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Introduction
In the past decade, deep sequencing has emerged as a power­
ful alternative to microarrays for the high-throughput profil­
ing of gene expression. Comparing with microarrays, RNA 
sequencing (RNA-seq) possesses a number of technological 
advantages such as a wider dynamic range and the freedom 
from predesigned probes.1–3 It also comes with a unique data 
feature as discrete sequencing reads. In order to account 
for this unique data feature, statistical methodologies and 
computational algorithms have been developed based on 
various data distributional assumptions such as Poisson, nega­
tive binomial, beta binomial, (full or empirical) Bayesian, 
and nonparametric.4–16,

For researchers who are new to the analysis of RNA-seq 
data, in this paper we provide an introductory overview of the 
methods and software available for the differential expres­
sion analysis (DEA) of RNA-seq data when the analysis 
goal is to identify genes that are relevant to a disease such 
as cancer.1,17,18 In addition, for those who are interested in 
the statistical aspects of these methods, we also provide 
an overview of their parameter estimation algorithms and 
hypothesis testing strategies. The overview of these statistical  

aspects in our paper provides a unique contribution to the 
review literature on RNA-seq DEA methods.3,18–23 For read­
ers who are interested in a performance comparison of RNA-
seq DEA methods, they can refer to a large body of such 
papers in the literature.20–23

The rest of the paper is organized as follows. In the 
Notation and Normalization Methods section, we intro­
duce the unified notations used for the methods reviewed 
in our paper and touch on the normalization methods 
typically used to preprocess RNA-seq data before DEA. 
In the Statistical Modeling of RNA-seq Data section, we 
review the statistical modeling RNA-seq DEA catego­
rized by the distributional assumptions such as Poisson,4–6 
negative binomial,7–10 beta binomial,11,12 Bayesian,13,14 and 
nonparametric.15,16 All reviewed methods directly work 
with gene-level count data for DEA and have available R 
packages. For interested readers with advanced statistical 
knowledge, the parameter estimation algorithm for each 
method is presented separately in a text box, and the typi­
cal statistical testing frameworks that have been proposed 
for RNA-seq DEA are reviewed in the Statistical Testing 
section. Finally, computational tools implemented for the 
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reviewed methods are summarized in Table 2. We note that 
the methods reviewed in this paper are not an exhaustive 
collection of available methods in the literature. Rather, we 
reviewed a list of most commonly used categories of model­
ing assumptions and included a few representative methods 
for each category, to help researchers who are new to the 
field orientated and started in the still evolving literature 
on this topic.

Notation and Normalization Methods
Notation. RNA-seq data for G genes and N samples 

can be described by a G × N matrix Y. Each entry ygi (g = 1, 
…, G, i = 1, …, N) represents the count of sequencing reads 
for gene g in sample i. For a given g and i, ygi is a nonnega­
tive integer representing the number of reads mapped to gene 
g in sample i. For succinctness, we also use notations “⋅” for  
summations, eg,  y y y yg gii

N
i gig

G

• •= =
= =∑ ∑1 1

and .
We use X to represent an N × P design matrix, where 

P is the number of covariates. For instance, xip can be an 
indicator variable of disease status, taking a value of 0 for a 
normal sample and a value of 1 for a tumor sample. When 
comparing K groups of samples, Ck represents the collec­
tion of indices of the samples in group k (k  =  1, …, K),  
that is, Ck  =  {i: xi  =  k}. Each sample can only belong to 
one group.

Normalization methods. Similar to microarray data, 
RNA-seq data are also prone to nonbiological effects due 
to the experimental process. Consequently, these effects 
need to be adjusted before any further data analysis.24  
One major source of nonbiological effects is sequencing 
depth, which can be adjusted by rescaling the sequenc­
ing counts with factors that mimic sequencing depth.25 
Reads per kilobase per million reads (RPKM) is a simple 
adjustment that considers gene counts standardized by the 
gene length and the total number of reads in each library 
as expression values.17,26 More sophisticated adjustment 
factors, including trimmed mean of M-values (TMM),27 
DESeq size factor,28 and quantile-based normalizations 
such as upper quartile normalization,18 are given in Table 1. 
Other sources of nonbiological effects for RNA-seq include 
gene length and GC-content,21,29 whose effects are typically 

assumed to be consistent across samples for a given gene 
and hence cancel out in the analysis of differential expres­
sion. Interested readers can look up available normalization 
methods adjusting for gene length and GC-content in the 
publications such as Risso et al.29, Benjamini and Speed,30 
and Hansen et al.31

