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Quantitative Understanding in Biology 
Module I: Statistics 
Lecture V: Closing Thoughts and Review 

Multiple Hypothesis Testing 
So far, we have considered one statistical test at a time. We know that we can control the rate of Type I 
errors in these tests by setting α appropriately. In many studies several hypothesis will be tested; for 
example, we may wish to compare means for several groups (related or independent). We may be 
testing a drug on several different cell lines, or we may be measuring a response at several different 
time points after application of a treatment. The proper way to analyze data from studies such as these 
varies depending on the specifics of the experimental design, and we won’t be able to go into detail for 
all them. There is, however, a common theme that needs to be considered: that of multiple hypothesis 
testing. 

The challenge in dealing with multiple hypothesis testing is controlling the Type I error rate across the 
whole study. If a study involves testing 20 hypotheses, and each has a 5% chance of a Type I error, then 
the probability of at least one false conclusion is: 

> 1 - dbinom(0,20,0.05) 

[1] 0.6415141 

In other words, there is a 64% chance that at least one conclusion in our study is wrong. If we want to 
control the error rate for the study as a whole, we need to adjust α downwards in an appropriate 
manner. In practice, there are several approaches that are in common use; we’ll look at two. 

The Bonferroni Correction 
The simplest and most conservative approach to controlling a study-wide error rate is the Bonferroni 
correction. Given a desired study-wide error rate, α, you compute a per-test cutoff, α*, as follows… 

 

…where N is the number of hypothesis tests in your study. In our example above, we compute α* = 
0.0025. Using this new-per test cutoff, we can estimate the probability of one or more false 
conclusions… 

> 1- dbinom(0,20,0.05/20) 
[1] 0.04883012 
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…which is quite close to what we wanted. 

In practice, one usually doesn’t adjust α, but rather we ‘correct’ the p-value. For the Bonferroni 
correction, we multiply the raw p-value by N to compute the corrected p-value, and compare that to our 
desired study-wide α of 0.05. While this is a little easier in terms of book-keeping, it should be kept in 
mind that a ‘corrected’ p-value is not a probability of any particular scenario we’ve tested. In fact, 
corrected p-values can be larger than unity (although they are usually reported as 1 in this case). 

The Bonferroni correction is the most conservative correction used in multiple hypothesis testing. When 
the number of hypotheses is small, this is probably an appropriate correction to use. 

One of the difficulties in critically evaluating scientific literature is that publications are biased toward 
reporting statistically significant results. When you see a paper that reports a p-value of 0.02 for a 
particular test, you have no way of knowing how many other hypotheses have been tested and not 
reported by the authors.  

There can also be a problem when you are ‘just looking’ at some data you have collected to decide how 
to analyze it. You are implicitly performing many tests on the data, and selecting only those for which 
the numbers look hopeful to compute a p-value for. In principle, you should be using some kind of 
multiple hypothesis control in this case. 

Ideally, you would design your experiments and your analyses before collecting any data, and all results, 
statistically significant or not, would be published. As this is not likely or practical in today’s scientific and 
publishing landscape, it is important to recognize that reported results are probably less certain than 
they might appear. 

The Benjamini-Hochberg Correction for Controlling False Discovery Rate  
The advent of high-throughput biological techniques has resulted in a renewed interest in multiple 
hypothesis testing. New techniques such as microarray experiments allow for many thousands of data 
points to be collected in a single experimental protocol; as a result, it is not uncommon to test tens of 
thousands of hypotheses in a single analysis. In such cases, many practitioners find that the Bonferroni 
correction is too conservative. 

The most common alternative in use today (at least for microarray experiments) is the Benjamini-
Hochberg Correction. It works as follows: 

1. Order all p-values from smallest to largest, and assign a rank to each one. 
2. Correct each p-value by multiplying it by N/rank. This leaves the largest p-value uncorrected, 

and the smallest with the same adjusted p-value as would have been obtained using the 
Bonferroni correction. 

