
Practical R #3: Gaining insight from simulations

7 November, 2017

1 Motivation

It is very useful in science to construct mathematical models of the systems that we are
investigating. As the complexity of these systems increases, it can often be difficult or
impractical to derive or locate in the literature exact mathematical solutions of our model
systems. While one option is to incorporate simplifying assumptions (such as that of
normality) that make analytical solutions tractable, an alternative approach is to more
directly simulate real world phenomena, and use numerical techniques to obtain solutions
and insights.

For example, we saw how a t-test (which uses an analytical solution based on the Stu-
dent’s t-distribution) can also be cast as a data shuffling problem, and solved by repeated
numerical (random or exhaustive) sampling of such shufflings via the randomization test.
Similarly, we’ve seen how simulations could be used to explore power calculations for two
groups with different means and different standard deviations, and to illustrate how the
Bonferroni and FDR multiple hypothesis corrections were controlling the error for our
entire experiment.

In this lecture, we’ll develop the tools that you can use to build and explore your own
models.

2 The Optimal Stopping Problem

Algorithms to Live By, by Brian Christian and Tom Griffiths, explores how people solve
all sorts of problems that are defined by a limited amount of time, space, information
or some combination of the above. The first chapter describes the so-called “secretary
problem”, also called the “optimal stopping problem”. Although its origins are obscured
by the mists of history, it was first described in print by Martin Gardner in his famous
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Mathematical Games column in a 1960 issue of Scientific American. We’ll frame it as a
“dating problem”.

Along the way, we will also explore some useful constructs in R, i.e., for loops and user-
defined functions.

2.1 Define the problem

Let’s first define the problem: We want to maximize our chance of finding our soul mate
in a limited pool of candidates. Each potential mate in the pool has a compatibility score,
and our goal is to find (and then propose to) the person in the pool with the highest score
for us. We can only ascertain a person’s compatibility score by dating them, and once we
move on to the next candidate, we can never go back to someone we’ve dated in the past.
So we need to decide if we want to propose to someone without knowing for sure if there
is a better match still to come.

We’ll attack this problem using a so-called “look then leap” strategy, whereby we’ll first
date a predetermined number of people just to gather data about the range of compatibility
scores. Once our data gathering phase is over, we’ll then continue to date the remaining
people from our pool until we find someone whose compatibility score higher than any
we’ve seen in the data gathering phase, and commit to that person. In this model, if we
propose to somebody, they always accept, and if we reject them, we can never get them
back.

The question now becomes: how many potential mates should be included in the data
gathering phase, and how many should be left for the commitment phase?

In this model, there are two ways we can fail to meet our soul mate using this strategy:
a) we meet our soul mate during the data gathering phase, and end up moving on to date
others when we shouldn’t have, or b) we can commit too early in the commitment phase,
and never meet our soul mate. Note that in this model, success is binary and only occurs
if we commit to our optimal match; committing to the second-best match is considered
a failure, regardless of their numerical compatibility score. The optimal strategy requires
finding the right balance between the two phases, or deriving the optimal proportion of
the population that we should sample before committing.

2.2 The simulation

It turns out that this problem does have a well-known analytical solution; the math (which
in its exact form is a Riemann approximation to an integral) says that the optimal pro-
portion of people we gather data on before switching to the commitment phase is 1/e (cf
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Thomas Ferguson, Who Solved the Secretary Problem? Statistical Science, 4(3):282-289
(1989)). Let’s see if we can use simulations to verify this result.

We first develop the code for one scenario. Say we have 100 people in our potential
candidate dating space, each with a score representing how good a match they are. The
person with the best score is our real soul mate.

N <- 100

score <- rnorm(N)

optimal.score <- max(score)

We date the first n of the group and note the maximum score in that group...

n <- N * 1 / exp(1)

cutoff.score <- max(score[1:n])

Now select as your life partner the next date with a better score.

spouse.index <- n + which(score[n+1:N] > cutoff.score)[1]

spouse.score <- score[spouse.index]

Note that in the above code snippet, the which() function returns the indices of the
truncated array score[n+1:N]. So, if your soul mate is found at position n + 1 in the
whole array, that will correspond to position 1 in the truncated array; adding n to the
result of the which() function accounts for this shift.