Statistical Modeling of RNA-seq Data
Poisson. Overview. Models for read counts originated 

from the idea that each read is sampled independently 
from a pool of reads and hence the number of reads for a 
given gene follows a binomial distribution, which can be 
approximated by a Poisson distribution. Based on the Pois­
son model assumption for repeated sequencings of a sample, 
Marioni et al.17 proposed to use a log-linear model to model 
the mean difference between two samples and adopted the 
classical likelihood ratio test for calculating the P-values. 
Based on the same Poisson assumption, Bullard et al.18 pro­
posed to use two other test statistics, exact test statistics and 
score test statistics, in the generalized linear model (GLM) 
framework. Li et  al.6 proposed a method called Poisson-
Seq, which adapts a two-step procedure for fitting a Pois­
son model. The method first estimates sequencing depths 
using a Poisson goodness-of-fit statistic and then calculates 
a score statistic based on a log-linear model. In addition, 
Wang et al.4 developed an R package, DEGseq, to identify 
differentially expressed (DE) genes with an MA-plot-based 
approach. Langmead et al.5 incorporated cloud computing 
in their method called Myrna.

Modeling. In a Poisson model, one assumes that Ygi, the 
number of reads mapped to gene g in sample i, follows a 
Poisson distribution, ygi ∼ Poisson(µgi). µgi is the rate para­
meter for gene g in sample i, which equals both the mean 
and the variance of the read counts. The probability mass 
function is:

	
f y P Y y

ygi gi gi gi gi
gi
y

gi

gi

gi

( ) ( )
( )
!

 
−

µ µ
µ µ

= = =
exp 	 (3.1.1)

and E(Ygi) = µgi and Var(Ygi) = µgi. The association of µgi with 
the same sample group can be described by a log-linear model 
as follows:

	
log( ) log log ( ),µ β γgi i g gk

k

K

kd I i C= + + ∈
=
∑

1

	 (3.1.2)

where di represents the sequencing depth of sample i and 
dii

N =
=∑ 1

1
 is assumed for generality. Let βg be the expres­

sion level of gene g and γg be the association of gene g with 
the covariate. For hypothesis testing, γg1 = … = γgK = 0 indi­
cates that the expression of gene g is not associated with 
the sample group. In the case of two sample group com­
parison, if γg = 0, then gene g is not DE between the two 
sample groups.

Table 1. List of sequencing depth normalization methods and 
reference papers.

Methods Relevant 
References

RPKM Mortazavi et al.26

Upper-quartile, Median Bullard et al.18

TMM Robinson et al.7

DESeq Anders and Huber8

Quantile Bolstad et al.32
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Algorithm Overview 1: Li et al.’s6 PoissonSeq

Li and others proposed PoissonSeq that assumes the 
hypotheses as follows. Under the null hypothesis where 
genes and covariates are not relevant,

	 log log log ,µ βgi i gd= + � (3.1.a)

where di is the sequencing depth in sample i and βg is the expres­
sion of gene g. The model fit from Equation (3.1.a) is denoted 
as N gi

0( ) in later equations: N dgi i
0( ) = ( )+(exp log  log .βg( ))

Under the alternative hypothesis where genes and 
covariates, xi

* , are relevant,

	 log log log *µ β γgi i g g id x= + + � (3.1.b)

where xi
* would be I i Ck∈( ) when comparing two or multiple 

sample groups. The authors suggested using the maximum like­
lihood to estimate βg , as a result βg gy= .. However, instead of 
using the maximum likelihood estimate of the sequencing depth 
in sample i, the authors sought for a set of genes, denoted by S, 
that are not DE to estimate sequencing depth in sample i:

	
d

y

yi
g S gi

g S g

=
∈

∈

∑
∑ .

.� (3.1.c)

They then estimated which genes belong to S by a 
Poisson goodness-of-fit statistic, ie,

	
GOFg

gi i g

i gi

N y d y

d y
=

( )
=
∑

− .

.





2

1

.� (3.1.d)

S is set to be the genes whose GOFg values are in the 
(ε, 1 – ε) quantile of all GOFg values. Li and others used 
ε = 0.25 in their study.6

The objective is to test H0:

	 γg1 = …⋅ = γgK = 0,

and score statistics were proposed to perform the testing. 
For a two-group or multiple-group covariate, the score sta­
tistic for gene g is

	

i C gi gi

i C gik

K
k

k

y N

N
K

∈

∈=

( )



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0
2

0
2

1

1χ � (3.1.e)

With accumulating empirical data (especially with the data 
available for groups of multiple biological samples), researchers 
began to observe that in a group, the between-sample variation 
of sequencing reads for a gene often exceeds the mean.17,23,33 
This excessive variation that cannot be explained by the Poisson 
model is called overdispersion. Extensions of the classic Pois­
son model have been proposed in order to accommodate such 
overdispersion, including the two-stage Poisson models34 and 
the generalized Poisson model.35

