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Reporting the confidence interval of the mean of a univariate distribution is an intuitive
way of conveying how sure you are about the mean. CIs are especially useful when report-
ing derived quantities, such as the difference between two means. For example, you can
report the difference in the mean blood pressures of a treated and untreated group as a
confidence interval. If this CI included zero, you could not conclude that your treatment
was effective. You can also test hypotheses (such as “treatment influences blood pressure”)
by performing formal statistical tests that compute p-values; this will be the subject of the
next session.

1 Confidence Interval of a Mean

We begin by considering the CI of a simple mean. We saw earlier:

95% CI: x± 1.96 · SEM for large n (1)

More generally:

(1− α) CI: x± t∗ · SEM (2)

where t∗ is a function of α and n. In the literature, t∗ is known as the Student’s t distri-
bution. It is expressed as a function of α and a number of degrees of freedom (df). In the
case of a single, univariate distribution, df = n− 1.

The following function in R will compute t∗ for a univariate distribution:

t.star <- function(n, confidence = 0.95) {
qt(0.5 * (1 + confidence), n - 1)
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}
t.star(c(5, 50, 1000))

## [1] 2.776445 2.009575 1.962341

t.star(c(5, 50, 1000), confidence = 0.99)

## [1] 4.604095 2.679952 2.580760

As you might expect, as the confidence that you require increases, t∗ increases: the more
sure you want to be of your answer, the wider a CI you need. Also, as n increases, t∗

decreases: the more data you have, the less uncertainty in your results. For α = 0.05 (i.e.,
95% confidence) and large n, t∗ = 1.96. For α = 0.05 and moderate n, t∗ ≈ 2.

Operationally, you compute the confidence interval of a mean using the t.test function
in R, passing it a single vector containing your measurements. For example, the 99% CI
of the mean of 10 values sampled from the canonical normal distribution is obtained with
the command:

t.test(rnorm(10), conf.level = 0.99)

##

## One Sample t-test

##

## data: rnorm(10)

## t = 1.6618, df = 9, p-value = 0.1309

## alternative hypothesis: true mean is not equal to 0

## 99 percent confidence interval:

## -0.5363005 1.6586564

## sample estimates:

## mean of x

## 0.5611779

2 Confidence Interval of a Difference Between Two Means

Experiments ought to have controls, so you’ll often find yourself computing not just the
mean of a set of values, but the difference between the mean of a control group and a test
group. To compute the CI of a difference between two means, first compute the difference
between the means:

∆ = xA − xB (3)
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Next, compute the CI as follows:

(
Pooled

SD

)
=

√
(nA − 1)SD2

A + (nB − 1)SD2
B

nA + nB − 2
(4)

(
SE of

Difference

)
=

(
Pooled

SD

)√
1

nA
+

1

nB
(5)

(
CI of

Difference

)
= ∆± t∗ ·

(
SE of

Difference

)
(6)

In this case, be sure to use df = nA + nB − 2 when computing t∗.

For the special case where nA = nB:(
SE of

Difference

)
=

√
SEM2

A + SEM2
B (7)

Note that the above is simply a triangle rule; it implies that the uncertainty in the sum
is more than any one individual uncertainty, but less than the sum of the two uncertain-
ties.

The comparison of two means performed in this manner is known as a t-test. R has a
function, t.test, which will perform these computations (and several others) for you. To
use this function in its simplest form, just pass two vectors of numbers to the function.

x <- rnorm(10, mean = 5)

y <- rnorm(12, mean = 6)

t.test(x, y)

##

## Welch Two Sample t-test

##

## data: x and y

## t = -1.9247, df = 17.147, p-value = 0.07102

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## -1.8078362 0.0823524

## sample estimates:

## mean of x mean of y

## 4.663881 5.526623
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You can include an optional conf.level argument to change the confidence level of the
CI.

Note that R’s handling of t-tests, and most other statistical tests that we will cover here,
often includes more sophisticated, second order corrections than we will cover in this course.
Consequently, you may find that the results you obtain from functions like the t-test differ
slightly from what you obtain from the simplified formulae presented in these notes. Many
of these corrections have to do with small sample sizes, assumptions about shared SDs,
and the like, so you may notice slightly larger differences in cases with small n. The
details about which specific methods R uses can be found in the help pages for each test
or function.

3 Paired Studies

The above analysis is applicable when you have two unrelated samplings for two different
populations. A much more statistically powerful technique can be used when you’ve per-
formed a paired study. In a paired study, each value in set A has a corresponding value
in set B. Often, paired studies are before-and-after studies, where measurements are taken
on the same subject before and after a treatment. It offers much more statistical power
because you are able to factor out much of the biological diversity in the population.

