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From DNA to phenotype

Epigenetics

Waddington’s definition of epigenetics

Epigenetics encompasses the molecular mechanisms by which the genes of
the genotype bring about phenotypic changes [Waddington, 1942].
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From DNA to phenotype

Epigenetics: understanding how the genetic code is
interpreted
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From DNA to phenotype

DNA does not occur naked in eukaryotic cells
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From DNA to phenotype

Chromatin = DNA + proteins + ncRNA

The most obvious function of chromatin is DNA compaction.
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From DNA to phenotype

DNA compaction
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From DNA to phenotype

DNA compaction

Example for relatively trivial compaction:
375 m (~1230 ft) of yarn packed into a ball of about 10 cm x 4 cm

(4”x1.6”) using simple coils
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Studying Chromatin

From DNA to phenotype: epigenetics

The current assumption is that the
chromatin structure is an essential
part of defining an individual cell’s
fate, i.e. by interacting tightly with
DNA and regulating access to it,
chromatin has a key role in how
transcription is achieved in a highly
time- and tissue-dependent manner.

“Understanding the chromatin structure can give a perspective of how a
certain mRNA expression state was reached and how a cell might advance.”

[Winter et al., 2015]
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Studying Chromatin

Chromatin signatures of regulatory regions
Trans-regulatory elements = DNA encoding transcription factors

I the actual effectors are proteins
Cis-regulatory elements (CRE) = non-protein-coding DNA that
regulates transcription of neighboring genes

I the effectors are thought to be (at least partially) the DNA sequences
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Studying Chromatin

NGS-based features of regulatory regions
Using NGS, we’ve catalogued distinct features of different CRE types.

transcription start site (TSS)
I lots of Pol II & associated

machinery
I H3K4me3, H3K27ac and

more
enhancers

I 100 bp to 1,000 bp
I enriched for H3K4me1 &

p300
I bound by TF
I weak Pol II activity

insulators
I enhancer blockers or barriers

preventing chromatin
condensation

I 300 bp to 2000 bp
I characterized by CTCF

binding and intra- and
inter-chromosomal
interactions

repressed chromatin
I H3K27me3 & DNA
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Studying Chromatin

Chromatin states are cell-type-specific
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Studying Chromatin

Chromatin states are cell-type-specific

Different
chromatin states
are also
characterized by
different
nucleosome
occupancies.
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Studying Chromatin

2 basic chromatin states based on nucleosome occupancy

For transcription to occur, the RNA Pol II machinery needs to access the
naked DNA strand, i.e. the chromatin needs to be made accessible
locally.
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Studying Chromatin

NGS techniques for studying chromatin and DNA
modifications

The majority of epigenomics data
entails profiles of nucleosome

occupancy, specific histone marks
and transcription factor binding.

These information are all inferred
based on which DNA sequences
we find over-represented in our

data set.
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Studying Chromatin

NGS techniques for studying chromatin and DNA
modifications

Basic concept

Enriching for DNA regions of interest and inferring their location
via NGS-based quantification.
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Studying Chromatin

NGS techniques for studying chromatin and DNA
modifications

Enriching for DNA regions of interest and inferring their location
via NGS-based quantification.
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Studying Chromatin

NGS approaches for epigenomics

DNA = more or less immutable
code
RNA = the code’s local read-out
“epigenome” = additional
molecules or chemical DNA
modifications that govern the
process of DNA-to-RNA
transcription
technically, epigenetics only refers
to heritable marks that influence
transcription [Ptashne, 2013]
in practice, epigenomics is often
used to describe all kinds of
aspects of transcription regulation,
including highly dynamic ones!
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ATAC-seq principles

Identifying accessible chromatin regions
Active CRE (promoters, gene bodies, enhancers, TFBS) are expected to be
accessible.

Open chromatin is identified via ATAC-, DNase-, MNase-seq (and more).
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ATAC-seq principles

Assay for transposase-accessible chromatin (ATAC)
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ATAC-seq principles

ATAC-seq profiles
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ATAC-seq principles

Interpretation of ATAC-seq data
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ATAC-seq principles

ATAC-seq profiles are typically population snapshots

ATAC-seq
profiles usually
represent the

average
accessibility of
a heterogeneous
collection of

single molecules.
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ATAC-seq principles

ATAC-seq profiles are typically population snapshots, but
scATAC-seq is possible

F. Dündar (ABC, WCM) Genomic enrichment strategies: ChIP-seq and ATAC-seq April 9, 2019 32 / 76



Processing ATAC-seq data

Processing ATAC-seq data

F. Dündar (ABC, WCM) Genomic enrichment strategies: ChIP-seq and ATAC-seq April 9, 2019 33 / 76



Processing ATAC-seq data
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Processing ATAC-seq data

