1.7 Bayesian Statistics

September 25, 2025

qBio I

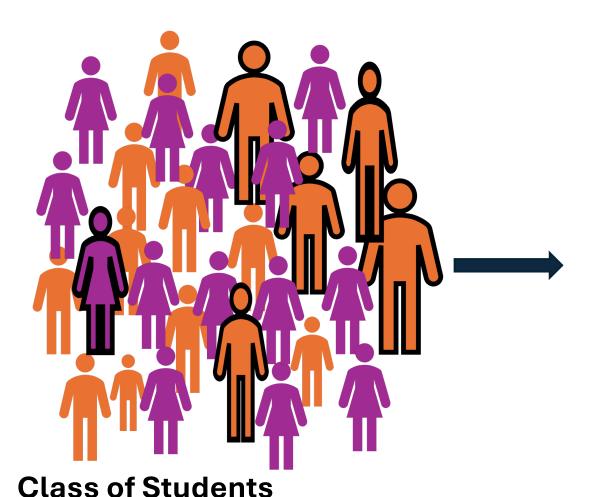
Slide Compilation by Aria Dandawate

Based on Lecture notes by Jason Banfelder

Bayesian Framework

- Prior: what we believe about the system before seeing new data
- Likelihood: probability of observing the data given our hypothesis
- Posterior: updated belief about the hypothesis after considering the data

Problem Setup



Let's pick a student at random.

P(T) = probability that student is \geq 6 ft tall

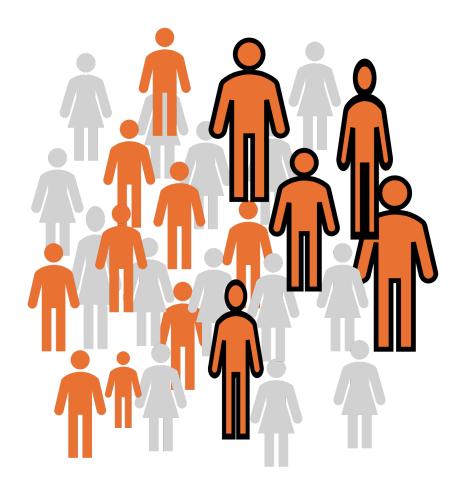
P(F) = probability that student is female

What is the probability that the chosen student is ≥ 6 ft tall <u>and</u> female?

	Female	Male	
Tall			
Not Tall			



	Female	Male	
Tall	1		
Not Tall	13		
	14		



	Female	Male	
Tall	1	5	
Not Tall	13	9	
	14	14	



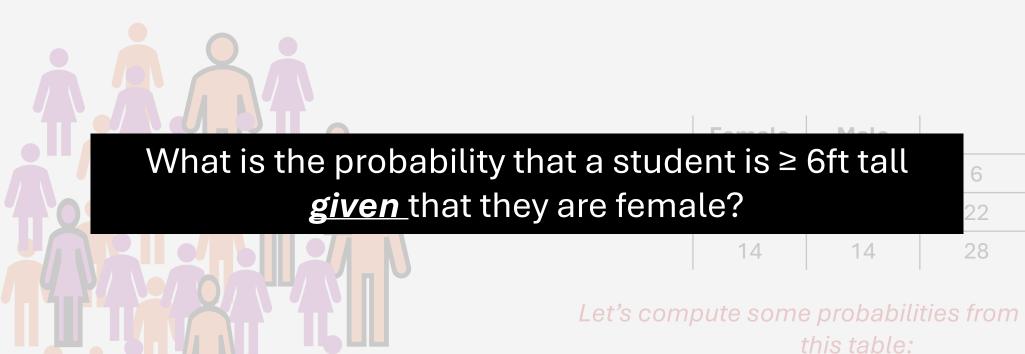
	Female	Male	
Tall	1	5	6
Not Tall	13	9	22
	14	14	28