When working with data from paired studies, you should compute a ∆ for each pair of mea-
surements, then compute ∆ and its CI using the techniques for a single distribution.

Exercise: Can you explain the similarities and differences among the three CIs computed
below?

x <- rnorm(30)

y <- x + rnorm(x, mean = 0.2, sd = 0.1)

t.test(x, y)

##

## Welch Two Sample t-test

##

## data: x and y

## t = -0.83629, df = 57.999, p-value = 0.4064

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## -0.6515470 0.2675575

## sample estimates:

## mean of x mean of y

## 0.06474027 0.25673502
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t.test(x, y, paired = TRUE)

##

## Paired t-test

##

## data: x and y

## t = -11.407, df = 29, p-value = 3.073e-12

## alternative hypothesis: true mean difference is not equal to 0

## 95 percent confidence interval:

## -0.2264194 -0.1575701

## sample estimates:

## mean difference

## -0.1919947

t.test(y - x)

##

## One Sample t-test

##

## data: y - x

## t = 11.407, df = 29, p-value = 3.073e-12

## alternative hypothesis: true mean is not equal to 0

## 95 percent confidence interval:

## 0.1575701 0.2264194

## sample estimates:

## mean of x

## 0.1919947

4 Confidence Interval of a Proportion

Many studies measure a proportion of subjects that produce a yes/no outcome (Bernoulli
trials). We may observe that 17 out of 23 animals with a particular knockout die within
one week. We can state that 17/23 = 74% of the animals die. Of course, we wish to
compute a CI for this result.

It should be no surprise that R can compute this CI for us:

binom.test(17, 23)

##

## Exact binomial test

##
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## data: 17 and 23

## number of successes = 17, number of trials = 23, p-value =

## 0.03469

## alternative hypothesis: true probability of success is not equal to 0.5

## 95 percent confidence interval:

## 0.5159480 0.8977139

## sample estimates:

## probability of success

## 0.7391304

We see (among other things) that the 95% CI for this proportion is: 0.52 to 0.90.

As you should now expect, the CI is narrower when we require less certainty in the results. . .

binom.test(17, 23, conf.level = 0.8)

...

## 80 percent confidence interval:

## 0.5869465 0.8568157

...

. . . and it also narrows as we collect more data. . .

binom.test(170, 230)

...

## 95 percent confidence interval:

## 0.6773469 0.7946366

...

Also, notice that the CI is widest when p is near 0.5:

binom.test(1, 23)

...

## 95 percent confidence interval:

## 0.001100169 0.219486607

...

Note that the CI is not symmetric around the mean. Incidentally, a good way to report
this CI is: “The proportion observed is 0.04 (95% CI: <0.01 to 0.22).” Note that we did
not round the lower limit to zero. We are 100% sure that the true proportion is not zero;
if it was, we could not have seen the one successful trial that we observed.

Interestingly, you can compute a CI for an event that is never observed. . .
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binom.test(0, 23)

...

## 95 percent confidence interval:

## 0.0000000 0.1481851

...

. . . even if there is only one trial. . .

binom.test(0, 1)

...

## 95 percent confidence interval:

## 0.000 0.975

...

Of course, in this case the interval is rather wide, and probably doesn’t add too much to
our understanding.

5 Contingency Tables and Fisher’s Exact Test

The binomial test just described is nice and easy, but our hypothetical experiment is poorly
designed. To say that 74% of our knockout animals died within a week is not informative
unless we also have a control group (maybe there is something very wrong with the food
we’ve given all of our animals). If we did the experiment with controls, we would be in a
position to formulate a contingency table:

Outcome X Outcome Y Total
Group I: Experimental 17 (A) 6 (B) 23

Group II: Control 3 (C) 22 (D) 25
Total: 20 28 48

The relative probability of outcome X with respect to Y is:

PI

PII
=

A
A+B
C

C+D

=
17
23
3
25

= 6.16 (8)

In the epidemiological literature, this ratio of proportions is known as the relative risk; this
language implies that outcome X is worse than outcome Y.

In this case, just by looking at the data it is pretty clear that there is a significant difference
in one-week survival due to the knockout. We would like to quantify what that difference
is.
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Unfortunately, although relative probability is easy to understand, results such as these are
often expressed in terms of odds, not probabilities. You may recall that odds are defined
as:

odds =
p

1− p
(9)

That is, the ‘odds’ is defined as the ratio of the probability of an event happening to the
probability of it not happening. If p = 0.75, the odds are 3:1, or just 3. Whereas 0 ≤ p ≤ 1,
the range of odds is much larger: 0 ≤ odds <∞. For rare events, the odds is approximately
equal to the probability.