Negative binomial. Overview. A class of models based on 
the negative binomial distribution assumption has been developed 
in order to accommodate the overdispersion among biological 
replicate data.8,9,33,36 Robinson and Smyth33 used the conditional 
maximum likelihood (CML) to estimate the dispersion param­
eter–a measure of the excessive variance that a Poisson model 
does not incorporate–when assuming a common dispersion 
parameter across genes. They compared the CML method with 
alternative estimation methods based on pseudolikelihood, quasi-
likelihood, and conditional inference.37–39 In a follow-up paper,36 
they also extended the model to allow for gene-specific dispersion 
parameters and proposed to estimate the dispersion parameters 
by maximizing a weighted conditional likelihood with empiri­
cal Bayesian approximation. Details of their method, edgeR, 
can be found in Robinson and Smyth.33,36 edgeRun is based on 
the same model as edgeR but it uses an unconditional exact test 
to achieve more power while paying the price of computational 

time.40 Anders and Huber8 proposed a method called DESeq 
also under the negative binomial assumption. They advocated 
the use of a robust estimate of normalization factors for the esti­
mation of dispersion parameter and a local regression to obtain 
smooth function for each group on the graphs of expected pro­
portions vs sample variances. DESeq2 was developed in the study 
by Love et  al.9 as a successor of DESeq. It employs a number 
of new modeling features, such as the use of a shrunken fold 
change and a shrunken dispersion estimation method, to further 
improve the model performance. Di and others10 proposed a 
method, NBPSeq, using a negative binomial power distribu­
tion instead of a regular negative binomial distribution. They 

hypothesized that E Y Var Ygi gi gi gi gi( ) = ( ) = +( )−µ µ φµα, ,1 1  and 

φ is common across genes while α helps to accommodate the  
overdispersion. φ and α are estimated by maximizing condi­
tional log-likelihood,41 conditional on the total gene counts 
for each gene g. An exact test modified for negative binomial 
power distribution is used for hypothesis testing. More details 
can be found in the study by Di et al.10

Modeling. The model setup for negative binomial is to 
assume ygi ∼ negative binomial (µgi, φg). The dispersion parameter, 
φg, accounts for the sample-to-sample variability, which is usually 
assumed to be common across samples. There are various estima­
tion methods for this model assumption. More specifically, the 
negative binomial probability mass function is written as
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where E(Ygi) = µgi and Var Ygi gi g gi( ) = +µ φ µ2 . Hypothesis test­
ing is set up as H0: no difference either between the expected 
normalized expression of gene g in groups or between the pro­
portion of reads that are gene g in groups.

Algorithm Overview 2: Overdispersion

Then,

	

P y P y f d

y d
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One substitutes back µgi, ygi, α = φg
–1, and β = µgiφg, 

a gamma–Poisson mixture can be viewed as a negative 
binomial, see Equation (3.2.1).

Negative binomial can be derived as a gamma–Poisson 
mixture model (subscripts g’s and i ’s are omitted for brev­
ity), under the assumption that technical replicates follow 
a Poisson distribution, and biological replicates follow a 
gamma distribution, with the latter accommodating the 
overdispersion observed in empirical data.

	

y gamma

P y
y

f

y

∼ ∼

 −

−

Poisson( ), ( , )

( ) exp( )
!
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µ µ α β

µ µ µ
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=
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Algorithm Overview 3: Robinson and Smyth’s33,36 edgeR

In edgeR, µgi = miλgk(i) where mi is the ith library size and 
λ λgk i gii

Ck
( ) =

=∑ 1
 represents the proportion of the total reads 

that is gene g in group k and λgi is the proportion of the total 
reads that is gene g in sample i.

Under the assumption of gene-wise (or tag-wise in the 
original paper) dispersion, φg is estimated by maximizing a 
weighted conditional log-likelihood, WL(φg):

	 WL l lg g g C g( ) ( ) ( )φ φ α φ= + � (3.2.a)

where α is the weight given to the common likelihood, lC; 
the maximum estimator of WL(φg) is denoted by φ g

WL. An α 
has to be chosen such that φ g

WL coincides with an empirical 

Bayesian solution, φ g
B , the Bayesian posterior mean estima­

tor of φg where φ φ φ τ φ

g g g gN N ∼ ∼( , )2 and  ( , )φ τ0 0
2  for 

g  =  1, …, G. The approximation method is selected as a 
direct estimate of φg is difficult because of the lack of a con­
jugate prior for φ in negative binomial model. Details are 
given in the study by Robinson and Smyth.33

In the study by Robinson and Smyth,36 the overdisper­
sion parameter is assumed to be common across all genes 
(ie, φg = φ). To estimate the shared dispersion parameter 
with and without equal library size, the authors proposed 
to use the CML and quantile-adjusted CML (qCML) 
as follows.

