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Quantitative Understanding in Biology 
Module II: Model Parameter Estimation 
Lecture III: Fitting Model Parameters to 
Data, Part II 
Let us consider how we might fit a power law model to some data. We will begin by simulating the 
power law relationship y=αxβ. 

> alpha.true <- 1.33 
> beta.true <- 0.33 
> d <- data.frame(x=rep(seq(1,20,0.2),10)) 
> d$y <- alpha.true * d$x ^ beta.true + rnorm(d$x, sd=0.05) 
> plot(y ~ x, data=d) 
 

Note that in this example, we’ve generated ten samples at each x value we consider. The motivation for 
doing this in this example will become clear in few moments; however, an important point to make is 
that if you have multiple data points like this, you should include all of them in your regression as we do 
here. Some people mistakenly average the y values for each distinct x, and then regress over the 
averaged y values. This hides variation in the data, and can lead to erroneous conclusions. 

With this dataset in hand, and pretending that we do not know the true values of α and β, we proceed 
to transform our model and data so it is amenable to linear regression. Our model becomes… 

ln(y) = ln(α) + β ln(x) 

…and we transform our data accordingly. Keep in mind that the function for the natural logarithm in R is 

log(x); for log10 x, you would use log(x,10). 

> d$x.t <- log(d$x) 
> d$y.t <- log(d$y) 
 

The regression is straightforward to perform in R…  

> m <- lm(y.t ~ x.t, data=d) 
> summary(m) 
 
Call: 
lm(formula = y.t ~ x.t, data = d) 
 
Residuals: 
       Min         1Q     Median         3Q        Max  
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-8.746e-02 -1.238e-02  9.213e-05  1.246e-02  8.074e-02  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) 0.288477   0.002078   138.9   <2e-16 *** 
x.t         0.329000   0.000917   358.8   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 0.02061 on 958 degrees of freedom 
Multiple R-Squared: 0.9926,     Adjusted R-squared: 0.9926  
F-statistic: 1.287e+05 on 1 and 958 DF,  p-value: < 2.2e-16 
 

The estimate of β (which is the coefficient of the transformed x term) is 0.329, gratifyingly close to our 
true value of 0.33. Looking back at the transformed model, we see that the estimate of the intercept 
term is an estimate of ln(α); to determine the estimate for α we compute α=eln(α)=e0.288=1.33. We have 
done a pretty good job of recovering the true values of both parameters. 

 Whenever we perform a regression, it is always useful to plot the regressed, best-fit curve to the data.  

The R function predict is useful for this task; you pass it a model and a dataframe containing the x-
values for which you want to generate predictions. We note that the linear model predicts ln(y) from 
ln(x), so we must transform the x values going into the model, and untransform its results to make them 
suitable for plotting against our original data. 

> x <- 1:20; lines(x, exp(predict(m, newdata=data.frame(x.t=log(x)))), 
col="blue", lwd=3) 

Not surprisingly, the curve passes through our data quite nicely. 

It is also informative to plot the transformed data, and the fitted curve through it. We use a shortcut 

function, abline, which is suitable for plotting results only from straight-line regression. 

> plot(y.t ~ x.t, data=d); abline(m, col="blue", lwd=3) 

Here we notice something interesting; the data are more scattered at lower values of ln(x) than at 
higher values of ln(x). This is a hint that there is a subtle problem we will encounter shortly. 

Whenever we are performing a regression, it is always a good idea to plot the regressed curve through 
your data whenever possible (this can be tricky when you have multiple explanatory variables). This is an 
obvious and powerful way to assess how well your model describes the data. 

Additionally, it is important to critically evaluate the residuals that your fit produced. A common 
technique is to plot residuals against predicted values. For linear fits, this can be quickly done with the 
command: 

> plot(m, which=1) 
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You are looking for any pattern in the residuals (and hoping there will be none). To help, R draws a non-
parametric best-fit line through this plot. If your fit is good, the line will hew close to the x-axis. If there 
is a pattern to the residuals, there is a strong indication that the model isn’t telling the whole story. In 
our case, we see that the line does indeed hew close to the x-axis, but again we see that there is more 
spread in the lower values of ln(y). 

To demonstrate a poor fit, let’s try a similar plot for a fit of a straight-line model to the original, 
untransformed data. 

> plot(lm(y~x, data=d), which=1) 

You probably didn’t need this residual plot to figure out that the fit to the data was awful. In many 
cases, however, plots such as these can bring out subtle patterns in residuals that are not apparent 
when looking at a best-fit curve through scattered data. 

A third technique to assess the quality of your model is to assess the distribution of the residuals. 
Ideally, the residuals will be normally distributed around zero (if the mean is not around zero you would 
have seen this in the previous plot). For linear fits, R makes this exceptionally convenient: 

> plot(m, which=2) 

Here we see a non-trivial deviation from normality; another, perhaps not-so-subtle clue that something 
is up. 

At this point, you might be wondering why we are so concerned about the scatter of the residuals when 
it is clear that the best-fit line does a very good job of predicting our data. After all, the plot of the 
regressed curve went through our data very well, and we did an excellent job of recovering the 
parameters that we know to be correct in our exercise. 