Just as we computed a relative probability, we can compute the relative odds, or, as the
literature calls it, the odds ratio: (

Odds
Ratio

)
=
A/B

C/D
(10)

R will perform this computation for you (with some embellishments), and also compute
a CI of the odds ratio for you. If the CI of the odds ratio includes unity, you could not
conclude that there is a difference between the experimental and control groups.

fisher.test(matrix(c(17, 3, 6, 22), ncol = 2))

##

## Fisher's Exact Test for Count Data

##

## data: matrix(c(17, 3, 6, 22), ncol = 2)

## p-value = 2.2e-05

## alternative hypothesis: true odds ratio is not equal to 1

## 95 percent confidence interval:

## 3.837372 135.998058

## sample estimates:

## odds ratio

## 19.04224

The odds ratio computed by R is slightly different than what we outlined above. This is
because R includes some correction necessary when any of the counts in the contingency
table are less than around five. For larger numbers, there will be little difference between
manual computations and R’s.

Also note that the confidence interval is not symmetric.

When the values in a contingency table are very large, Fisher’s exact test can be com-
putationally intensive to compute. The Chi-square test is an alternative that uses some
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approximations that break down when your table has small entries. On a modern com-
puter, you can usually just use the Fisher test. If you are performing many, many tests,
you may want to look into alternatives (there are other issues in multiple hypothesis testing
that we will touch on in another session).

Consider another contingency table:

Outcome X Outcome Y Total
Group I: Experimental 4 (A) 246 (B) 250

Group II: Control 1 (C) 249 (D) 250
Total: 5 495 500

In this case, the experimental group seems to be roughly four times more likely to have
outcome X. However, a Fisher test shows that there may be no difference at all between the
groups; it is not unreasonable that the variation we observed is due to random sampling.

ct <- matrix(c(4, 1, 246, 249), ncol = 2)

fisher.test(ct)

##

## Fisher's Exact Test for Count Data

##

## data: ct

## p-value = 0.3725

## alternative hypothesis: true odds ratio is not equal to 1

## 95 percent confidence interval:

## 0.3960534 199.9822418

## sample estimates:

## odds ratio

## 4.038627

At this point, you may be wondering why we have elected to work with odds ratios instead
of the more natural relative proportions. Thus far, all of our hypothetical examples have
been of what are termed ‘experimental studies’. In these studies, we define two groups,
and then perform two different actions on the members of those groups. The outcomes
are results of a Bernoulli trial. For experimental studies, there really is no good reason to
introduce and work with odds instead of probabilities. The reason why this is done will
become apparent in a little while; be patient.

Another kind of study, called a prospective study, is similar. In this kind of study, we define
two groups, as before. However, the two groups are defined by some pre-existing difference.
In an epidemiological study, this may be some prior exposure to a hypothesized risk factor
for a disease. For example, if you hypothesize that people working in the meat-packing
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industry are at higher risk for contracting vCJD, one group would consist of those that
work in the meat-packing industry, and the second would consist of subjects who do not.
In this kind of study, once the subjects are selected and assigned to their groups, you let
nature run its course, and, at the end of the study, observe how many subjects in each
group present successful or unsuccessful outcomes.

The mathematics of the analysis of a prospective study is similar to that of an experimental
study. Again, there is no particular motivation to use odds in lieu of probabilities in a
prospective study. One of the advantages of a prospective study over an experimental
study is that you don’t need to manipulate, poke, prod, etc. your subjects; you are simply
observing what would normally happen anyway. When engaging in research on human
subjects, this is a big deal.

One of the problems with prospective studies is that, for rare outcomes, they need to
be quite large in order to generate statistically significant results. Look again at the
contingency table and the results of the Fisher test in the last example, now interpreting
it as data from a prospective study. Our hypothetical study involved 500 patients, yet
produced a very wide confidence interval: the 95% CI of the odds ratio is between 0.4 and
200. An informative exercise is to see how large our study would have to be to produce
a statistically significant result. We can somewhat crudely and artificially vary the size of
the study by multiplying all elements of the contingency table by a constant factor:

(fisher.test(2 * ct))[["conf.int"]]

## [1] 0.8014856 39.2777279

...

(fisher.test(3 * ct))[["conf.int"]]

## [1] 1.085705 22.428339

...

(fisher.test(4 * ct))[["conf.int"]]

## [1] 1.299123 16.683341

...

(fisher.test(8 * ct))[["conf.int"]]

## [1] 1.820851 10.192884

...