In a special case where mi = m for i ∈ Ck where Ck = {i: 
k(i) = k}, ygi ∼ negative binomial (µgi = mλgk, φ) in group k  

and Ygi ’s evidently become identically distributed, and the 
maximum likelihood estimator (MLE) λgk i( ) becomes 

y

m
gii C

ii C

k

k

∈

∈

∑
∑

 in group k. CML function for dispersion φ given 

z yk kii
nk=
=∑ 1

 was proposed. The function is as follows:

l y

n

C g
g
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K
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( ) l ( ) [ log ( )

log (
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1
1

Γ

Γ
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log ( ) log ( )]− −− −Γ Γz n nk k k+ φ φ1 1

� (3.2.b)

In the case of different mi in group k, the MLE of 
λgk(i) depends on φ (ie, maximum likelihood estimation 
of the two parameters proceeds jointly). As a result, an 
approximate approach called qCML was proposed to 
equate the library sizes. The quantile-adjusted pseudo­
data supposedly allows one to use a common likelihood 
lc(φ) to estimate an accurate estimate of φ. Specifically, 
let m mi

N
i

N* ( )= =Π 1
1 , where m* is the geometric mean of the 

library sizes. Then, the observed data could be adjusted as 
if they were all sampled as identically distributed negative 
binomial (m*λ, φ).

Hypothesis testing is set up as H0: λg1 = λg2, in other 
words, no difference in proportion of gene g in samples 
between group 1 and group 2.
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Algorithm Overview 4: Anders and Huber’s8 DESeq

Algorithm Overview 5: Love et al.’s9 DESeq2

The read count ygi is modeled by a GLM of negative bino­
mial distribution with a log link:

	
log( )λ βgi ip gp

p

P
x=

=
∑

1

� (3.2.c)

The mean µgi is the proportion of reads for gene 
g in sample i, λgk(i), scaled by a normalization factor, mi. 
The variance σ gi

2  is µ νgi i gk im+ 2
( ), where νgk(i) is assumed 

to be a per gene raw variance, a smoothing function of λg 
and k. The use of the smoothing function can help stabi­
lize the variance estimates especially when the number of 
samples is small. For the estimation of the normalization 
factor (which is referred to as the size factor by Anders and 
Huber), mi, for each sample, the authors noted that highly 
DE genes are more likely to be influential on total count 
and so the median of the ratios of counts should be used 
for more robustness:

	

m
y

y
i i

gi

gv
v

N N =




=

∏
median

1

1/
� (3.2.d)

Since λgk(i) is proportional to the expected value of the 
unknown proportion from gene g in group k, it is estimated 

by the average of counts from all samples in group k with a 
common scale.

	
λ



gk i
k

gi

ii k i kM
y

m( )
: ( )

,=
=

∑1 � (3.2.e)

where Mk is the total number of replicates for group k. The 
sample variances with the common scale are calculated as:

	
w

M
y

mgk
k
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i
gk i
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In the case of a sufficiently large number of Mk, one 
can see wgk  –  zgk as the unbiased estimator of the raw 
variance νgk. In the case of a small number of Mk, local 
regression for a smooth function wk(λ) on the graph of 
( , )( )λgk i gkw  was suggested so that w zk gk i gk( )( )λ −  would be 
the estimate for the raw variance. More details are in the 
study by Anders and Huber.8

DESeq2 allows the normalization factors to be gene specific 
(mgi), rather than being fixed across genes (mi). The estimation 
of mgi is implemented in their new R packages.9

When modeling dispersion parameters, a large varia­
tion in estimates usually arises because of small sample 
sizes. DESeq2 proposed to pool genes with similar average 
expression together for the estimation of dispersions. To do 
this, one first separately estimates dispersion with maximum 
likelihood. Then, one identifies a location parameter for 
the distribution of the estimates by fitting a smooth curve 
dependent on average normalized expressions, before finally 
shrinking gene-specific dispersions to the fitted curve using 
an empirical Bayesian approach. The authors stated that this 
procedure is more superior than DESeq.

In order to avoid identifying differential expressions in 
genes of small average expression, fold change estimation is 
shrunken toward 0 for genes with insufficient information 
by employing an empirical Bayesian shrinkage. The proce­
dure is as follows: (1) obtain the maximum likelihood esti­
mates for the log fold changes from the GLM fit, then (2) fit 
a normal distribution with mean 0 to the estimates, and (3) 
use that as the prior for a second GLM fit. The maximum 
a posterior and the standard error for each estimate are the 

products of this procedure and will be used for the calcula­
tion of Wald statistics for DEA.

DESeq2 computes a threshold, η, to filter genes based 
on their average normalized expressions. The threshold is 
calculated for maximizing the number of genes with a user-
defined false discovery rate. The authors claimed that this 
filtering step effectively controls the power of detecting DE 
genes. The null hypothesis becomes |βgp| # η where βgp is the 
shrunken log fold change.

