

Core Laboratories Center

Epigenomics Core Facility: "I have samples for sequencing", what does it mean?

Alicia Alonso, PhD. Director, Epigenomics Services Genomics and Epigenomics Core Facility Assistant Research Professor, Department of Hematology and Oncology

04022019-ICB students

Evolution of Sequencing Technologies

- Custom sequencing (targeted)
- Sequencing length: 300-1000bp
- Output: 384 independent samples at a time
- ABI Prism 375 (Applied Biosystems)

Evolution of Sequencing Technologies

- Generation of many millions of short reads to be sequenced in parallel (150-600bp)
- Speed of sequencing (compared to 1st generation)
- Cost of sequencing (lower per base)
- Output is detected directly (ie no electrophoresis)
- Output varies from 15M 400B "reads"
- Short reads are aligned to a previously sequenced genome
- Examples of 2nd generation competing technologies
 - Roche/454 (pyrosequencing extinct- up 1000bp, 1Gb)
 - Ion torrent (detects the Hydrogen ion released, change of pH-Life Technologies, 2010) 200-600bp, 10Gb (2-8 hours)
 - ABI/SOLID 35-75 bp 30Gb/run (each base is read 2x, high accuracy)
 - Illumina/Solexa sequencing: Sequencing by Synthesis SBS (50-250bp)

Evolution of Sequencing Technologies

SMRT : single molecule real time sequencing

- Pacific Biosciences: Sequel •
- Oxford Nanopore: MinION, ٠ **PromethION**
- Sequencing length: up to 100kb ٠
- Allows "de novo" mapping
- Sequencing of modifications of the bases (methylation for example)

в

Processing: base calls are made directly from the signal intensity using Illumina's RTA software, using Casava 2.1.7 raw reads and quality scores are generated.

Clusters: varies with the sequencer used and the chemistry used A HiSeq 2500 (our most common sequencing run) gives ~ 800k/mm2

reads: total number of clusters X read length
 for SR50, our most common length ~280M reads, 7GB per lane, 8 lanes

Illumina Technology continues improving!

Efficient clustering

Illumina Technology continues improving!

Image 2

Result

Faster "sequencing" **4-Channel Chemistry** 2-Channel Chemistry G С G Т С T. Α Α Image 1 Image 1 Image 2

Т

G

Α

С

Image 3

Image 4

Result

Figure 2: Four-, Two-, and One-Channel Chemistry –Four-channel chemistry uses a mixture of nucleotides labeled with four different fluorescent dyes. Two-channel chemistry uses two different fluorescent dyes, and one-channel chemistry uses only one dye. The images are processed by image analysis software to determine nucleotide identity.

G

T.

Α

Sequencing System	iSeq	MiniSeq [≈]	MiSeq*	NextSeq®	HiSeq	HiSeq* X	NovaSeq*
					4000	Five/Ten	6000
Output per run	1.2 Gb	7.5 Gb	15 Gb	120 Gb	1.5 Tb	1.8 Tb	1 Tb - 6 Tb1
Instrument price	\$19.9K	\$49.5K	\$99K	\$275K	\$900K	\$6M ² /\$10M ²	\$985K
Clustering	patterned	random	random	random	random & patterned	random	patterned
Chemistry	1-color	4-color	4-color	2-color	4-color	4-color	2-color

Increasing throughput

Illumina Technology continues improving!

Illumina Technology continues improving, the need to MULTIPLEX!

• Coverage (or depth):

number of reads that are likely to be aligned at a given reference position

Coverage = <u>read length x number of reads</u> genome length (haploid)

• How many reads would one need to sequence ONE human genome at 30x coverage in a PE100 run?

number of reads = <u>30 x 3x10⁹</u> 200	450M reads
On a HiSeq 2500: two sequencing lanes	~\$5,000
On a HiSeq 4000: one sequencing lane	~\$2,500
On a Novaseq S4: 1/6 of a sequencing lane	~\$1,000

• Multiplexing: being able to physically pool libraries from different origins, sequence and then bioinformatically re-assign each library to its origin

For ChIPseq, 40M reads

http://epicore.med.cornell.edu/

Overview

The Epigenomics Core Facility of <u>Weill Cornell Medicine</u> provides an array of epigenomics and bioinformatics research resources and services that include:

- DNA methylation profiling [More]
- Protein-nucleic acid association [ChIP-Seq, ATAC-Seq]
- Single Cell RNA and Long Range DNA Sequencing [More]
- RNA-seq [More]
- Bioinformatics analysis [More]

Core resources and services include sample preparation services and data generation on the Illumina HiSeq 2500, MiSeq platforms and Sequenom MassArray platform.