(fisher.test(32 * ct))[["conf.int"]]

## [1] 2.726363 6.173279

...
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As you can see, a study that can demonstrate that there is any significance at all between
the two groups would require 1,500 subjects, and to narrow the CI to something reasonable,
we would need 16,000 subjects.

A corollary of the above example is that the values you use when computing Fisher’s
exact test (or any test that uses counts, for that matter, such as the binomial test), must
be the absolute number of counts that were observed. You cannot use counts/min or
incidents per 100,000 in a population, etc. Some laboratory equipment, such as scintillation
counters, often report observations/minute; be sure to determine the absolute numbers of
scintillations detected if you use such count data in statistical tests that depend on absolute
counts.

As demonstrated above, R can extract out parts of a complex result. To see the names of
the parts that you can access, use a command like: x <- fisher.test(ct); names(x).
The str() command is used to show the internal structure of an object in R; it is a favorite
of experienced users:

x <- fisher.test(ct)

str(x)

## List of 7

## $ p.value : num 0.372

## $ conf.int : num [1:2] 0.396 199.982

## ..- attr(*, "conf.level")= num 0.95

## $ estimate : Named num 4.04

## ..- attr(*, "names")= chr "odds ratio"

## $ null.value : Named num 1

## ..- attr(*, "names")= chr "odds ratio"

## $ alternative: chr "two.sided"

## $ method : chr "Fisher's Exact Test for Count Data"

## $ data.name : chr "ct"

## - attr(*, "class")= chr "htest"

The bottom line here is that prospective studies that investigate rare outcomes usually
need to be large, expensive, and time consuming. Consider that not only do we have to
track a large number of patients, but we have do it for quite a while since we have to wait
for the disease to manifest itself in the population.

The alternative is to do a retrospective study. In this case, we form two groups based
on the outcome, and then look back in time to see if a hypothesized risk factor can be
implicated. A contingency table might look like the following:
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Outcome X Outcome Y Total
Group I: 40 (A) 25 (B) 65

Group II: 10 (C) 25 (D) 35
Total: 50 50 100

In this experimental design, we select the column totals, whereas in the experimental or
prospective cases we selected the row totals. While in our examples, the totals are the
same, this does not have to be the case.

It is important to recognize that a contingency table from a retrospective study gives us
no information about the prevalence or rarity of the outcomes. From these data alone,
we don’t know if outcome X or Y is rare or common. However, as we shall show in a
moment, the odds ratio (but not the relative probability) of the groups computed from a
contingency table is correct. Before we demonstrate this, however, we will introduce one
more experimental design. . .

A cross-sectional study is a design where subjects are chosen without regard to either risk
factor or outcome. You simply randomly select from the population, and tabulate the
results in a contingency table. The analysis of a cross-sectional study is the same as a
prospective study. The ultimate cross-sectional study is to sample the entire population
(often this is only possible as a thought experiment).

Now, we can show how odds ratios can be computed from retrospective study data. Begin
by considering a complete cross-sectional study of the whole population:

Outcome X Outcome Y Total
Group I: (A) (B) (A+B)

Group II: (C) (D) (C +D)
Total: (A+ C) (B +D) (A+B + C +D)

If you prefer to think in more concrete examples, consider the hypothetical case of an
outbreak of a disease in a small town. The population is 10,000, and half of the population
works in the local sausage plant. There have been 100 cases of the disease reported in the
town; 80 of the affected people are workers in the plant. The contingency tables in the last
two numerical examples above are derived from this hypothetical case.

The relative probability and the odds ratio are computed as follows:

(
Relative

Probability

)
=

(
A

A+B

)
(

C
C+D

) (11)

(
Odds
Ratio

)
=

(
A
B

)(
C
D

) (12)
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Now, in an experimental or prospective study, we sample some fraction of the population,
fI , in Group I, and some other fraction, fII , of the population in Group II. The data in
our contingency table are:

Outcome X Outcome Y Total
Group I: fI ·A fI ·B fI · (A+B)

Group II: fII · C fII ·D fII · (C +D)
Total: fI ·A+ fII · C fI ·B + fII ·D fI · (A+B) + fII · (C +D)

The table has six variables, and we don’t know any of them! But we do know four of the
products.

We can compute the relative probability and the odds ratio:

(
Relative

Probability

)
=

(
fIA

fIA+fIB

)
(

fIIC
fIIC+fIID

) =

(
A

A+B

)
(

C
C+D

) (13)

(
Odds
Ratio

)
=

(
fIA
fIB

)
(

fIIC
fIID

) =

(
A
B

)(
C
D

) (14)

So far, so good. . .

