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Bayesian Framework

• Prior: what we believe about the system before seeing new data
• Likelihood: probability of observing the data given our hypothesis
• Posterior: updated belief about the hypothesis after considering 

the data



Problem Setup

Class of Students

Let’s pick a student at random.

P(T) = probability that student is ≥ 6 ft tall

P(F) = probability that student is female

What is the probability that the chosen 
student is ≥ 6 ft tall and female?



Probability Table

Female Male

Tall
Not Tall



Probability Table

Female Male

Tall 1
Not Tall 13

14



Probability Table

Female Male

Tall 1 5
Not Tall 13 9

14 14



Probability Table

Female Male

Tall 1 5 6
Not Tall 13 9 22

14 14 28



Probability Table

Female Male

Tall 1 5 6
Not Tall 13 9 22

14 14 28

P(T)	= 𝟔𝟐𝟖 , 𝑷 𝑭 = 𝟏𝟒
𝟐𝟖

P(T	∩	F)	=	P(F	∩	T)	=	P(T,	F)	=	P(F,T)=		 𝟏
𝟐𝟖
	

Let’s compute some probabilities from looking at 
this table:



Probability Table

Female Male

Tall 1 5 6
Not Tall 13 9 22

14 14 28

P(T)	= 𝟔𝟐𝟖 , 𝑷 𝑭 = 𝟏𝟒
𝟐𝟖

P(T	∩	F)	=	P(F	∩	T)	=	P(T,	F)	=	P(F,T)=		 𝟏
𝟐𝟖
	

Let’s compute some probabilities from looking at 
this table:

What is the probability that a student is ≥ 6ft tall 
given that they are female?



Joint Probability using Conditional Probability

Conditional Probability:
P(T	|	F)

Female Male
Tall 1 5 6

Not Tall 13 9 22
14 14 28



Joint Probability using Conditional Probability

Conditional Probability:
P(T	|	F)	=	 𝟏

𝟏𝟒

Female Male
Tall 1 5 6

Not Tall 13 9 22
14 14 28



Joint Probability using Conditional Probability

Female Male
Tall 1 5 6

Not Tall 13 9 22
14 14 28

P(T, F) = P(F) * P(T | F)
 



Joint Probability using Conditional Probability

Female Male
Tall 1 5 6

Not Tall 13 9 22
14 14 28

P(T, F) = P(F) * P(T | F)
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 = 0.5 * 0.07 = 0.036
 



Joint Probability using Conditional Probability

Female Male
Tall 1 5 6

Not Tall 13 9 22
14 14 28

P(T, F) = P(T) * P(F | T)
*
()
∗ &
*

 = 0.21 * 0.17 = 0.036
 



Joint Probability (dependence case) 

P(T,	F)	=	P(F)	*	P(T	|	F)
P(T,	F)	=	P(T)	*	P(F	|	T)

Joint Prior Conditional



Deriving Bayes’ rule from the Joint probability

P(T,	F)	=	P(F)	*	P(T	|	F)
P(T,	F)	=	P(T)	*	P(F	|	T)

Set	them	equal,	and	solve	for	P(T	|	F).

P(F)	*	P(T	|	F)	=	P(T)	*	P(F	|T)

P(T	|	F)	=	! " ∗! $	 ")
!($)



P(A|	B)	=	! ( ∗! )	 ()
!())

Bayes’ Rule

Generalizable formula:

Prior probability

Likelihood

Posterior
 probability

Marginal

Female Male
Tall

Not Tall

“Margins” of the probability table



Set Theory intuition of Bayes’ Rule

U

U	=	all	events	in	universe

Tall 
(T)

Female 
(F)



Set Theory intuition of Bayes’ Rule

U

𝑃 𝑇 =
𝑇
𝑈

Tall 
(T)

Female 
(F)



Set Theory intuition of Bayes’ Rule

U

𝑃 𝑇 =
𝑇
𝑈

𝑃 𝐹 =
𝐹
𝑈

Tall 
(T)

Female 
(F)



Set Theory intuition of Bayes’ Rule

U

𝑃 𝑇 =
𝑇
𝑈

𝑃 𝐹 =
𝐹
𝑈

Tall 
(T)

Female 
(F)

\

If	we	want	to	know	P(T|F),	then	
our	“Universe”	becomes	F



Set Theory intuition of Bayes’ Rule

U

?
𝐹	

Tall 
(T)

Female 
(F)



Set Theory intuition of Bayes’ Rule

U

𝑇 ∩ 𝐹
𝐹	

𝑃(𝑇 ∩ 𝐹)
𝑃(𝐹)	

Tall 
(T)

Female 
(F)



Set Theory intuition of Bayes’ Rule

U𝑷 𝑻 ∩ 𝑭 =

Female 
(F)

𝑷 𝑻 ∗ 𝐏(𝐅|𝐓)

Tall 
(T)



Applying Bayes’ Rule

• 1% of women in a given population have breast cancer. 

• If a woman has breast cancer, there is a 90% chance that a 
particular diagnostic test will return a positive result. (90% TP)

• If a woman does not have breast cancer, there is a 10% chance 
that this diagnostic test will return a positive result. (10% FP)

What is the probability that a patient actually has 
cancer given a positive test result?



Write our events in terms of Bayes’ rule

• C = having cancer
• H = not having cancer
• + = positive result
• - = negative result

What is P(C|+)?

P(C|	+)	=	! * ∗! +	 *)
!(+)



Applying Bayes’ Rule

• 1% of women in a given population have breast cancer. 