Wet Lab Scientific Director Lab Manager Research Specialists

Research Technician

Dry Lab

Bioinformatics Director: Computational Biologist: Software Developers: Alicia Alonso, PhD Yushan Li Marisa Mariani, PhD Caroline Sheridan Yuan Xin

Doron Betel, PhD Piali Mukherjee Thadeous Kacmarczyk, PhD Simon Johnson

A project with the Epigenomics core includes

Sample Submission Tracking

ss Lab	iLab Operations	s Software						Searc	h cores and serv	ices	Go!
ations	Epigenomi	cs Core					@ W	eill Co	ornell N	ledicine	9
ilities mics Core				About	t Our Core Schedule Equipment	Request Servic	es View All Requests I	Reservations Peo	ple Reporting Billing	Gharge Entry Administ	istration
uests ds ires	Bioinformatics Sup	port 99. QC RNA 98. QC DNA 14. RNAseq_Si	ngleCell 13. RNAseq_Total_LowInput 12. RNAseq_L	Sequencing_Reque	est Summary	Int	cerna	l LI	MS		
orting hage groups groups core opple search	Searching within 02. RRBS: Results in this tab are restricted by Status, Keywords (<u>show details</u>) Please use the filter panels in the left-hand menu to drill down to requests of interest. You can also save filters to custom tabs! <u>Click t</u>			Sequencing Req	uest			iLabs Serv	vice ID	Status	
	Show Filters			Sequencing Request 2659				-RS-5126	res	searcher_in_agreement	
				Property	Value	Illumina Fl Illumina Fl	owcell owcell 1244				
	May 11	Tor Reinhard Stoper	EC-RS-5126	Date Modified	2018-04-16						
	(May 07 2018)	Stoger, Reinhard (UON) Lab	L-MiniLIMS RRBSx8; SR50x3	Date Request Submitted	2018-04-13 EC-JMGS-5049 ILab	Property Date Created Date Modified	Value 2018-04-26 2018-04-26				
	Apr 25	Ronan Chaligne	EC-RC-5080	Submitter	Jesús María Gómez Saline	Run ID	180427_D00796_0325_ACC2K	CANXX SM			
	(Apr 25 2018)	Landau, Dan (WCMC) Lab	L-MiniLIMS Plate 4 scRRBS_RNAseq, I	PI Request ID	Shido Koji mouse adult liver ECs	Flowcell ID Run Type Read Length (bp)	CC2KCANXX Paired End 26-8-98				
	Apr 25 (Apr 25 2018)	Shannon Odell	EC-SO-5077	Organism	Mus musculus	Cluster Generator	cBot1028				
	(Apr 25 2018)	Toth, Miklos (WCM) Lab	L-MiniLIMS RRBSx9; SR50x2	Library Preparation Requested	Yes	Sequencer	D00796				
	A == 10	Bases Obelians	50 00 5054	Library Type	RNA-seq-Chromium-single	User	yui2008 Released	Withhold			
	(Apr 16 2018)	Landau, Dan (WCMC) Lab	L Minil IMS Plate 2 coPPRS/DNAccard	Run Type	Paired End	Write Datasheet X	IS Valid Flowcell General	te Elowcell Form			
				Read Length	26-8-98	EC-1MGS-5049 IE	M EC-1MGS-5049 SegMan	EC-SS-5047 IEM	EC-SS-5047 SegMon E	C-PB-5025 IEM EC-PB-502	25 SegMon
	Apr 16 (Apr 16 2018)	Ronan Chaligne Landau, Dan (WCMC) Lab	EC-RC-5051	Number of Samples	1	EC-HC-5058 IEM	EC-HC-5058 SeqMon EC	-SS-5079 IEM EC-SS	S-5079 SeqMon		
	(Apr 16 2016)		L-MiniLIMS Plate 2 scRRBS/RNAseqx1	Multiplexing Requested Yes Flowcell Samples		amples					
	A== 00		FO DO 5022	Number of Lanes	1	show/hide					
	(Apr 09 2018)	Landau, Dan (WCMC) Lab	L-Minilling Diato 1 coDDDS_DNAcoov1	Reference Genome	NA	Library name	Group/Pool Li	brary type	Species PI	Submitter email	iLabs ID
				Sequencing Platform	Illumina HiSeg	Young_liver Aged_liver	1		mouse vicente_andres	ignacio_benedicto@hotmail	il.com EC-VA-4
	Mar 23	Shannon Odell	EC-SO-5001	CASAVA version	cellranger2.0	aml-hma-pre-1	2		human chia-lin_wei	sheng.li@jax.org	EC-SL-4
	(Mar 23 2018)	Toth, Miklos (WCM) Lab	L-MiniLIMS RRBSx6; SR50x1	Illumina Flowcell	Illumina Flowcell 1244 SM	ami-hma-post-1 ami-hma-pre-2	2		human chia-lin_wei	sheng.li@jax.org	EC-SL-49
				Statue	completed	aml-hma-post-2	2		human chia-lin_wei	sheng.li@jax.org	EC-SL-4
	Jan 11 (Jap 11 2018)	Alicia Alonso	EC-AA-4891	Accioned to	Vushan	IP12424	1		human giorgio_inghiran	ni giorgio.inghirami@unito.it	EC-GI-49
	(381112010)	WCW Epigenomics Core - rab	L-MiniLIMS RRBSx2 (RRoxBS) ; TEST	Assigned to	rushan	B1 C1	1		human giorgio_inghiran	ni giorgio.inghirami@unito.it ni giorgio.inghirami@unito.it	EC-GI-49
						HD	1		human virginia_pascual	prb2011@med.cornell.edu	EC-PB-5
				LibraryTableAttr	ributes	SLE	1		human virginia_pascual	prb2011@med.cornell.edu	EC-PB-5
						CCND2WT1_E13_5	_04_18_2018 1		mouse margaret_ross	shs2039@med.cornell.edu	EC-SS-5
				show / hide columns		mouse_adult_liver_	04_18_2018 1 ECs		mouse margaret_ross mouse koji_shido	jmg2008@med.cornell.edu	u EC-SS-5
				Show All 💟 entries		PR Plus PE2-1	1		human harold upper	hus2002@mod.com=11-du	JMGS-50
						RB_Plus_P53-1 RB_Plus_P53-2	1		human harold_varmus	huc2003@med.cornell.edu	EC-HC-5
				Sample Number	A 115	CCND2WT1_E13_5	_04_10_2018 pool1 rm	a-seq-chromium-	mouse margaret_ross	shs2039@med.cornell.edu	EC-SS-5
				Sample Number	LID		si	ngie-cell-v2			