Now consider a retrospective study. This time, instead of sampling the groups by row, we
are sampling the groups by column. We are sampling some fraction, fX , of those subjects
with outcome X, and another fraction, fY , of those with outcome Y. Typically (but not
necessarily), for rare diseases, fX is quite large (we look at a sizable fraction of reported
cases), while fY is very, very small (we consider a tiny sliver of the whole population to be
used as a control group). The data we have are

Outcome X Outcome Y Total
Group I: fX ·A fY ·B fX ·A+ fY ·B

Group II: fX · C fY ·D fX · C + fY ·D
Total: fX · (A+ C) fY · (B +D) fX · (A+ C) + fY · (B +D)

Incidentally, retrospective studies are often also called case-control studies. The cases are
those with a disease, and the controls are those without it.

Again, we have six variables, of which we know none. But we do know four products.
When we blindly compute a relative probability. . .
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 Incorrect
Relative

Probability

 =

(
fXA

fXA+fY B

)
(

fXC
fXC+fY D

) 6=
(

A
A+B

)
(

C
C+D

) (15)

. . . we see the result is incorrect. However, the odds ratio ‘magically’ works:

(
Odds
Ratio

)
=

(
fXA
fY B

)
(
fXC
fY D

) =

(
A
B

)(
C
D

) (16)

Note that in the middle expression above, the numerator is not the correct odds of outcome
X to outcome Y. However, due to the cancellation of the fractions, the computed ratio is
still correct. It is because we are unable to cancel the fractions when computing the relative
probability that we don’t obtain the correct result there.

Now we are in a position to understand why statisticians like to use odds ratios. It is a
consistent quantity that works for all of the experimental designs considered: experimental,
prospective, retrospective, and cross-sectional. That said, it is possible to compute CIs for
relative probabilities in experimental, prospective and cross-sectional studies; if you are
interested in doing so, you may want to download the epitools package for R.

Recall that for rare diseases, the odds are approximately the same as the probability. So,
for rare diseases, as a bonus, you can use the odds ratio from a retrospective study as a
good approximation for a relative probability (aka relative risk).

Now let us look at our retrospective study’s contingency table again, and run our Fisher
test.

ct <- matrix(c(40, 10, 25, 25), ncol = 2)

fisher.test(ct)

##

## Fisher's Exact Test for Count Data

##

## data: ct

## p-value = 0.003052

## alternative hypothesis: true odds ratio is not equal to 1

## 95 percent confidence interval:

## 1.523467 10.866865

## sample estimates:

## odds ratio

## 3.941898
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With only one hundred subjects, we have a statistically significant result. We also see that
the odds ratio is close to the relative risk (BTW: in this example, the disease is not all that
rare in our hypothetical population; diseases are often measured in incidents per 100,000
or million). Finally, note that the CI is about as wide as a prospective study with 4,000
subjects.

One of the principle advantages of a retrospective study is that they can be performed
relatively quickly, since you don’t need to select subjects and then wait for nature to run
its course. For diseases with a long incubation period, this is a critical concern. They can
often be performed by inspection of medical records (although there are assumptions that
come into play).

As you might imagine, you can also design and perform matched pairs case-control stud-
ies. In these studies, the controls are selected to be similar to the cases in variables that
are unrelated to the groupings. In our sausage plant example, for each patient that has
the disease (cases), we would select a control from our population that has a similar age,
weight, household income, kind of pet, etc. Except to state that these studies have addi-
tional statistical power over grouped case-control studies, we won’t go into the details of
experimental design or analysis of results here (you don’t use contingency tables to analyze
the results, as it masks the extra information inherent in the matched pairs).

Again, always remain aware that relative risk alone tells you nothing of the prevalence of
outcomes. If someone tells you that you are sixteen times more likely to contract vCJD
from eating beef if you vacation in the UK instead of France (vCJD outbreaks in the UK
were a big deal in the ’90s), you might consider altering your travel plans. Now consider
that the odds of contracting vCJD were estimated at 5 in 10,000,000 for dining in the
UK for a month, vs. 3 in 100,000,000 for dining in France for a month. Finally, consider
that the odds of dying in a motor vehicle accident are roughly 1.4 deaths per 100,000,000
miles travelled. This implies that your round trip taxi ride to Newark Airport from the
Medical College is a bit more risky than your exposure to vCJD would have been in the
UK. This is not to say that we shouldn’t protect our food supply (left unchecked, the odds
may have gotten a lot worse) or avoid risky behaviors, but it is important to keep things
in perspective.

6 Further Reading

Harvey Motulsky’s excellent book, Intuitive Biostatistics, has been the inspiration for much
of the material in this section. See. . .
https://www.amazon.com/Intuitive-Biostatistics-Nonmathematical-Statistical-Thinking/dp/0190643560
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