Established ATAC-seq pipelines

ENCODE
I lots of QC scores and guidelines for identfying samples that

worked/failed
I somewhat cumbersome implementation

Tom Carroll’s R-based workflow
I mostly follows ENCODE’s guidelines
I every command is shown including some explanations about important

parameters
I R is not the best-suited environment for some of the steps (e.g. bigWig

generation)
Harvard FAS

I some steps of the ENCODE pipeline are re-worked/re-thought
I alternative peak caller (not yet peer-reviewed, but more

versatile/ATAC-seq-oriented than MACS2)
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Processing ATAC-seq data

Raw data processing: FASTQ to BAM

FastQC – the usual suspects: sequencing quality, duplications,
contaminations
adapter removal may be warranted

I PE sequencing will often lead to frequent adapter sequences for
ATAC-seq data because many fragments are shorter than 2x50bp

genome aligners for short reads, e.g. Bowtie2 or BWA
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Processing ATAC-seq data

Raw data QC: filtering the BAM files

The following reads are removed:
mitochondrial reads
discordantly “paired” reads
non-uniquely aligned reads
PCR duplicates
reads corresponding to
fragments < 40 bp (see slides
about fragment size
distributions)
reads overlapping with
blacklisted regions
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Processing ATAC-seq data

PCR duplicates are frequent – more so for low cell
numbers!

See Daley and Smith [2013] and their preseqR package for predicting library complexities.
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Processing ATAC-seq data

The dominant fragment size distribution signal in
ATAC-seq should reflect the nucleosome pattern
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Processing ATAC-seq data

ATAC-seq data contains multiple levels of information
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Processing ATAC-seq data

But MNase usually beats ATAC-seq in terms of resolution
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Processing ATAC-seq data

Examples of ATAC-seq frag. size distributions
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Processing ATAC-seq data

Blacklisted regions: regions with spurious signals

typically appear uniquely mappable
often found at specific types of repeats such as centromeres, telomeres and
satellite repeats
especially important to remove these regions before computing measures of
similarity

Blacklists were generated empirically by the (mod)ENCODE consortium:
http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/

bedtools intersect -abam reads.bam -b blacklisted.bed > filtered_reads.bam
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Processing ATAC-seq data

Checking the signal enrichment for ATAC-seq

fraction of reads in peaks (FRiP)
enrichments around active TSS
visual inspection (genome browser!)
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Processing ATAC-seq data

Checking the signal enrichment: generating coverage files

deepTools [Ramírez et al., 2016] offers the bamCoverage function that
is fairly versatile and flexible

I check out the documentation!
I 2 types of normalization to account for sequencing depth differences

RPGC (reads per genomic content) will divide the reads per bin by the
coverage (calculated based on effective genome size); this will make
different samples comparable to each other recommended
RPKM: division by total number of reads

bamCoverage --bam a.bam -o a.SeqDepthNorm.bw --binSize 10 \
--normalizeUsing RPGC --effectiveGenomeSize 2150570000 \
--ignoreForNormalization chrX –minFragmentLength 40
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Processing ATAC-seq data

Checking the signal enrichment: TSS focus

deepTools offers functions for
visualizations of the bigWig files
$ computeMatrix reference-point \
-S ATACseq.bigwig -R genes.bed \
--referencePoint TSS \
-a 2000 -b 2000 \ ## bp before &

# after refPoint
-out ATAC_TSS.tab.gz

$ plotHeatmap -m ATAC_TSS.tab.gz \
-out hm_ATAC.png \

--heatmapHeight 15 \
--refPointLabel center
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Processing ATAC-seq data

Checking the signal enrichment: peak calling

= identifying regions with higher read coverage than expected based on the
background

F. Dündar (ABC, WCM) Genomic enrichment strategies: ChIP-seq and ATAC-seq April 9, 2019 47 / 76



Processing ATAC-seq data

Checking the signal enrichment: peak calling
Starting from the BAM file:

1 generate a signal of fragment counts along the genome
2 identify regions of enrichment

3 assess significance of enrichment

We usually use MACS [Zhang et al., 2008]; mostly because it’s part of most pipelines, not
because it’s such a great tool (but it has proven itself to be fairly robust and useful).
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Processing ATAC-seq data

Peak calling

Identifying and assessing regions of enrichment with MACS
1 Sliding a window of length 2 x bandwidth (= half of estimated

sonication size) across genome and determine read counts
2 Retain windows with counts > MFOLD (fold-enrichment of

treatment/back-ground)
3 PEAKS: probability of an enrichment being stronger than expected

I H0: reads are randomly distributed throughout the genome following a
Poisson distribution

I Determine the background distribution (λ) by sliding a window of size 2
x fragment size across the background to estimate the local coverage

MACS2 callpeak -t pairedEnd.bam -f BAMPE --outdir path/to/output/ \
--name pairedEndPeakName -g 2.7e9

See Tom Carroll’s pipeline for detailed MACS2 commands.