We have successfully found our soul mate if the score of the match we found is the same
as the optimal score.

spouse.score == optimal.score

If you run this a few times, you’ll find that when our soul mate is encountered in the data
gathering phase, we don’t commit to anyone at all and the spouse.score is NA, which
becomes an NA in our logical expression. We really want this to be recorded as FALSE, so
let’s set the score to the score of the final candidate if we haven’t found anybody else by
then.

if (is.na(spouse.index)) {
spouse.index <- N

}

We probably want to run this multiple times, so that we can see how many times, on
average, we find our soul mate. To do this, we’ll write a for loop to run the code 1000
times.
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niter <- 1000

spouse.scores <- numeric(length = niter)

for (case.idx in 1:niter) {
# scores of potential mates

score <- rnorm(N)

# we date the first n and note the maximum score in that group

cutoff.score <- max(score[1:n])

optimal.score <- max(score)

# now select as your life partner the next date with a better score

spouse.index <- n + which(score[n+1:N] > cutoff.score)[1]

# pick the last one if nobody better came along before then

if (is.na(spouse.index)) {
spouse.index <- N

}

spouse.scores[case.idx] <- (score[spouse.index] == optimal.score)

}

and calculate the mean of all the scores:

mean(spouse.scores)

## [1] 0.377

Note that in the code above, we have declared spouse.scores to be a numeric vector, so
TRUE/FALSE values are converted to 0/1 values; the motivation for doing this will become
apparent soon.

We can see that the mean of the scores turns out to be approximately 0.37, or we find
our soul mate 37% of the time, if we sample 1/e of the population before committing
to somebody. . . which is coincidentally also the proportion of the sample we date before
committing.

We probably want to explore this simulation a bit. What happens if we change the fraction
of the population that we sample before switching to the commitment phase? Does the
size of the candidate pool make a difference? We can answer questions such as these by
casting our code as a function, and then varying the parameters it is called with.
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simulate.dating <- function(N = 1000, n = N / exp(1), niter = 1) {
spouse.scores <- numeric(length = niter)

for (case.idx in 1:niter) {
# scores of potential mates

score <- rnorm(N)

# we date the first n and note the maximum score in that group

cutoff.score <- max(score[1:n])

optimal.score <- max(score)

# now select as your life partner the next date with a better score

spouse.index <- n + which(score[n+1:N] > cutoff.score)[1]

# pick the last one if nobody better came along before then

if (is.na(spouse.index)) {
spouse.index <- N

}

spouse.scores[case.idx] <- (score[spouse.index] == optimal.score)

}

mean(spouse.scores)

}

Note here that we have assigned default values to all of the function’s arguments. This
way, when using the function, we only have to specify the arguments that differ.

Now we can call this function inside of another for loop.

ns <- seq(5, 95, 2)

means <- numeric(length = length(ns))

for (idx in 1:length(ns)) {
means[idx] <- simulate.dating(N = 100, n = ns[idx], niter = 1000)

}
plot(means ~ ns)
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ns[which.max(means)]

## [1] 41

There is definitely a pattern, but the graph is a bit bumpy, so let’s recompute this distri-
bution with more samples to get a smoother curve.

ns <- seq(5, 95, 2)

means <- numeric(length = length(ns))

for (idx in 1:length(ns)) {
means[idx] <- simulate.dating(N = 100, n = ns[idx], niter = 10000)

}
plot(means ~ ns)
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ns[which.max(means)]

## [1] 33

The n that corresponds to the peak of the graph is around 30-40. . . , confirming the ana-
lytical solution of 1/e!