The reason is that our statistical regression model can do more than just fit a curve and give us 
estimates of our parameters. It also gives us confidence intervals for those parameters, and for 
predicted values! 

> confint(m) 
                2.5 %    97.5 % 
(Intercept) 0.2844003 0.2925546 
x.t         0.3272006 0.3307996 
 

The CI for β can be interpreted directly. Again, for α we must untransform each end of the interval. 

 > exp(confint(m)[1,]) 
   2.5 %   97.5 %  
1.328965 1.339846 
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Note that the CI for this transformed parameter is not symmetric; that is OK and to be expected when 
fitting involves non-linear transformations. 

So not only do we get our best-fit parameters, but we get an estimate of their uncertainty. However, 
these CIs are only valid if the model meets our expectation of normally distributed residuals; this is 
formally known as homoschedasticity. In our case, the heteroschedasticity is not too bad and our CIs are 
probably usable as a rough and somewhat optimistic estimate of the uncertainty in the parameters; the 
correct CIs are probably a bit wider than those reported here. 

In addition to reporting CIs of our model parameters, we can also use the variance information 
contained in our model to estimate the CIs of new values predicted by the model. For example, if we 
wish to know the 95% CI for measuring a new value of y at x=10, we could compute: 

> exp(predict(m, newdata=data.frame(x.t=log(10)), interval="p")) 
          fit      lwr      upr 
[1,] 2.846324 2.733447 2.963861 
 

This tells us that if we sample a new point at x=10, there is a 95% chance that the y value will be 
between 2.73 and 2.96. Repeated application of this reasoning allows us to compute and plot an error 
band around our best fit curve… 

> eb <- exp(predict(m, newdata=data.frame(x.t=log(x)), interval="p")) 
> lines(x,eb[,2], col="blue", lty=3) 
> lines(x,eb[,3], col="blue", lty=3) 
 

Now we can see the deleterious effect of heteroschedasticity in our transformed model. We see that the 
error band predicted by the transformed fit is thicker at high values of x and thinner at low values of x. 
Note that when we refer to the thickness of error band here, we refer to its height (the vertical space 
between the blue dashed lines in the plot). Don’t make the mistake of interpreting the thickness as the 
width normal to the regressed curve. In fact, this thickness varies by over a factor of 2.5 across the range 
of values that we worked with: 

> (eb[96,3]-eb[96,2])/(eb[1,3]-eb[1,2]) 

[1] 2.669181 

However, we know that the error band should be a constant thickness; look back to how we generated 
the simulated data: 

> d$y <- alpha.true * d$x ^ beta.true + rnorm(d$x, sd=0.05) 
 

We used the normal distribution with an SD of 0.05 on every term, so we know that the thickness of our 
error band should be constant. [Challenge question: what should the thickness of the error band be?] 
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The error band that we drew is analogous to the standard deviation of the distribution. In other words, 
it answers (approximately, in this case) the question: given a value for x, what is the range in which we 
expect 95% of y values will fall. 

A different error band can also be computed that is analogous to the SEM, and answers this question: 
given a value for x, what is the 95% CI for the mean of y at this point. To compute and plot this error 

band, specify interval=”c” when you use the predict function. 

> eb.c <- exp(predict(m, newdata=data.frame(x.t=log(x)), 
interval="c")) 
> lines(x,eb.c[,2], col="red", lty=3) 
> lines(x,eb.c[,3], col="red", lty=3) 
 

As can be seen, there is not much uncertainty in the best-fit curve; we had quite a bit of data to work 
with: 10 points for each x value. You should be able to predict what would happen to the blue and the 
red bands if we repeated this exercise with only one point per x value.  

In this example, heteroschedasticity was introduced by the logarithmic transformation that we 
performed to enable us to do a linear regression. This is not always going to be the case; sometimes a 
variable transformation will fix a heteroschedasticity problem. If it does, the transformation is 
encouraged as good practice. Furthermore, this may be a hint that the “natural variables” for the system 
are the transformed ones, not the originally measured ones. 

The alternative to transforming the model to make it amenable to linear regression is to perform a non-
linear regression. This is a computationally more intensive procedure that usually involves an iterative 
optimization. Fortunately, the computer will take care of most of the details (although things can go 
wrong). As an exercise you can perform a non-linear regression of the original model in R; we will 
investigate an alternative model just to mix things up a bit. 