	Female	Male	
Tall	1	5	6
Not Tall	13	9	22
	14	14	28

Let's compute some probabilities from looking at this table:

$$P(T) = \frac{6}{28}, P(F) = \frac{14}{28}$$

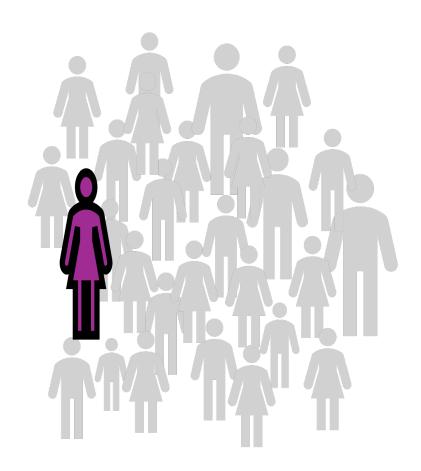
$$P(T \cap F) = P(F \cap T) = P(T, F) = P(F,T) = \frac{1}{28}$$



Let's compute some probabilities from looking at

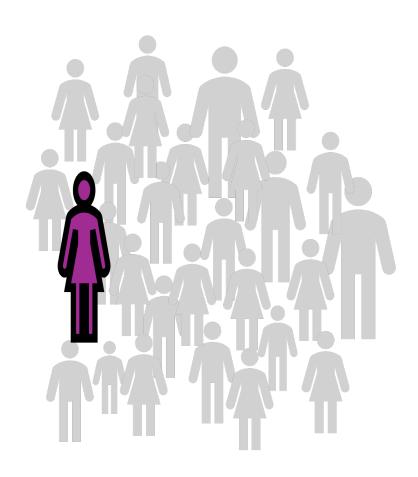
$$P(T) = \frac{6}{28}, P(F) = \frac{14}{28}$$

$$P(T \cap F) = P(F \cap T) = P(T, F) = P(F,T) = \frac{1}{28}$$



	Female	Male	
Tall	1	5	6
Not Tall	13	9	22
	14	14	28

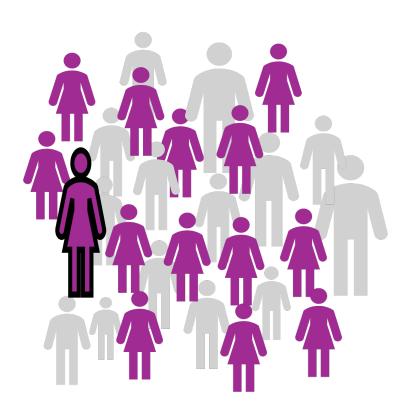
Conditional Probability: P(T | F)



	Female	Male	
Tall	1	5	6
Not Tall	13	9	22
	14	14	28

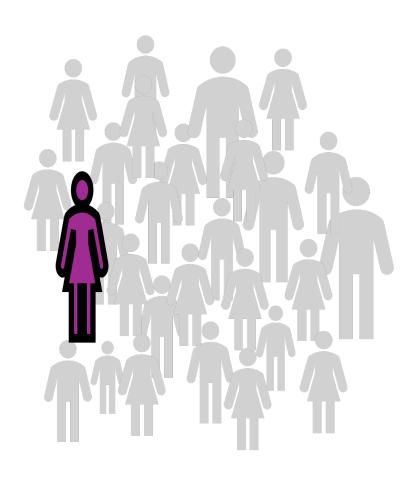
Conditional Probability:

$$P(T/F) = \frac{1}{14}$$



	Female	Male	
Tall	1	5	6
Not Tall	13	9	22
	14	14	28

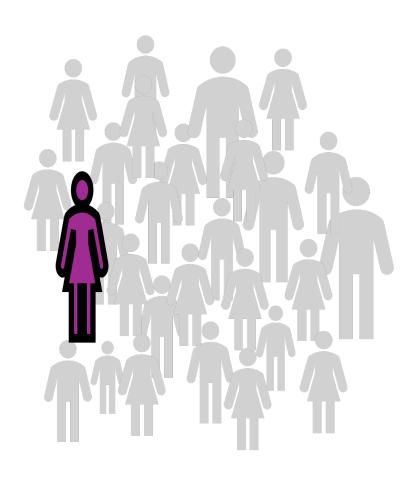
$$P(T, F) = P(F) * P(T | F)$$



	Female	Male	
Tall	1	5	6
Not Tall	13	9	22
	14	14	28

P(T, F) = P(F) * P(T | F)

$$\frac{14}{28}$$
 * $\frac{1}{14}$ = 0.5 * 0.07 = 0.036



	Female	Male	
Tall	1	5	6
Not Tall	13	9	22
	14	14	28

P(T, F) = P(T) * P(F | T)

$$\frac{6}{28} * \frac{1}{6} = 0.21 * 0.17 = 0.036$$

Joint Probability (dependence case)

$$P(T, F) = P(F) * P(T/F)$$

$$P(T, F) = P(T) * P(F/T)$$
Joint Prior Conditional

Deriving Bayes' rule from the Joint probability

$$P(T, F) = P(F) * P(T | F)$$

 $P(T, F) = P(T) * P(F | T)$

Set them equal, and solve for P(T | F).