The optimal strategy gives us a 37% chance of finding our soul mate. However, this also
implies a 63% failure rate (given our current definition of success)!
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2.3 Exploring an alternative model

Let’s consider an alternative model with a less stringent definition of “success”. Instead
of defining success as finding our soul mate, and pairing up with anybody else as failure,
we might consider the score of the person that we ultimately pair off with as a numerical
measure of the success of our endeavor. In other words, commiting to somebody with a
relatively high score is still considered a pretty good outcome, even if it wasn’t the optimal
one.

While the underlying math for this optimization is perhaps very different, modifying our
simulation to reflect this different objective is almost trivial.

# I am content with any decent match

spouse.scores[case.idx] <- score[spouse.index]

Here, spouse.score is a numeric value, not just a zero or one.

As the simulation below demonstrates, the optimal fraction of the population that we
should sample before we switch to a commitment phase is now much lower!
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ns[which.max(means)]

## [1] 17

So depending on your preferred criterion for “success”, you’ll adopt a different strat-
egy.

There are other riffs and improvements on our model that we could imagine. For example,
a previous assumption was that once you reject somebody, their feelings are irreversibly
hurt and you can never go back to them. However, with a few more lines of code, you
could simulate the situation where you would be able to select any of the last three people
(for example) that you saw.
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3 Problem Set #2

1. One of the advantages of using a simulation to model your system is that you have
access to all information about the system. In the above analyses, we only considered
the mean scores for each n. For each of the two strategies considered above, prepare a
histogram of the scores at the optimal n. Does this new information influence which
strategy you might adopt or recommend?

2. The simulation we described in class assumes that the candidates come from a normal
distribution, with a standard deviation of 1. For each of the strategies, do the results
change if the standard deviation is different? What about if the distribution is
different, e.g., a uniform or poisson distribution? Can you reason out why?

3. One of the assumptions in the classic statement of this problem is that the candidate
will always accept when you propose to them. How would you change the model
to include the possibility of rejection? Do you think that a constant probability of
rejection is a good model? It may be that if you find somebody very compatible,
chances are good that they like you a lot too, and vice versa. How might you model
the case where the chance of rejection is proportional to how much you like them?

4. Extra credit: Extend the model in any way you think might be fun or interesting!
For example, a group of 100 people are all trying to get paired up. What would be
the objective function? Total happiness? Or would you try to maximize individual’s
happiness?

Submit your response as an Rmd file by 11:59pm Monday, 27 November
2017. You must work in groups of four or five, with a single submission per
group.
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To help you along, here’s the complete code from the above discussion, with an added
argument that allows you to specify whether the function returns the mean of all the
spouse scores, or the full distribution.

simulate.dating <-

function(N = 1000, n = N / exp(1), niter = 1, mean = TRUE) {

spouse.scores <- numeric(length = niter)

for (case.idx in 1:niter) {
# scores of potential mates

score <- rnorm(N)

# score of soul mate

optimal.score <- max(score)

# we date the first n and note the maximum score in that group

cutoff.score <- max(score[1:n])

# now select as your life partner the next date with a better score

spouse.index <- n + which(score[n+1:N] > cutoff.score)[1]

if (is.na(spouse.index)) {
spouse.index <- N

}
# Soulmate or bust

spouse.scores[case.idx] <- (score[spouse.index] == optimal.score)

# I am content with any decent match

# spouse.scores[case.idx] <- score[spouse.index]

}

if (mean) {
mean(spouse.scores)

} else {
spouse.scores

}
}

sampled <- seq(5, 95, 5)

means <- numeric(length = length(sampled))

for (idx in 1:length(sampled)) {
means[idx] <- simulate.dating(N = 100, n = sampled[idx], niter = 1000)

}
plot(means ~ sampled)

sampled[which.max(means)]

© Copyright 2017 L Skrabanek, Weill Cornell Medicine page 9


	Motivation
	The Optimal Stopping Problem
	Define the problem
	The simulation
	Exploring an alternative model

	Problem Set #2