A simple inspection of a plot of our synthesized power law data might suggest alternative models. One 
possible example is an exponential approach to an asymptote following the mathematical form: 

 

Fitting this model to our data using non-linear regression in R is similar to the linear regression case: 

> em <- nls(y ~ alpha * (1 - beta * exp(-gamma * x)), 
start=list(alpha=5, beta=1, gamma=1), data=d) 
> summary(em) 
 
Formula: y ~ alpha * (1 - beta * exp(-gamma * x)) 
 
Parameters: 
      Estimate Std. Error t value Pr(>|t|)     
alpha 3.992355   0.019491   204.8   <2e-16 *** 
beta  0.690711   0.001720   401.7   <2e-16 *** 
gamma 0.089368   0.001458    61.3   <2e-16 *** 
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--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 0.0616 on 957 degrees of freedom 
 
Number of iterations to convergence: 6  
Achieved convergence tolerance: 8.332e-06 
 

When performing a non-linear regression, we use the nls (non-linear least squares) function in R. The 
model formula doesn’t do any of the odd things that it would in the lm function; here all of the terms 
are interpreted as written. Additionally, since non-linear regression implies an iterative optimization, we 
need to specify a starting point for the parameters of the model. R will repetitively adjust these 
parameters to drive the SSQ of the residuals to a minimum. While a very accurate guess is not required, 
a reasonable starting point is helpful. All of the dangers of numerical optimizations apply here: 
optimizations can wander off into irrelevant parameter space, find a local minimum instead of the global 
optimum, fail to converge, etc. 

Assuming all goes well with our non-linear regression, we begin again by plotting the regressed curve 
against our data. 

> lines(x, predict(em, newdata=data.frame(x=x)), col="blue", lwd=3) 
 

The curve passes through the data, but there are clearly systematic deviations. A plot of residuals 
against predicted values will make this quite explicit. Sadly, R does not have an automated plotting 
routine for non-linear models, so we’ll have to do the work ourselves. 

> plot(residuals(em) ~ predict(em)) 
> fit <- loess(residuals(em) ~ predict(em)) 
> x <- seq(1.5,3.5,0.1) 
> lines(x, predict(fit, newdata=data.frame(x)), col="red") 
 

Here we see a clear pattern in the residuals. This is an indication that the model is not explaining the 
data well. While we could probably use the pattern detected in the residuals to inform additional terms 
in the model that would result in a better fit, it is also good practice to reconsider the system under 
study and think about extended or alternative mechanisms and the models they would imply. 

In the example above, we introduced the loess function. This is yet another fitting model that R 
provides. It is useful for smoothing data, and handy when all you want is ‘artistic’ curve fitting. 

You can also produce QQ plots of the residuals from a non-linear regression; recall the qqnorm and 
qqline function. We won’t do that here because we’ve already rejected this model based on the 
previous plot.  
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The confint function also works for models returned from non-linear regression. Again, we don’t do 
this here because the model has already been rejected. However, if you choose to do the exercise of 
performing non-linear regression on the power law model, you’ll want to use the results of this function. 
These would be your best estimates for the model parameters, as the plots of residuals should confirm 
the model as being appropriate to describe this data. 

Sadly, while the predict function works for model objects from non-linear regression, the interval 
argument is not supported. So while you can report CIs for your model parameters, you can’t easily 
work up error bands for your plots. Hopefully, R will gain this ability soon, as the help page for 

predict.nls indicates. 

Danger: The Regression Fallacy 
In regression studies, you need to be careful that x and y represent separate measurements. Here is an 
example of how you can get into trouble. 

> trap <- data.frame(x=rnorm(1000), y=rnorm(1000)) 
> trap$delta <- trap$y - trap$x 
> plot(y~x, data=trap) 
> plot(delta~x, data=trap) 
> fallacy <- lm(delta~x, data=trap) 
> abline(fallacy) 
> summary(fallacy) 
 
Call: 
lm(formula = delta ~ x, data = trap) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-3.61428 -0.67244  0.01784  0.64110  3.31028  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) -0.02894    0.03171  -0.913    0.362     
x           -0.94110    0.03227 -29.165   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 1.002 on 998 degrees of freedom 
Multiple R-Squared: 0.4601,     Adjusted R-squared: 0.4596  
F-statistic: 850.6 on 1 and 998 DF,  p-value: < 2.2e-16 
 

It seems that there is a strong relationship at work here, but it is all a fallacy. The x and y values are 
completely independent. The regression was delta against x, and delta is not a separate measurement 
from x.  
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R2 is not the best measure of what has been achieved in a regression 
Consider this very artificial system. 

> x <- rep(0:100, 1000) 
> y <- x + 2 + rnorm(x, sd=30) 
> plot(y ~ x) 
> m <- lm(y ~ x) 
> summary(m) 
 
Call: 
lm(formula = y ~ x) 
 
Residuals: 
      Min        1Q    Median        3Q       Max  
-118.8459  -20.2691   -0.1212   20.3342  137.4599  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) 1.945937   0.187284   10.39   <2e-16 *** 
x           1.000175   0.003236  309.10   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 29.98 on 100998 degrees of freedom 
Multiple R-Squared: 0.4861,     Adjusted R-squared: 0.4861  
F-statistic: 9.554e+04 on 1 and 100998 DF,  p-value: < 2.2e-16 
 
Notice that R2 appears quite poor. However… 

  
> eb <- predict(m, data.frame(x=x)) 
> eb <- predict(m, newdata=data.frame(x=0:100), interval="c") 
> lines(0:100,eb[,3], col="red", lty=3) 
> lines(0:100,eb[,2], col="red", lty=3) 
 

You can see that we have done a rather good job of determining the underlying parameters and 
quantifying the variance in our system. Because the system has so much randomness it is not possible to 
have precise predictive power. However, we have recovered the underlying model quite well. 
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