$$P(F) * P(T/F) = P(T) * P(F/T)$$

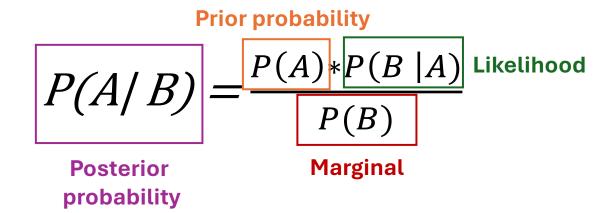
$$P(T/F) = \frac{P(T) * P(F|T)}{P(F)}$$

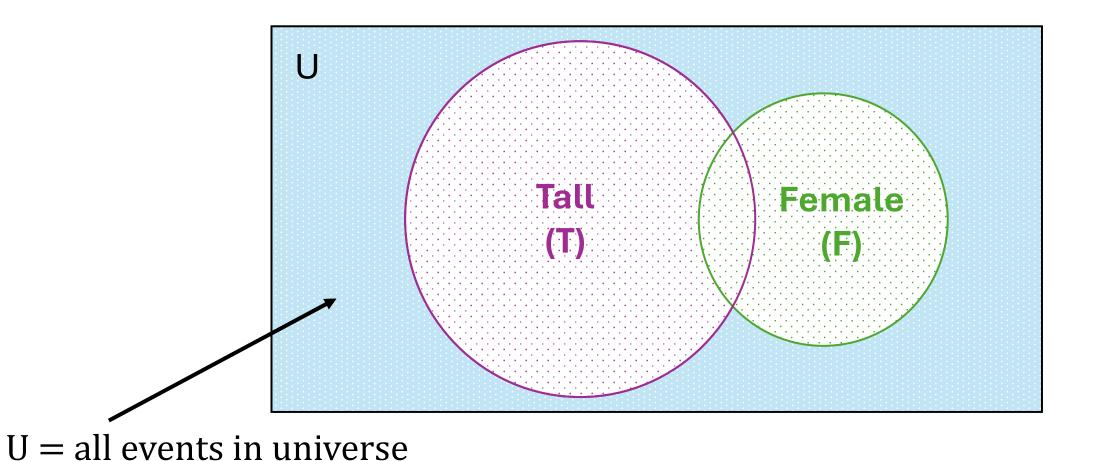
Bayes' Rule

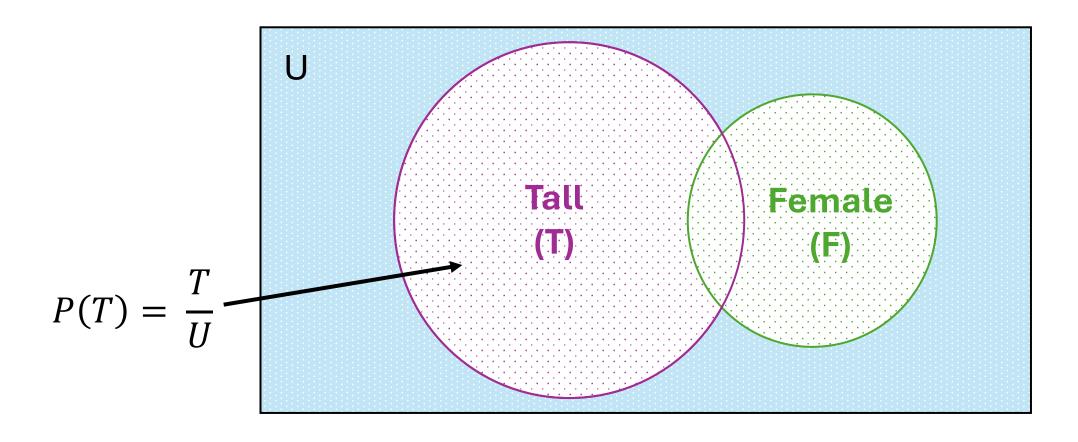
	Female	Male	
Tall			
Not Tall			

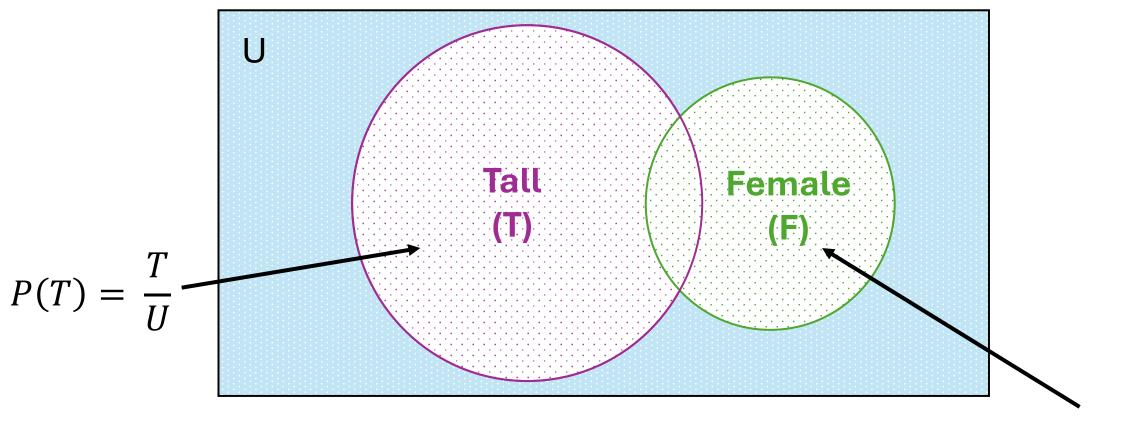
"Margins" of the probability table

Generalizable formula:

