
Probability Density Functions and 
the Normal Distribution

Quantitative Understanding in Biology, 1.2



1. Discrete Probability Distributions



1.1. The Binomial Distribution



You’ve decided to flip a coin. What’s the 
probability the coin will come up heads? 
Tails? What about heads 10 times in a 
row? What about heads, then, tails, then 
head again?

Question:



Proposition:

You don’t need to flip any coins. If 
your coin is fair, coin flips follow the 
binomial distribution.



A probability distribution function is 
a function that relates an event to 

the probability of that event.



If the events are discrete (i.e. they 
correspond to a set of specific numbers 
or specific “states”), we describe it with 

a probability mass function.
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[R Example] 

To be added to notes. See code on 
next slide.



# ROLL A FAIR 6-SIDED DIE 
sample(1:6, 4, replace=TRUE) 

# ROLL AN UNFAIR 5-SIDED DIE 
sample(1:5, 4, replace=TRUE, prob=c(0.1, 0.3, 0.4, 0.05, 0.05)) 

# SAMPLE FROM A SET OF COLORS 
sample(c("red", "blue", "green", "white", "black"), 4, 

replace=TRUE, prob=c(0.1, 0.3, 0.4, 0.05, 0.05))



Proposition:

You don’t need to flip any coins. If 
your coin is fair, coin flips follow the 
binomial distribution.
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x = failure 1− psuccess
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p x( ) = x = heads 0.5
x = tails 0.5
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What about multiple coin flips?

Question:



If you are fairly flipping a fair coin, 
each coin flip is independent and 
identically distributed, also known 

as iid. 



p heads,heads,tails( ) = p heads( ) p heads( ) p tails( )

Independent	
  Fair	
  Coin	
  Flips



p # flips = n( ) = 0.5n
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When you sample a binomial 
distribution multiple times, you are 

performing a Bernoulli trial.



We can perform Bernoulli trials in R



[R Example] 

See notes.



Often it is useful to calculate 
cumulative probabilities; for 

example, the probability of 7 or 
more heads when you flip 10 coins.



P ≤ # successes, # trials( ) = p successes = i,trials = # trials( )
i=0

# successes

∑
P ≥ # successes, # trials( ) = 1− P ≤ # successes, # trials( )



[R Example] 

See notes.



1.2. The Poisson Distribution



[R Example] 

See notes.



The Poisson distribution describes 
the probability of a certain number 
of events occurring within a given 

time interval.



p # events = k( ) = λ ke−λ

k!

The	
  Poisson	
  Distribution





1.3. The Geometric Distribution



You flipped heads. How many tails 
will you flip before you flip heads 

again? The Geometric distribution 
describes the probability of a given 
“waiting time” between successes.



p wait = k( ) = psuccess 1− psuccess( )k

The	
  Geometric	
  Distribution





[R Example] 

See notes.



1.3. Uniform Distributions
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n
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The	
  Uniform	
  Distribution



2. Continuous Probability 
Distributions



If the events correspond to real 
numbers, we describe it with a 

probability density function.
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2.1. The Uniform Distribution



The Uniform distribution defines an 
interval in which the probability 

density is uniform. Outside of this 
interval, the probability is 0.
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[R Example] 

See notes.



2.2. The Exponential Distribution



f x( ) = λe−λx

The	
  Exponential	
  Distribution





[R Example] 

See notes.



2.3. The Normal Distribution





f x( ) = e
−
x−µ( )
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The	
  Normal	
  Distribution





[R Example] 

See notes.



3. Central Limit Theorem



If you measure the mean of a 
distribution many, many times, 

those means will tend to become 
normally distributed.





Central Limit Theorem implies: 
1. If you sample enough, your 

estimate of the mean will converge 
to the true mean. 

2. If your measurement is the 
average of many independent 

processes, it will tend to be normally 
distributed. 



Central Limit Theorem implies: 
1. If you sample enough, your 

estimate of the mean will converge 
to the true mean. 

2. If your measurement is the 
average of many independent 

processes, it will tend to be normally 
distributed. 



Central Limit Theorem implies: 
1. If you sample enough, your 

estimate of the mean will converge 
to the true mean. 

2. If your measurement is the 
average of many independent 

processes, it will tend to be normally 
distributed. 



Question:

So you have some data. What should 
I do with it?



Step 1. Test for normality. 



Step 1.1. Look at your data. 



One of the easiest ways to “look at 
your data” is to make a Q-Q plot.







[R Example] 

See notes.



Step 1.2. Do a statistical test. 



In the Kolmogorov-Smirnov test, 
you estimate the probability that 
your data comes from the normal 

distribution from the distance 
between the two cumulative 

distribution functions. 





[R Example #8] 

See notes.



Homework: Generate Q-Q plots