• If a woman has breast cancer, there is a 90% chance that a 
particular diagnostic test will return a positive result. (90% TP)

• If a woman does not have breast cancer, there is a 10% chance 
that this diagnostic test will return a positive result. (10% FP)

P(C|	+)	=	! * ∗! +	 *)
!(+)

Which one of these 
statements gives each of our 
probabilities in Bayes’ rule?



Applying Bayes’ Rule

• 1% of women in a given population have breast cancer. 

• If a woman has breast cancer, there is a 90% chance that a 
particular diagnostic test will return a positive result. (90% TP)

• If a woman does not have breast cancer, there is a 10% chance 
that this diagnostic test will return a positive result. (10% FP)

P(C|	+)	=	! * ∗! +	 *)
!(+)

When do we get a positive result??



Computing P(+)
P(+)	=	P(true	positives)	+	P(false	positives)	

P(C,	+)
P(C)	*	P(+	|	C)

P(H,	+)
P(H)	*	P(+	|	H)

P(+)	=	P(C)	*	P(+	|	C)	+	P(H)	*	P(+	|	H)
=	0.01	*	0.9	+	0.99	*	0.1

=	0.009	+	0.099
=	0.108	

Given:	

P(C)	=	0.01
P(+	|	C)	=	0.9
P(+	|	H)	=	0.1

Then:
P(H)	=	1	–	P(C)	=	0.99

Almost 10% of our positives 
are false positives !



Plug into Bayes’ Rule

P(C|+)	=	P(+|C)	·	P(C)
!(+)

	
=		0.9	·	0.010.108	

=	8.3%



Model optimization using 
Bayesian Methods



Estimating the Bias of Coin
• Problem Setup:
• Flip a coin 20 times
• Observe 13 heads
• Question: What is the true probability of landing heads in the long-run (i.e. bias 

of this coin)?

Use a Binomial test!



Bayesian Approach: Estimating Bias of a Coin

• Bayes’ rules relates to two types of events:
• Model (M) = coin’s bias
• Data (D) = observed flips

Bayesian thinking: What is the probability of each model (M) 
given the observed Data (D)?

“likelihood of observing 13 heads 
given that we have a fair coin”

“likelihood of observing 13 heads given 
that we have a coin with bias 0.25”



Setup: 
1) Take 101 coins with different bias:

M0= 0.0 M1= 0.01

. . . 

M100= 1.0M50= 0.50

. . . 

Maximum likelihood is ~0.65

This is not yet a probability 
distribution



Setup: 
1) Take 101 coins with different bias:

M0= 0.0 M1= 0.01

. . . 

M100= 1.0

2) Choose a coin (“model”) with bias b at 
random:

P(Mb) = 1/101 = 0.0099

3) Flip the coin 20 times and observe 13 heads:
What is P(M0.5 | D13)?

What is the probability that we have a fair coin given we 
observed 13 heads?

M50= 0.50

. . . 



Bayes’ Rule for Coin Bias

P(M0.5	|	D13)	=
! "!.# 	! $$% "!.#)

!($$%)

Recall,	we	computed	𝑃 𝐷&A 𝑀B.C)	already:

And	we	already	said	𝑃(𝑀B.C) = 0.0099

How	do	we	calculate	the	denominator?



The Denominator

• Denominator = probability of observing 13 heads across all 
models:

𝑃(𝐷'() = 	 M
)*+.+

'

𝑃 𝐷'(	 𝑀)) O 𝑃(𝑀))

Joint	probability	of	observing	13	heads	
and	coin	with	bias	b



Plug and Chug!

P(M0.5	|	D13)	=
! "!.# 	! $$% "!.#)

!($$%)
 =	0.0739	·	0.00990.04715 = 0.0155

Therefore	we	can	calculate	P(Mb	|	D13)	for	all	possible	bias’	we	are	considering….

This is a probability 
distribution!



Plug and Chug!

P(M0.5	|	D13)	=
! "!.# 	! $$% "!.#)

!($$%)
 =	0.0739	·	0.00990.04715 = 0.0155

Therefore	we	can	calculate	P(Mb	|	D13)	for	all	possible	bias’	we	are	considering….

This is a probability 
distribution!

How is this different from running 
dbinom?



Defining Priors: Uniform Prior 

• Uniform Prior: equal probability of 
choosing all coin biases

• the Likelihood looks like the Posterior!

But what if we know that we are most 
likely to choose a “fair” coin?



Defining Priors: Custom Prior 

Bimodal posterior = interplay 
between prior and data



Gather more evidence

• Evidence now overwhelms the 
prior!

• Even though we had a prior belief, 
the evidence is overwhelming

• Now we observe:

130	ℎ𝑒𝑎𝑑𝑠
200	𝑐𝑜𝑖𝑛	𝑓𝑙𝑖𝑝𝑠



What if our coin is from a magic shop?

• We know that the shop sells coins with 0.75 bias
Our Prior

We observe 6 heads out 
of 10 coin flips

Our Posterior



Choosing a prior

• “Strong” priors

• Need strong evidence (previous experiments, expert 
knowledge, or well-established theory)

• Can overwhelm the posterior



Recap
• Bayesian Approaches:
• Allow us to incorporate our prior beliefs into our analysis

• BUT we should be cautious that our prior does not influence our 
analysis
• Don’t pick the prior based on what you want the result to look like

"Extraordinary claims require extraordinary evidence"
- Carl Sagan