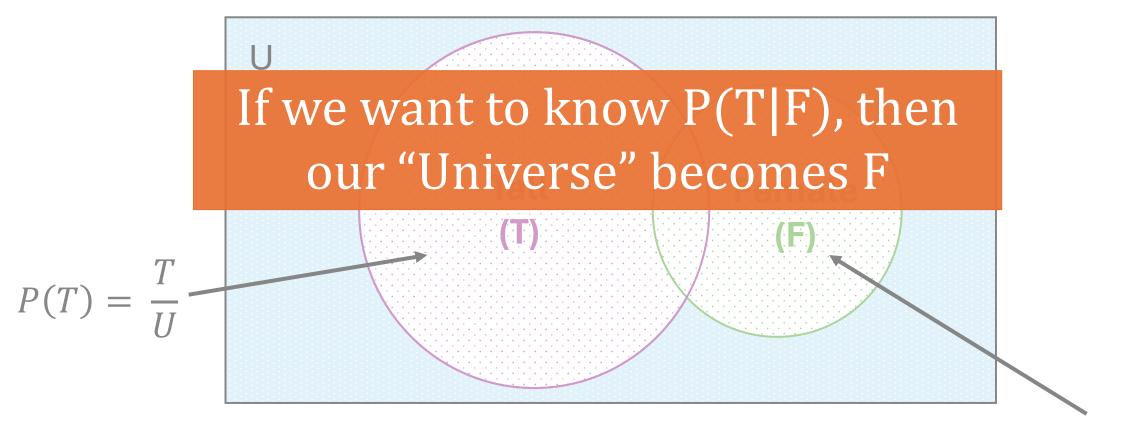




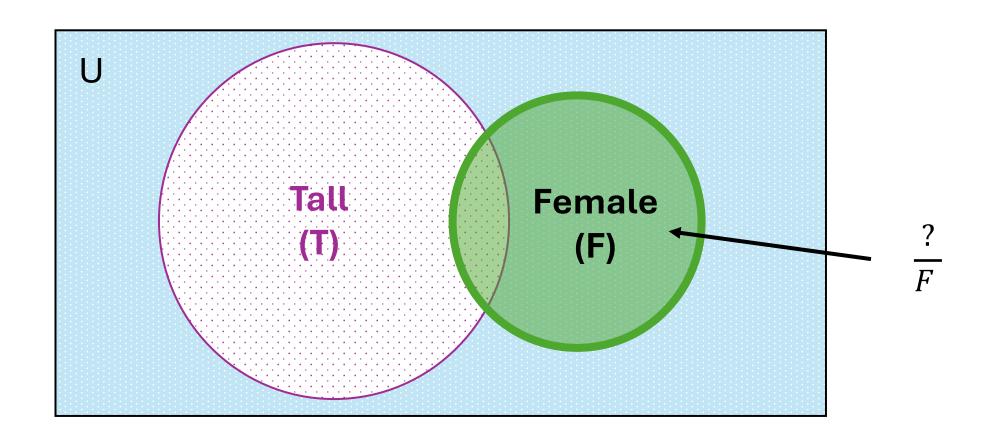


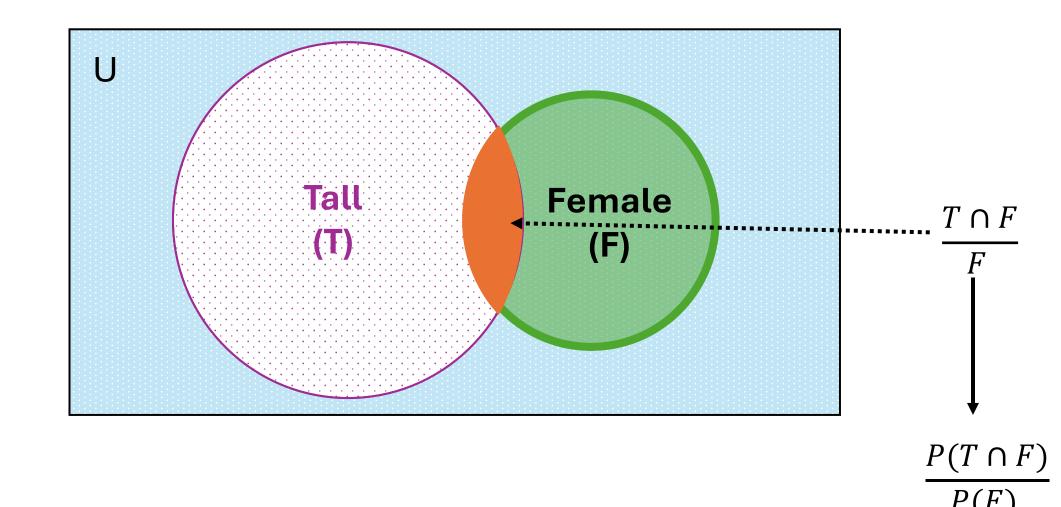


$$P(F) = \frac{F}{U}$$



$$P(F) = \frac{F}{U}$$







Applying Bayes' Rule

- 1% of women in a given population have breast cancer.
- If a woman has breast cancer, there is a 90% chance that a particular diagnostic test will return a positive result. (90% TP)
- If a woman does not have breast cancer, there is a 10% chance that this diagnostic test will return a positive result. (10% FP)

What is the probability that a patient actually has cancer given a positive test result?

Write our events in terms of Bayes' rule

- C = having cancer
- H = not having cancer
- + = positive result
- - = negative result

What is P(C|+)?

$$P(C/+) = \frac{P(C)*P(+|C)}{P(+)}$$

Applying Bayes' Rule

- 1% of women in a given population have breast cancer.
- If a woman has breast cancer, there is a 90% chance that a particular diagnostic test will return a positive result. (90% TP)
- If a woman does not have breast cancer, there is a 10% chance that this diagnostic test will return a positive result. (10% FP)

$$P(C/+) = \frac{P(C)*P(+|C)}{P(+)}$$

Which one of these statements gives each of our probabilities in Bayes' rule?

Applying Bayes' Rule

- 1% of women in a given population have breast cancer.
- If a woman has breast cancer, there is a 90% chance that a particular diagnostic test will return a positive result. (90% TP)
- If a woman does not have breast cancer, there is a 10% chance that this diagnostic test will return a positive result. (10% FP)

$$P(C/+) = \frac{P(C)*P(+|C)}{P(+)}$$

When do we get a positive result??