Finally, the method provides a way to diagnose outli­
ers using the Cook’s distance from the GLM within each 
gene, Cd. Samples are flagged with Cd $99% quantile of an 
F distribution with degrees of freedom as the number of 
parameter, P, and the difference in the number of samples and 
the number of parameter, N – P. When there is a large num­
ber of replicates available, influential data can be removed 
without removing the whole gene; however, when there is a 
small number of replicates, the entire gene with influential 
points should be removed from the analysis to preclude bias. 
More details on DESeq2’s features can be found in the study 
by Love et al.9 In conclusion, DESeq2 is recommended by 
its authors as an improved solution to perform differential 
analysis because it adopts many competitive features.
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Beta binomial. Overview. A beta-binomial model is  
another alternative distribution to accommodate overdisper­
sion.11,12,42 The beta-binomial distribution has been used in 
the study by Baggerly et  al.11 to account for both between-
library and within-library variations. The authors assumed 
that the true proportion of gene g within a library i, θgi, is  
library-specific and follows a beta distribution: θgi ∼ Beta(α, β),  
and that the count Ygi given θgi follows binomial (mi, θi). Zhou 
et al.12 proposed a method, BBSeq, which also assumes a beta-
binomial distribution and models the proportions of gene g 
within sample i with a logistic regression. To estimate overdis­
persion parameters, BBSeq either treats the parameter as free 
and maximizing likelihood directly, or estimates the parameter 
through modeling the mean-overdispersion relationship.

Modeling. In a beta-binomial model, ygi is converted 
from the count of gene g in sample i, to proportion, θgi where 

θ =
∑

 gi
gi

gi

y
y

. The model is constructed as:

	

.
.

.

( )
logit( )) log ,

( )
g

g g
g

E
E

E

 
= = − 1

θ
θ β

θ
X 	 (3.3.1)

where βg is a vector of the regression coefficients for sample cova­
riates and is the parameter for hypothesis testing; θg. is a vector 
consisting of the proportion of gene g for sample i through N. 
With the beta-binomial distribution, we are no longer working 
with a log link but a logit link. θgi ∼ Beta with E(θgi) =  logit–1 

(X βg) and var(θgi) = φgE(θgi)(1 – E(θgi)), where φg is the dispersion 
parameter. The hypothesis test is constructed as H0 : βgC1

 = … = 
βgCK

, where βgCK
 denotes the estimated coefficient of the indica­

tor variable with 1 for samples in group k and 0 otherwise.
Bayesian and empirical Bayesian. Overview. RNA-

seq DEA can be modeled in Bayesian framework using 
various parametric and nonparametric priors. Van de Wiel 
et al.13 proposed a Bayesian method, ShrinkSeq, which either 
assumes an informative prior for the overdispersion such as 
the Dirac–Gaussian prior or estimates one with the empirical 
Bayesian approach. An empirical Bayesian approach differs 
from a fully Bayesian approach in that it borrows informa­
tion from data to elicit priors for overdispersion param­
eters. For estimating posteriors, Van de Wiel and others13  
adapted the use of integrated nested Laplace approxima­
tions, a method that only considers marginal posteriors, but 

adds a direct maximization of marginal likelihood to allow 
information sharing from joint posteriors. They further sug­
gested that the use of informative priors for shrinkage, as 
in ShrinkSeq, can ensure stability and accommodate multi­
plicity correction. They also suggested that shrinkage should 
be applied not only to overdispersion parameters but also 
to the regression coefficient parameters. baySeq, proposed 
by Hardcastle and Kelly,14 constructs the data with tuples 
grouping genes together based on the study of interest. The 
distribution of a tuple shares the parameters of some prior 
distribution so that one can consider many hypotheses for 
testing beyond two group comparison. The method assumes 
a negative binomial distribution from the data. baySeq first 
estimates the empirical distribution on the set of parameters 
for null and alternative models with the quasi-likelihood 
approach. Then, it estimates the prior probabilities starting 
from a prior followed by an iterative process updating the 
priors until convergence. The authors suggested using a log 
posterior probability ratio of DE for DEA and noted that 
the posterior probability of DE for each individual model 
can be conveniently summed up for hypothesis testing.

Modeling. A Bayesian GLM for RNA-seq can be set as:

	
Y Fgi

d
gi g

= µ γ, , 	 (3.4.1)

where γg is a vector of parameters not in the regression. The 
model is in fact flexible in that F can be negative binomial 
or other distributions. Suppose F follows a negative binomial 
distribution, then ygi ∼ Poisson(µgi); µgi follows a gamma: µgi ∼ 
Gamma(eηgi, γg), where ηgi and γg are hyperparameters and 

.
P

gi g g gp ip
p

η β β
=

= = + ∑0
1

βX x  xip is the value of the pth covari­

ate for sample i, such as βg1 in a two-group comparison. With 
g(⋅) as a link function, µgi = g–1(ηgi). The conditional posterior 
distribution for β is proportional with its prior:

	
exp( )( , ) ( )
exp( )

gi

gi g

y

yg giP y P γγ + ∝ Π
+1

ββ β
β

X
X

	 (3.4.2)

Each parameter has its respective informative prior and 
one has to specify priors conditional on the model of interest 
as well as the prior itself to reach the posterior probability. For 
testing, a null hypothesis of βg # prior under the null is used.

