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Bayesian Framework

* Prior: what we believe about the system before seeing new data
* Likelihood: probability of observing the data given our hypothesis

* Posterior: updated belief about the hypothesis after considering
the data



Problem Setup

Let’s pick a student at random.
P(T) = probability that studentis = 6 ft tall

P(F) = probability that student is female

What is the probability that the chosen
studentis = 6 ft tall and female?

Class of Students



Probability Table
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Probability Table

Female Male
Tall 1 5 6
Not Tall 13 9 22
14 14 28



Probability Table

Female Male

Tall 1 5 5
Not Tall 13 9 59
14 14 28

Let’s compute some probabilities from looking at

this table:
14

P(T)=%,P(F) = —

P(TNF)=P(FNT)=P(T,F) =P(ET)=



What is the probability that a student is = 6ft tall

given that they are female?




Joint Probability using Conditional Probability

Female Male
Tall 1 5 6
Not Tall 13 9 22
14 14 28

Conditional Probability:
P(T/F)



Joint Probability using Conditional Probability

Female Male
Tall 1 5 6
Not Tall 13 9 22
14 14 28

Conditional Probability:
1
P(T|F) =~



Joint Probability using Conditional Probability

Female Male
Tall 1 6
Not Tall 13 9 22
14 14 28




Joint Probability using Conditional Probability

Female Male
Tall 1 5 6
Not Tall 13 9 22
14 14 28

P(T, F) = P(F) *

;—g x L =0.5%0.07=0.036



Joint Probability using Conditional Probability

Female Male |
Tall 1 5 | 6
Not Tall 13 9 22
14 14 | 28

P(T, F) = P(T) *

% «-=0.21%0.17=0.036



Joint Probability (dependence case)

P(T F)
P(T F)

P(F)\*P(T ] F)
P(T)|XP(F]T)

Joint Prior Conditional



Deriving Bayes’ rule from the Joint probability

P(T F) =P(F) "P(T|F)
P(TF) =P(T) "P(F|T)

Set them equal, and solve for P(T | F).
P(F) *P(T|F) = P(T) *P(F|T)

P(T)*P(F |T)
P(F)

P(T/F) =



Bayes’ Rule

Generalizable formula:

Prior probability

Female

Tall

P( A / B) — M Likelihood

P(B) |

Not Tall

Posterior Marginal
“Margins” of the probability table probability



Set Theory intuition of Bayes’ Rule

e

U = all events in universe



Set Theory intuition of Bayes’ Rule




Set Theory intuition of Bayes’ Rule




Set Theory intuition of Bayes’ Rule

[f we want to know P(T|F), then
our “Universe” becomes F




Set Theory intuition of Bayes’ Rule




Set Theory intuition of Bayes’ Rule

Female

(F)




Set Theory intuition of Bayes’ Rule

P(TNF) =
P(T) = P(F|T) —

T~




Applying Bayes’ Rule
* 1% of women in a given population have breast cancer.

* [f awoman has breast cancer, there is a 90% chance that a
particular diagnostic test will return a positive result. (90% TP)

e [f awoman does not have breast cancer, thereis a 10% chance
that this diagnhostic test will return a positive result. (10% FP)

What is the probability that a patient actually has
cancer given a positive test result?



Write our events in terms of Bayes’ rule

—_—

* C = having cancer

* H=not having cancer
N — Whatis P(C|+)?

* + = positive result

* - = negative result

P(C)*P(+ |C)

P(C] +) ===




Applying Bayes’ Rule
* 1% of women in a given population have breast cancer.

* [f awoman has breast cancer, there is a 90% chance that a
particular diagnostic test will return a positive result. (90% TP)

e [f awoman does not have breast cancer, thereis a 10% chance
that this diagnhostic test will return a positive result. (10% FP)

Which one of these

P(C/ +) — P (C)*P(+ |C) statements gives each of our

probabilities in Bayes’ rule?
P(+)



Applying Bayes’ Rule
* 1% of women in a given population have breast cancer.

* [f awoman has breast cancer, there is a 90% chance that a
particular diagnostic test will return a positive result. (90% TP)

* [f a woman does not have breast cancer, thereis a 10% chance
that this diagnhostic test will return a positive result. (10% FP)

P(C)*P(+ |C)
P(+)

P(C| +) =

When do we get a positive result??



Given:

| P(C) = 0.01
Computing P(+ P [ = 01
P g P(+) PEIIH))=0-1
_ " 11 Then:
P(+) E(true p051tlves)J+\P(false pOSlt1V62 B(H) = 1 - P(C) = 0.99
Y Y
P(C, +) P(H, +)
P(C) * P(+ | C) P(H) * P(+ | H)

P(+)=P(C) *P(+|C) +P(H) *P(+ | H)
=0.01*09+0.99*0.1
= 0.009 + 0.099

= 0.108 \

Almost 10% of our positives
are false positives !



Plug into Bayes’ Rule

P(+)

~0.9-0.01
~ 70.108

= 8.3%



Model optimization using
Bayesian Methods



Estimating the Bias of Coin

* Problem Setup:

* Flip acoin 20 times
e Observe 13 heads

* Question: What is the true probability of landing heads in the long-run (i.e. bias

of this coin)?