Computing P(+)

Given:

$$P(C) = 0.01$$

 $P(+ | C) = 0.9$
 $P(+ | H) = 0.1$

$$P(+) = P(true positives) + P(false positives)$$

$$P(H) = 1 - P(C) = 0.99$$

$$P(C, +)$$
 $P(H, +)$ $P(C) * P(+ | C)$ $P(H) * P(+ | H)$

$$P(+) = P(C) * P(+ | C) + P(H) * P(+ | H)$$

$$= 0.01 * 0.9 + 0.99 * 0.1$$

$$= 0.009 + 0.099$$

$$= 0.108$$

Almost 10% of our positives are false positives!

Plug into Bayes' Rule

$$P(C|+) = \frac{P(+|C) \cdot P(C)}{P(+)}$$

$$= \frac{0.9 \cdot 0.01}{0.108}$$

$$= 8.3\%$$

Model optimization using Bayesian Methods

Estimating the Bias of Coin

- Problem Setup:
 - Flip a coin 20 times
 - Observe 13 heads
 - Question: What is the true probability of landing heads in the long-run (i.e. bias of this coin)?

Use a Binomial test!

```
binom.test(13, 20)

##

## Exact binomial test

##

## data: 13 and 20

## number of successes = 13, number of trials = 20, p-value =

## 0.2632

## alternative hypothesis: true probability of success is not equal to 0.5

## 95 percent confidence interval:

## 0.4078115 0.8460908

## sample estimates:

## probability of success

## 0.65
```

Bayesian Approach: Estimating Bias of a Coin

- Bayes' rules relates to two types of events:
 - Model (M) = coin's bias
 - Data (D) = observed flips

Bayesian thinking: What is the probability of each model (M) given the observed Data (D)?

```
dbinom(13, size = 20, prob = 0.5)
## [1] 0.07392883

dbinom(13, size = 20, prob = 0.25)
## [1] 0.0001541923

"likelihood of observing 13 heads given that we have a coin with bias 0.25"
"likelihood of observing 13 heads given that we have a coin with bias 0.25"
```

Setup:

1) Take 101 coins with different bias:


```
coin.bias <- seq(from = 0, to = 1, by = 0.01)
likelihood <- dbinom(13, 20, prob = coin.bias)
barplot(likelihood, names.arg = coin.bias, ylab = "likelihood")</pre>
```


Setup:

1) Take 101 coins with different bias:

2) Choose a coin ("model") with bias b at random:

$$P(M_b) = 1/101 = 0.0099$$

3) Flip the coin 20 times and observe 13 heads: What is $P(M_{0.5} \mid D_{13})$?

What is the probability that we have a fair coin given we observed 13 heads?

Bayes' Rule for Coin Bias

$$P(M_{0.5} | D_{13}) = \frac{P(M_{0.5}) P(D_{13} | M_{0.5})}{P(D_{13})}$$

Recall, we computed $P(D_{13}|M_{0.5})$ already:

```
dbinom(13, size = 20, prob = 0.5)
## [1] 0.07392883
```

And we already said $P(M_{0.5}) = 0.0099$

How do we calculate the denominator?

The Denominator

 Denominator = probability of observing 13 heads across all models:

$$P(D_{13}) = \sum_{b=0.0}^{1} P(D_{13} \mid M_b) \cdot P(M_b)$$

Joint probability of observing 13 heads and coin with bias *b*

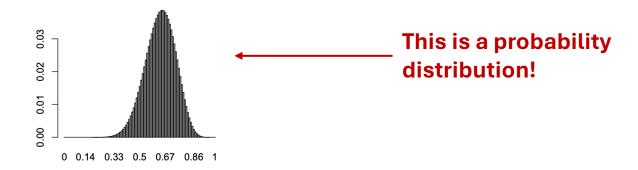
```
(p.d13 <- sum(dbinom(13, 20, coin.bias) * (1 / 101)))
## [1] 0.04714757
```

Plug and Chug!

$$P(M_{0.5} \mid D_{13}) = \frac{P(M_{0.5}) P(D_{13} \mid M_{0.5})}{P(D_{13})} = \frac{0.0739 \cdot 0.0099}{0.04715} = 0.0155$$

Therefore we can calculate $P(M_b \mid D_{13})$ for all possible bias' we are considering....

```
posterior.probability <- dbinom(13, 20, coin.bias) * (1 / 101) / p.d13
sum(posterior.probability)
## [1] 1
barplot(posterior.probability, names.arg = coin.bias)</pre>
```

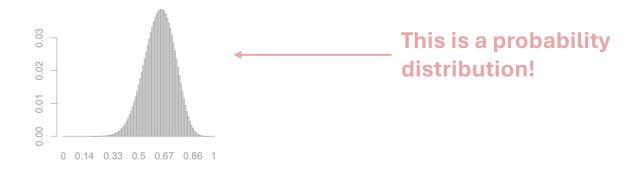


Plug and Chug!