Algorithm Overview 6: Van de Wiel et al.’s13 ShrinkSeq

ShrinkSeq assumes that α is the unknown hyperparameter 
from a collection of all unknown hyperparameter vectors A. 
It uses a direct maximization of the marginal likelihood 
method for the estimation of A; this method is a modified 
version of INLA.43 The procedure of finding α is shown 
below and is said to be analogous to the EM algorithm:

1.	 Initiate l = 0 and ( )
b
0α  for b = 1, …, B.

2.	 Use INLA to estimate posteriors ( )lAπ  (θ | Yg).
3.	 Obtain ( )l

b
+1α  for b = 1, …, B with ML′.

4.	 Iterate from step 2 until convergence.
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Notes: let b be the number of informative priors and 
( )l
bα  be the bth element of A(l) at iteration l; let ( )lAπ  be the 

posterior of θg condition on data Yg with A(l) as the current  

estimate of A. ML′ is ( )
α απ′ +

=
= ∑ ( )

ML ,
,argmax log( ( )),l

S
l

s A
s

z1

1

α   

where this is the prior log-likelihood at ( )lAz  and s is a large 
independent sample set from π θA l( ) ( );

EmpBayes  ML′ has the same 
mechanism as the maximum likelihood.

Dirac–Gaussian and Gaussian–Dirac–Gaussian 
mixture priors:

	 π β δ β τ( ) ( ) ( ; , ),= +p p N0 0 0
21 0− � (3.4.a)

	 π β β µ τ δ β µ τ( ) ( ; , ) ( ; , ),= + +p N p p N− − −1 1 1
2

0 0 1 1 1
2 �(3.4.b)

The subscripts of p, ie, –1, 0, and 1, indicate the loca­
tions. For example, Dirac mass on 0 is denoted as δ0. Con­
sidering the p as probability where p–1, p0, and p1 sum up 
to 1, then p0 = 1 – p–1 – p1. µ−1 , 0, µ1 . 0. Priors with 
positive mass on zero were intentionally selected because it 
reflects the non-DE condition. For more details on priors, 
please refer to the study by Van de Wiel et al.13

Algorithm Overview 7: Hardcastle and Kelly’s14 baySeq

The tuple system in baySeq is as follows. Let a model be 
denoted as M. E refers to a set of models described by the 
data, {E1… El}. κ represents the set of parameters for each 
model, M, ie, {θ1 … θl}. Let q be the index of each under­
lying distribution for model 1, …,l. An example would be 
that samples in groups 1, 2, and 3 (C1, C2, C3) are grouped 
together in a way that groups 1 and 2 are equivalently 
distributed and group 3  stands alone: M = {Ai∈C1

,Ai∈C2
}, 

{Ai∈C3
} where A is the sample. Dt is the data in tuple 

t y y y m m mt it n t i nt t
: {{ },{ }}1 1… … … … , which is the count 

in tuple t for sample i, mi is the library size. The posterior 
probability of model given data is:

	
P M D

P D M P M

P Dt
t

t
( )

( ) ( )

( )



= � (3.4.c)

where
	

P D M P D M P M dt t( ) ( ) ( ),  = ∫ κ κ κ � (3.4.d)

Suppose that a sample Ai is in the set Eq where the 
count of this sample at a particular tuple t is yit, which 

follows a negative binomial(µit, ϕq) (θq = (λq, ϕq)). The mean 
count µit is a product of the library size scaling factor, mi, 
and the proportion of reads in set Eq, λq. We have:

	

P D M P y m

y
y

t it i q

it q

q it it q

( , ) ( , )

( )
( ) ( )

 

−

−

κ =

=
+

+ +



θ
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φ µ φ
Γ

Γ Γ

1

1 1
1

1





 +











φ
µ

φ µ

q it

it

q it

y−

−

1

1

� (3.4.e)

baySeq first estimates the empirical distribution on the set of 
parameters for null and alternative models through sampling 
from a negative binomial distribution and a quasi-likelihood 
approach.38 Then, it estimates the prior probabilities starting 
from a prior followed by an iterative process updating the pri­
ors until convergence. For detailed steps, please refer Hard­
castle and Kelly.14 Hypothesis testing can be easily denoted 
with the tuple system, for instance a two-group case,

	

H A A

H A A
i C i C

i C i C

0 1 2

1 2

( }

( } { }
,non-DE):{

DE):{
∈ ∈

∈ ∈a and

Nonparametric. Overview. In this section, we discuss two 
nonparametric methods for RNA-seq DEA by Li and Tib­
shirani15 and Tarazona et al.16 In SAMseq, Li and Tibshirani15 
calculated a modified two-sample Wilcoxon statistic using 
the ranked counts for two-group comparison.44 The authors 
proposed two resampling strategies for producing equal 
sequencing depths of the samples: downsampling and Pois­
son sampling, and also suggested that ties can be broken by 
inserting a small random number in  resampling. NOISeq by  

Tarazona et al.16 first used pseudo-counts corrected by the library 
size mk(i) under two conditions (K=2) to calculate log-ratio (M)  
and absolute value of difference (D). Then, a test statistic is 
derived from M and D with a null hypothesis of no differential 
expression; in other words, M and D are no different than ran­
dom variables either estimated from the real or simulated data.