Use a Binomial test!

binom.test (13, 20)

A
HH
HH
HH
fists
t#
#H

Exact binomial test

data: 13 and 20

number of successes = 13, number of trials = 20, p-value =

0.2632

alternative hypothesis: true probability of success is not equal to 0.5

HH
HH
#H
##
HH

95 percent confidence interval:
0.4078115 0.8460908
sample estimates:

probability of success
0.65




Bayesian Approach: Estimating Bias of a Coin

 Bayes’rules relates to two types of events:
* Model (M) = coin’s bias
* Data (D) = observed flips

Bayesian thinking: What is the probability of each model (M)
given the observed Data (D)?

dbinom(13, size = 20, prob = 0.5) “likelihood of observing 13 heads

## [1] 0.07392883 given that we have a fair coin”

LTIy B & 2, el S 0kl “likelihood of observing 13 heads given
## [1] 0.0001541923 that we have a coin with bias 0.25”



Setup:

1) Take 101 coins with different bias:

coin.bias <- seq(from = 0, to = 1, by = 0.01)
likelihood <- dbinom(13, 20, prob = coin.bias)
barplot(likelihood, names.arg = coin.bias, ylab = "likelihood")

\

0.15
|

Maximum likelihood is ~0.65

likelihood
0.10
1

This is not yet a probability
distribution

0.05
|

0.00
L

0 0.14 033 05 067 0.86 1



Setup:

1) Take 101 coins with different bias:

2) Choose a coin (“model’) with bias b at
random:

P(M,)=1/101=0.0099

3) Flip the coin 20 times and observe 13 heads:
Whatis P(M, 5| D43)?

What is the probability that we have a fair coin given we
observed 13 heads?



Bayes’ Rule for Coin Bias

P(Mgy ) P(D13|Mg5)
P(Mo.s | D13) — OSP(D131)3 =

Recall, we computed P(D;3|M, ) already:

dbinom(13, size = 20, prob = 0.5)

## [1] 0.07392883

And we already said P(My ) =0.0099

How do we calculate the denominator?



The Denominator

* Denominator = probability of observing 13 heads across all
models:

P(z) = ) POy | My)-P(My)
b=0.0 Y

Joint probability of observing 13 heads
and coin with bias b

(p.d13 <- sum(dbinom(13, 20, coin.bias) * (1 / 101)))

## [1] 0.04714757



Plug and Chug!

P(Mos) P(D131Mgs)  0.0739 - 0.0099
P(Dq3) - 0.04715

P(Mo_s | D13) —_ — 00155

Therefore we can calculate P(M,, | Dy3) for all possible bias’ we are considering....

posterior.probability <- dbinom(13, 20, coin.bias) * (1 / 101) / p.d13
sum (posterior.probability)

## [1] 1

barplot (posterior.probability, names.arg = coin.bias)

This is a probability
distribution!

A
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Plug and Chug!

P(Mys) P(D131Mgs) _ 0.0739 - 0.0099

P(Mos | D13) = P(D13) . 0.04715

= 0.0155

How is this different from running

dbinom?

posterior.probability
## [1] 1

(posterior.probability, = coin.bias)

This is a probability
distribution!




Probability

0.000 0002 0.004 0.006 0.008

Defining Priors: Uniform Prior

Prior (Uniform)

Likelihood of 13 Heads

Posterior Distribution

* Uniform Prior: equal probability of 2 ST
choosing all coin biases : .
& 2
* the Likelihood looks like the Posterior! g
8 |

But what if we know that we are most
likely to choose a “fair” coin?




Prior

004 0.05

0.02 0.03

0.00 0.01

Defining Priors: Custom Prior

Custom Prior

0.10 0.15

Likelihood

0.05

0.00

0 005 01 015 02 025 03 035 04 045 05 055 06 065 0.7 075 08 085 09 095 1

Bimodal posterior = interplay
between prior and data

0.08

0.06

Podferior
0.0
]

Likelihood of 13 Heads

0 005 01 015 02 025 03 035 04 045 05 055 06 065 0.7 075 08 085 09 095

Posterior Distribution

0.02

0.00

1

0 005 0.1 015 02 025 03 035 04 045 05 055 06 065 07 075 08 085 09 095

1



Gather more evidence

0.10
|

* Now we observe:

0.08
|

130 heads
200 coin flips

0.06
|

e Evidence now overwhelms the
prior!

0.04
1

* Even though we had a prior belief,
the evidence is overwhelming

0.02
I

AL

0.00
|

0 007 017 027 037 047 057 067 077 087 0.97



0.020

0.015

0.010

0.005

0.000

What if our coin is from a magic shop?

* We know that the shop sells coins with 0.75 bias

Our Prior

0 0.07 0.7 0.27 037 047 057 067 0.77 087 097

We observe 6 heads out
of 10 coin flips

0.04
|

0.

0.02

0.01

0.00

Our Posterior

0 0.07 0.17 0.27 0.37 047 057 067 077 087 0.97



Choosing a prior

* “Strong” priors

* Need strong evidence (previous experiments, expert
knowledge, or well-established theory)

 Can overwhelm the posterior



Recap

 Bayesian Approaches:
* Allow us to incorporate our prior beliefs into our analysis

* BUT we should be cautious that our prior does not influence our
analysis
* Don’t pick the prior based on what you want the result to look like

"Extraordinary claims require extraordinary evidence"
- Carl Sagan



