.94110 0.03227 -29.165 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.002 on 998 degrees of freedom
Multiple R-Squared: 0.4601, Adjusted R-squared: 0.4596
F-statistic: 850.6 on 1 and 998 DF, p-value: < 2.2e-16

It seems that there is a strong relationship at work here, but it is all a fallacy. The x and y values are
completely independent. The regression was delta against x, and delta is not a separate measurement
from x.

Fitting Model Parameters to Data, Part II

Copyright 2008 – J Banfelder, Weill Cornell Medical College Page 8

R2 is not the best measure of what has been achieved in a regression
Consider this very artificial system.

> x <- rep(0:100, 1000)
> y <- x + 2 + rnorm(x, sd=30)
> plot(y ~ x)
> m <- lm(y ~ x)
> summary(m)

Call:
lm(formula = y ~ x)

Residuals:
 Min 1Q Median 3Q Max
-118.8459 -20.2691 -0.1212 20.3342 137.4599

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.945937 0.187284 10.39 <2e-16 ***
x 1.000175 0.003236 309.10 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 29.98 on 100998 degrees of freedom
Multiple R-Squared: 0.4861, Adjusted R-squared: 0.4861
F-statistic: 9.554e+04 on 1 and 100998 DF, p-value: < 2.2e-16

Notice that R2 appears quite poor. However…

> eb <- predict(m, data.frame(x=x))
> eb <- predict(m, newdata=data.frame(x=0:100), interval="c")
> lines(0:100,eb[,3], col="red", lty=3)
> lines(0:100,eb[,2], col="red", lty=3)

You can see that we have done a rather good job of determining the underlying parameters and
quantifying the variance in our system. Because the system has so much randomness it is not possible to
have precise predictive power. However, we have recovered the underlying model quite well.

	Danger: The Regression Fallacy
	R2 is not the best measure of what has been achieved in a regression