Modeling. The two nonparametric methods discussed 
here are explained separately in the test boxes, as they each 
has a unique model setup. 

Algorithm Overview 8: Li and Tibshirani’s15 SAMseq

To use SAMseq, one ranks the counts of gene g across sam­
ples and denotes the ordered counts as y yg g N

′ ′
1 … . If needed, 

resampling strategy may be used to fulfill the requirement of 
equal sequencing depths of samples in Wilcoxon test.

In the case of a sufficient minimal sequencing depth, 
the authors proposed a downsampling strategy where one 
first identifies the smallest sequencing depth, denoted as 
mmin, where mmin  =  min(m1, …, mN) and keeps this list 
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of counts while resampling lists of counts for all other 
samples with the sequencing depth, mmin. Every count 
is randomly sampled with a success probability of mmin/
mi and failure probability of its complement, ie, the resa­
mpled count is

	
y y

m
mij ij

i

′






∼ binomial , .min � (3.5.a)

In the case of an insufficient minimal sequencing 
depth, Li and Tibshirani15 introduced Poisson sampling 
strategy, wherein they employed the geometric mean of the 
sequencing depths for all samples:

Algorithm Overview 9: Tarazona et al.’s16 NOISeq

	
y m

m
Nij

i
ij

′ ∼ Poisson( ),� (3.5.b)

where y ij
′  is resampled data and m m

i

N

i
N=

=
( ) ./Π

1

1  Small ran­
dom numbers are introduced into the resampling process to 
break ties, as well as multiple resampling to ensure stability. 
Poisson sampling is generally preferred based on the simula­
tion.15 In cases where mi is unknown, one could use normal­
ization methods to estimate. Differential expression of gene 
g is identified based on a comparison of the ranks of gene g 
between the two sample groups.

In NOISeq, for each ygk(i), the count of gene g in sample i 
from group k, the correction method for library size, mk(i), 
is the sum of counts over all genes for the ith sample repli­
cate in condition k. Let mk(i) be simplified as mi. One would 
work with pseudocounts (after normalization) formulated 
as: y y mgk i gk i i( ) ( ) /= × 106 .

With the pseudocounts, the log ratio (L) and the abso­
lute value of difference (D) are calculated. ygk is summarized 

over ith samples, a.k.a. 
 





y y L
y
ygk i C gi g

gC

gC
k

= =








∈∑ . log2

1

2

 

and D y yg gC gC= −  

1 2
, where C1 and C2 denote group 1 

and 2, respectively. Zero counts are replaced by 0.5 or by 
mid(0, normalized minimum expression) when calcu­
lating Lg. Samples with only zeros are dropped.

Null hypothesis: L and D values are no different than 
noise if no DE. Probability distribution for random vari­
ables L* and D* are either estimated from real data or simu­
lated data and are used for the noises. One then obtains the 
probability of DE as:

	

P DE y y

P DE L l D d

P L l D d

g gC gC

g g g g g

g

( )

( , )

( * , *

=

= = = =

= < <

1

1
1 2

 −



   

 

gg ) �
(3.5.c)

DEg equals 1 when gene g is DE. Note that log ratio is 
in absolute term because either direction indicates DE. See 
the study by Tarazona et al.16, for more details.

Statistical Testing
After performing parameter estimation for a statistical model, 
significance of differential expression can be assessed compar­
ing the expression of gene g among K groups. Assume that 
λgk(i) is the expression level of gene g in sample i belonging to 
sample group k. φg is the dispersion parameter. DE tests are 
proposed below for the null hypothesis (H0):

	 λg1 = … = λgk.

In parametric regime, one can employ classic log-
likelihood ratio test.

	
LR

l Y l Y
Fg

g g g g

g
K N K=

2 0

1

( ( , ) ( , ))
,

λ λ

φ

 



−
∼ − − 	 (4.1)

In absence of overdispersion, 

	 LR l Y l Y Kg g g g g= −2 10 2( ( , ) ( , )) ( )λ λ − ∼χ 	 (4.2)

where lg denotes the log-likelihood function for the gth 
gene; l Yg g( , )λ  and l Yg g( , )λ0  denote the MLE of biologi­
cal and experimental effects under the full model and null 
model, respectively.

An exact test for negative binomial, analogous to the 
Fisher’s exact test, is used by methods, such as edgeR and 
DESeq. By conditioning on the total sum, one can calculate 
the probability of observing counts as extreme or more extreme 
than what is really obtained, resulting in an exact P-value. Note 
that a sum of gene counts from all replicates in each group that 
is either too large or too small indicates a differential expres­
sion, so a two-sided test is used.