The result of MACS is a BED file of regions with sign.
enrichments, i.e. peaks.
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Processing ATAC-seq data

Checking signal enrichments: FRiP

FRiP = reads in peaks
total reads

FRiP > 0.3 is optimal; FRiP > 0.2 acceptable by ENCODE standards.
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Processing ATAC-seq data

QC checklist ATAC-seq

fragments of 40 - 100 bp size should be over-represented
1/3 of the reads should fall into peaks (FRiP)
very sharp and not too broad enrichments around TSS of active genes
IGV snapshots: the signal should look sharp and high
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ChIP-seq principles

ChIP-seq principles
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ChIP-seq principles

NGS techniques for studying chromatin and DNA
modifications

Depending on the type of insights you’re interested in, there are different
ways of enrichment.

Table based on Friedman and Rando [2015]
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ChIP-seq principles

Identifying transcription factor binding sites with ChIP

The vast majority of TFBS has been found in regions of open chromatin.
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ChIP-seq principles

Extracting DNA sites bound by a TF of interest
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ChIP-seq principles

In contrast to ATAC-seq, nobody would say ChIP-seq was
“easy”

depends on antibodies
I expensive! (typically 1 vial per experiment)
I cross-reactivity
I lack of affinity/binding needs incredibly

optimized conditions
I signal-to-noise ratio will depend on how

abundantly the protein of interest binds to
DNA

sonication can be fickle and inherently favors
open chromatin regions
cross-linking is a frequent source of bias
takes 3-4 days to complete
requires lots of cells (1-10 mio)

See, for example, Jordán-Pla and Visa [2018] for how to
optimize ChIP experiments.

F. Dündar (ABC, WCM) Genomic enrichment strategies: ChIP-seq and ATAC-seq April 9, 2019 56 / 76



ChIP-seq principles

ChIP enrichments are often marginal and variable across
experiments
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ChIP-seq principles

Different types of ChIP’ed factors will yield different types
of signals
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ChIP-seq principles

ChIP experiment absolutely require an “input” control

= basically, the ChIP experiment without the antibody addition

Ideally, input samples should be done in parallel with the ChIP experiments; they
should also be sequenced at least as deeply or more deeply sequenced than the

ChIP samples.
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Processing of ChIP-seq data

Processing of ChIP-seq data
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Processing of ChIP-seq data

many basic processing steps are the same for ATAC- and ChIP-seq data, but some QC
scores differ
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Processing of ChIP-seq data

Peak calling: different ChIP’ed factors require different
peak callers
Identifying peaks for sharp, narrow, high enrichments is easy (–> MACS).
Assigning stats to broad enrichment is still an unsolved issue.
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Processing of ChIP-seq data

Peak calling: take input samples into consideration!

Consider the bioconductor package
GreyListChIP to define
cell-type-specific regions of input biases.
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Processing of ChIP-seq data

Signal check: fingerprints instead of FRiP

How well can signal & background be separated?
A very specific and strong ChIP enrichment will be indicated by a prominent and
steep rise of the cumulative sum towards the highest rank. This means that a big
chunk of reads from the ChIP sample is located in few bins which corresponds to
high, narrow enrichments typically seen for transcription factors.

## another deepTools function
$ plotFingerprint -b testFiles/*bam --labels H3K4me3 H3K4me1 H3K27me3 \

--plotFile fingerprints.png --outRawCounts fingerprints.tab

F. Dündar (ABC, WCM) Genomic enrichment strategies: ChIP-seq and ATAC-seq April 9, 2019 65 / 76



Processing of ChIP-seq data

Signal check: fingerprints instead of FRiP
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Processing of ChIP-seq data

Comparing different ChIP-seq experiments

comparing the levels of ChIP (and ATAC)-seq enrichments across
different conditions is more difficult than one would have hoped for
[Guertin et al., 2018]

I Steinhauser et al. [2016] did a comparison of differential ChIP-seq tools
I the winner tends to be the bioconductor package DiffBind, which is

basically a sophisticated wrapper around DESeq
relatively few efforts have been made towards understanding
ChIP-seq/ATAC-seq-specific data properties, but the general consensus
is that particularly ChIP-seq is awfully noisy and dependent on too
many experimental parameters

"Although we would ideally want to study the absolute levels of binding, we
have to accept the limitations of ChIP-seq [and ATAC-seq] and adapt by
designing experiments in such a way that meaningful conclusions can be
drawn from relative levels." [Meyer and Liu, 2014]
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