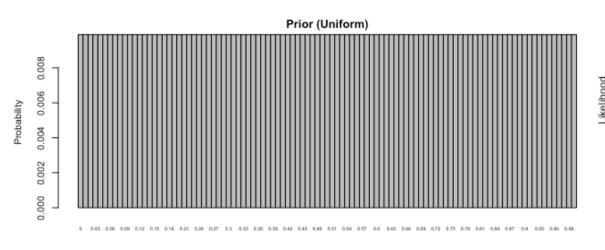
$$P(M_{0.5} \mid D_{13}) = \frac{P(M_{0.5}) P(D_{13} \mid M_{0.5})}{P(D_{13})} = \frac{0.0739 \cdot 0.0099}{0.04715} = 0.0155$$

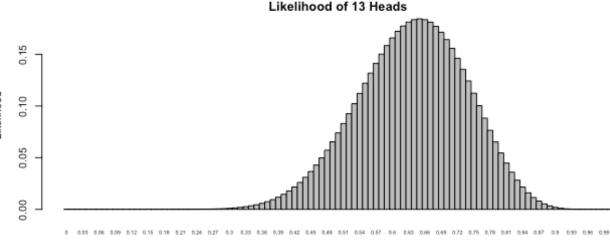
There How is this different from running dbinom?

```
pos
sum(posterior.probability)
## [1] 1
barplot(posterior.probability, names.arg = coin.bias)
```

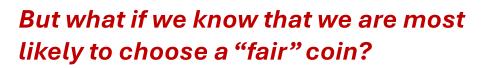


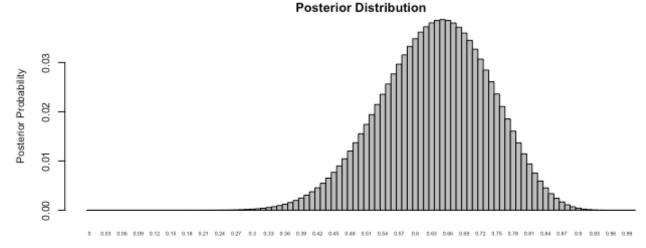
Defining Priors: Uniform Prior



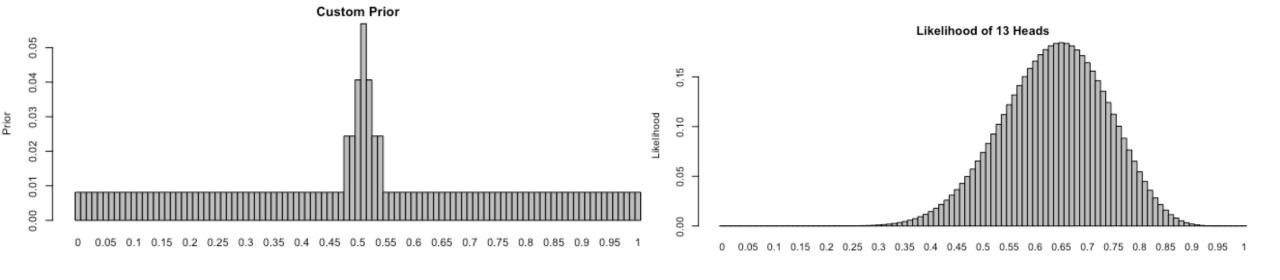


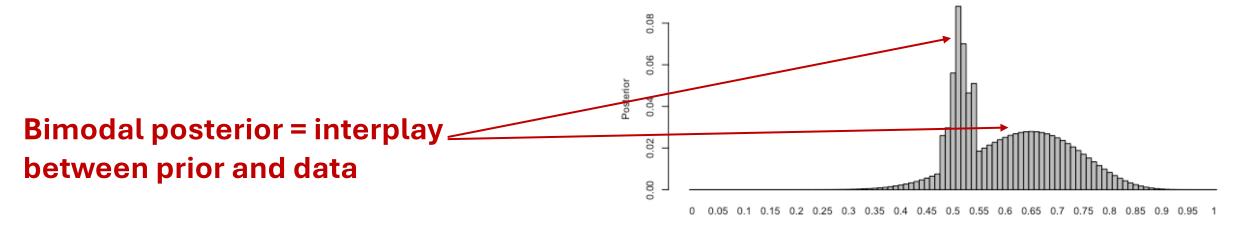
- Uniform Prior: equal probability of choosing all coin biases
- the Likelihood looks like the Posterior!