3. Compare the corrected p-values to your pre-determined α, as usual. 

Note that the Benjamini-Hochberg correction seeks to control the “False Discovery Rate”, not the 
“Family-wise Error Rate”. This means that we expect some fraction of the significant result to contain 



Closing Thoughts and Review 
 

Copyright 2008 – J Banfelder, Weill Cornell Medical College Page 3 
 

false positives. It is the least conservative correction for multiple hypothesis testing in common use 
today (short of no correction at all). As such, it is usually applicable to screening studies, where we are 
trying to identify an enriched set of target genes or compounds for further study, and is usually not the 
basis on which final scientific conclusions are based. 

Additional Comments on Multiple Hypothesis Testing 
The Bonferroni and Benjamini-Hochberg p-value corrections (as well as some others) are available in R. 

The relevant function is p.adjust. You need to provide a method argument indication which 
correction you want to use; be sure to specify method=“BH” (and not method=”hochberg”) for 
the Benjamini-Hochberg correction discussed here. Further details are available in the help page for the 

p.adjust method. 

There are other techniques for multiple hypothesis testing that are not covered in this course, but are 
important. In cases where you are comparing means across a two groups (say you are comparing the 
heights of adult men and women), you would use a t-test. If you are comparing means across several 
groups (e.g., heights of adults by ethnicity), you could compare each pair of groups using a t-test and 
then apply a Bonferroni test to account for the multiple hypotheses inherent in the analysis. However, in 
this case, it is more appropriate to perform an ANOVA test. This would look at all of the data from all of 
the groups, and tell you if there is any statistically significant difference among any of the groups. If so, 
then so-called post tests are run to determine which groups differ from each other. ANOVA is a complex 
topic that has entire texts and courses devoted to it. If you are performing such experiments, you’ll need 
to learn this technique. 

Another scenario where a different analysis may be called for is when your data is across multiple 
groups that have a natural, quantitative ordering. For example, you may be looking at height across 
different age groups (20-30 years old, 30-39, 40-49, 50-59, etc). In this case, comparison of pairs of 
groups may not show significant differences, but an analysis that looks for trend might. 

Bayesian Statistics 
Bayesian statistics is another important topic that we did not cover in this section of the course. 
Bayesian statistics uses the idea of prior knowledge to compute probabilities. For example, to compute 
the absolute probabilities of Type I and Type II errors, you need to know roughly how many of the 
hypotheses you test will be true or not. This is especially important in medical diagnosis and genetic 
counseling, where prior probabilities can drastically affect computed odds. For example, many couples 
of Ashkenazi Jewish heritage screen for Tay-Sachs disease before getting married because the prior 
probability of being a carrier is much higher in the Ashkenazi Jewish population. 

The Randomization Test: An Example of Testing By Simulation 
In a previous session, we saw how to compare two means using the t-test. This test is based on a model 
in which the data from the two populations are normally distributed and have the same SD. An 
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alternative method for comparing two means, which does not make these assumptions, is called the 
randomization test. In practice, the randomization test is used rarely, if ever. However, it is interesting 
because it works without the need for any complex modeling or assumptions. Additionally, the method 
forms the basis of a non-parametric test for comparing two means, which we will cover shortly. 

We begin with two sets of observations and their means: 

x1, x2, x3, x4, x5   
y1, y2, y3, y4, y5   

The difference between the two observed means is 

 

As with the t-test, we wish to ascertain whether this observed difference is statistically significant, or 
could be due to chance. Our null hypothesis is that the two sets of observations are samples from the 
same distribution. Interestingly, for the randomization test we do not need to assume anything about 
this hypothesized distribution. 

Now, if the null hypothesis were true, then any of the values we observed would be just as likely to 
appear in the first set as in the second. In other words, any rearrangement or shuffling of the values we 
observed (keeping the count of values in each group the same) is just as likely to have been observed as 
the arrangement we did in fact observe.  We can therefore enumerate every possible rearrangement of 
the values we observed, and compute a Δ for each one. We now have a histogram of Δs that can serve 
as an estimate for the probability distribution function of Δ. Using this approximate distribution, we can 
compute the probability of observing given differences in means from two random samples from our 
hypothesized distribution. We can then compute what proportion of those Δs is equal to or larger in 
magnitude than the one we observed. This is the p-value corresponding to our null hypothesis.  You can 
look at the range of Δs, and compute a CI of your choosing. 