A score statistic is used by PoissonSeq, which tests for the 
significance of the association of gene g with expression of 
groups. In the context of gene count with unknown dispersion 
parameters, a score test is as follows:

	
S

y
v

Fg k

K

i C

g gi gi

g gi
K N K

k

= ∑ ∑
= ∈1

2

1

w ( )
( ) ,

−
∼ − −

µ

φ µ





	 (4.3)
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where wg is a known weight, µ gi  is estimated by MLE under 
the null hypothesis, and v gi( )µ  is the variance function 
of µgi.

Wilcoxon statistic is a rank-transformed version of 
t-statistics, used by the nonparametric method, SAMseq:

	
W r rg i C gi

k

= ∑
∈

− 0 , 	 (4.4)

where rgi is the rank of ygi across samples and r0  = 
( )( ) /( )∑ +∈I Ni Ck

1 2 (r0 is used to make E(Wg)  =  0). Wg . 0 
identifies that gene g is overly expressed in group k.

Under a Bayesian or empirical Bayesian framework, 
methods like baySeq use posterior likelihood of the DE model 
per gene to identify differential expression:

	
P M Y

P Y M P M

P YH g
g H H

g
( )

( ) ( )

( )
,

0

0 0


= 	 (4.5)

where M denotes a model. Posterior probability of DE to non-
DE ratio is often used.

The choice of a testing strategy is a decision that often 
depends on the chosen method and other factors such as sam­
ple size. With a small sample size, the large-sample approxi­
mations based on the Wald test, score test, and likelihood ratio 
test are questionable and an exact test is usually preferred.36 
We summarize testing strategies that are plausible for each 
method in Table 2.

Finally, almost all the methods we mentioned in this 
paper use standard approaches for multiple hypothesis correc­
tion to control false discoveries.45,46 PoissonSeq is an exception 
that builds its own estimation of false discovery rate (FDR) 
from a permutation test. Permutation test calculates a score test 
per gene, Sg, for H0g vs Hag, each time when the outcome is 
permuted. For B permutations, the same procedure is applied 
to calculate null statistics Sg

b0  for b = 1 ⋅ ⋅ ⋅ B. The permutation 
P-value is:

	
p

I S S
N Bg b

B

i

N g
b

g= ∑ ∑
> +

× += =1 1

0 1

1

{ }
	 (4.6)

For Bayesian methods, since posterior probabilities are 
computed, Bayesian FDR or local FDR are conveniently used. 
Local false discovery rate (lFDRg) is simply the posterior 
probability π0 g :

	 lFDR P M Y P P Pg H g= = +( ) /( ),
0 0 0 α

	 (4.7)

where P P Y dg g0 = =
−∞∫ ( ) ( ) ,λ λ π λ λ


 and P P Yg g1 = =
∞

∫ ( )λ λ


 
π ( ) ,λ λd and denotes prior. Bayesian false discovery rate 
(BFDR) is calculated as:

	

BFDR t
lFDR I t

I t

g
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g g

g

G

g

( )
{ }

{ }
.=

∑ × <

∑ <

=

=

1
0

1
0

π

π
	 (4.8)

Note that I{π0g , t} = I{π1g $ t} for small t of interest.

Conclusion
RNA-seq data analysis is a relatively new and rapidly growing 
research area. The statistical model used for sequencing 
data has been evolving. The first proposed Poisson distribu­
tion has become obsolete because it fails to accommodate 
commonly-observed overdispersion in RNA-seq data. In a 
parametric framework, the negative binomial distribution is the 
most common assumption for modeling the marginal distribu­
tion due to the technical and biological variations.8,9,33,36 Other 
available methods that account for overdispersions include 
the generalized Poisson distribution,35 negative binomial 
power distribution,10 and beta-binomial distribution,11,12 as 
well as nonparametric models15,16 and Bayesian methods.13,14 
Table 2 summarizes all the reviewed methods in this paper.

For readers who are interested in the performance evalu­
ation and method comparison of the available methods, they 
can refer to the original paper as well as the body of litera­
ture on this issue. For instance, in the study by Seyednasrollah 
et  al.22, DESeq has been recommended as one of the most 
robust methods and caution is advised when dealing with a 
small number of replicates regardless of which method is being 
used. Similarly, Soneson and Delorenzi21 also advise caution 
when interpreting results drawn from a small number of rep­
licates and show that SAMseq surpasses many other reviewed 
methods. In the study by Rapaport et al.23, DESeq, edgeR, and 
baySeq, which all assume a negative binomial model, have bet­
ter specificity, sensitivity, and control of false positive errors 
than other nonnegative binomial models. As the technol­
ogy continues to improve and the empirical data accumulate, 
more compelling statistical modeling for RNA-seq data can 
be expected.
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