Defining Priors: Custom Prior





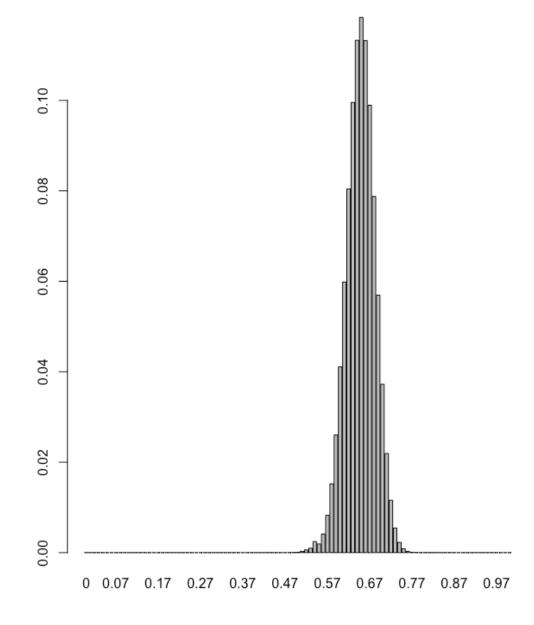
Posterior Distribution

Gather more evidence

Now we observe:

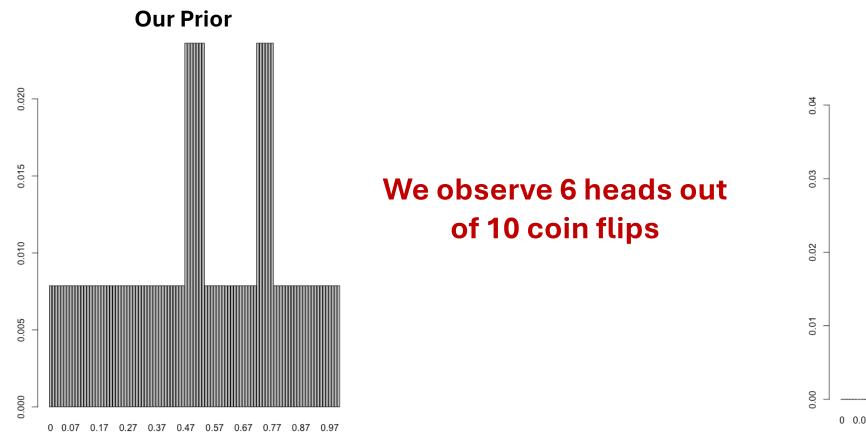
$$\frac{130\ heads}{200\ coin\ flips}$$

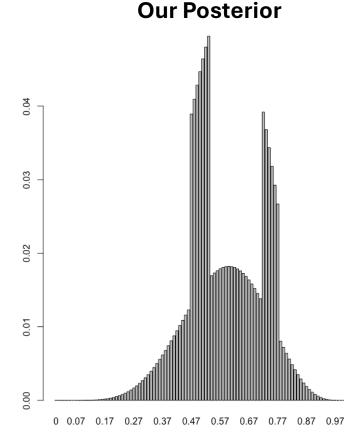
- Evidence now overwhelms the prior!
- Even though we had a prior belief, the evidence is overwhelming



What if our coin is from a magic shop?

We know that the shop sells coins with 0.75 bias





Choosing a prior

- "Strong" priors
 - Need strong evidence (previous experiments, expert knowledge, or well-established theory)
 - Can overwhelm the posterior

Recap

- Bayesian Approaches:
 - Allow us to incorporate our prior beliefs into our analysis
 - BUT we should be cautious that our prior does not influence our analysis
 - Don't pick the prior based on what you want the result to look like

"Extraordinary claims require extraordinary evidence" - Carl Sagan