Of course, this p-value is only an estimate. Interestingly, it is a proportion, so, if you are motivated, you 
can compute a CI for the p-value using techniques we learned earlier. 

As mentioned above, the randomization test is rarely, if ever, used in practice. It involves a good deal of 
bookkeeping to elencate all of the possible rearrangements of the observed values. For all but the most 
trivial cases, you would need a computer. Even so, with more than a moderate count of observations in 
each group, the resultant combinatorial explosion would be beyond the capacity of even the most 
powerful computers. In such cases, sampling a reasonably large number of rearrangements would allow 
you to develop an estimate of the distribution of Δ, and would allow you to approximate a p-value. The 
exhaustive procedure is known as the (ostensibly oxymoronic) exact randomization test! 

Again, the randomization test is hardly ever used in practice; most sane people would use the t-test if 
they were comfortable with its assumptions regarding normality and equivalent SDs. That said, if you 
are comfortable with the idea behind the randomization test, then you have a good understanding of 
what a p-value is. 



Closing Thoughts and Review 
 

Copyright 2008 – J Banfelder, Weill Cornell Medical College Page 5 
 

The Wilcoxon Rank-Sum Test 
The Wilcoxon Rank-Sum test is similar in spirit to the randomization test, and is in fairly common use. It 
is a non-parametric test that seeks to answer a similar question to the t-test: we again have two sets of 
observations, and we wish to ascertain whether they come from the same distribution. We are not 
comfortable with the assumptions of the t-test, and choose a non-parametric method. 

Again, we begin with two sets of observations (same as above). We begin our analysis by ordering the 
values from smallest to largest, and associating a rank with each observation (in the event of a tie, use 
the average of the ranks to be assigned). Our order might be: 

x4 y1 y3 x2 y5 y4 y2 x1 x5 x3 
1 2 3 4 5 6 7 8 9 10 

 

Now we compute the sum of the ranks for each group… 

x: 8 + 4 + 10 + 1 + 9 = 32 
y: 2 + 7 + 3 + 6 + 5 = 23 

…and finally a Δ for the difference between the rank sums: 

Δ = 23 – 32 = -9 

Our reasoning from this point on is analogous to that of the randomization test. If the samples were 
from the same underlying distribution, then any rearrangement or shuffling of the data would be just as 
likely as the arrangement we observed. We can therefore develop a distribution of Δs, and estimate a p-
value that indicates how likely we are to see a Δ as large in magnitude as the one we actually observed. 

Note that we never needed the actual observed values, just their order. As you might imagine, the 
Wilcoxon Rank-Sum test is quite robust to outliers; it doesn’t matter if the largest value is 10 or 
10,000,000; the result would be exactly the same. 

The relevant function in R is wilcox.test; see the help for details.  

Publication Quality Figures with R 
In addition to being a power data analysis platform, R is a great tool for preparing publication quality 
figures. The golden rule for technical illustration is to avoid using any bitmap formats. Sticking with 
vector based formats allows you to edit your figures with exquisite precision (Adobe Illustrator is 
recommended for this; PowerPoint is specifically recommended against), and means that you can shrink 
or enlarge them without loss of clarity. This last point is especially important when preparing posters; 
you would otherwise have to save your figures with ridiculously high resolution to avoid seeing pixilation 
and ugly anti-aliasing effects. 
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To save a figure in R as a PDF (a handy vector format that nearly everyone can read and is compatible 
with Adobe Illustrator), you begin by opening a PDF file as a graphics device (the file is created in R’s 
current directory): 

> pdf(file='x.pdf') 
> hist(x, probability=TRUE) 
> rug(x) 
> dev.off() 
 

Next, you issue your normal plotting commands. Instead of appearing on the screen, these commands 
will be sent to the current graphics device, which is your PDF file. To close the device, you issue the 

dev.off() command. Subsequent plotting commands will appear on the screen as usual. 

You can also have multiple graphics devices open at once. This allows you to have, say, two windows on 

the screen, or a screen window and a PDF file open at the same time. Use the x11(), windows(), 
and quartz() functions to open new screen graphics devices on Linux, Windows, and Mac, 
respectively. 

Plotting commands always go to the current device, which you can change with the dev.set function. 

For help on this function and its friends, see the R help: ?dev.set 
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