Monitoring of Sequencing and Analysis

Epicore metrics FY18

Library types sequenced

Epicore metrics FY18

Bioinformatics processing (alignment, methylation calls)

Epicore metrics FY18

Processing time FY18

Illumina NGS workflow

- Good quality starting material: DNA and RNA, in the past 2 years .. Add single cell!
 - DNA eukaryotic or prokaryotic, DNA methylation, from immunoprecipitations, from ATACseq, from Hi-C
 - Total RNA, immunoprecipitated RNA, RNA from FFPE (degraded)
 - Single cell suspensions
- Library preparation: (from DNA)
 - random fragmentation of DNA, addition of 5' and 3' adapters
 - (which will allow binding to the Illumina flowcell) and then undergo PCR amplification if needed.

Sequencing indexing strategy must be thought out before the libraries are made

Cluster Generation:

• library is loaded into an Illumina flowcell, DNA fragments are captured on a lawn of surface bound oligos complementary to the library adapters. Fragments are amplified into clonal clusters through bridge amplification.

• Sequencing:

• proprietary reversible terminator-based method that detects single bases as they are incorporated into DNA template strands.

1. Genomic DNA sample QC: ~40kb, no RNA contamination

(whole genome sequencing, targeted sequencing, methylation sequencing)

Quality Control for RNA

Transcriptome analysis

RIN number (RNA integrity number)

Total stranded RNA prep

Requires 500ng RNA, RIN >- 2

Gene body coverage heat map

Piali Mukherjee

Quality Control for RNA (low input)

UltraLowInput RNAseq (SMART technology)

Requires 1-10ng RNA, RIN >- 8; or 10-500 cells

Quality control is done after cDNA preparation

Genome vs Epigenome

Genetic information- DNA (constant)

The Epigenetic code, which modifies gene expression, has **plasticity** and can be **reprogrammed**

Epigenetic code affects gene expression

Sequencing by synthesis depends on a DNA polymerase, C methylated C and all oxidative products will be amplified as a G

Methylation sequencing refers to a chemical step prior to library preparation (Bisulfite conversion - BS)

Step 1: conversion of Cytosine to Uracyl

This chemical step preserves both 5mC and 5hmC, which are about 1% of the total Cs It reduces the complexity of the genome (mostly) to a 3-letter code

Quality Control of DNA

- 2. Genome wide mapping of DNA binding proteins
- Chromatin Immunoprecipitation.

Core:

Input requirements

- a minimum of 11ng of sonicated ChIP DNA at ≤ 1ng/ul, determined by Qubit
- 10% of total material must be in the size range of the DNA fraction required for library preparation (130-230bp)

Region table for sample 4 : <u>8min</u>						
From [bp]	To [bp] Corr. Area	% of Total	Average Size [bp]		
100	7,500	1,795.4	95	390		
130	230	675.3	36	182		

Samples submitted most often look like this

Agilent Bioanalyser trace

Quality control of cells

Functional state of chromatin: Assay for transposase-accessible chromatin: ATACseq

Technique was published by Greenleaf's lab in 2013

1. 90% live cells in suspension

2. Prepare nuclei (50,000 cells)

3. Add Tagmentase

4. Short **barcoded** fragments are released by tagmentation

5. PCR amplify and Sequence

Quality control of ATACseq libraries is at the sequencing stage!

Bioanalyzer QC

7000 2000

1000

600 500

400

300 200

100 — 35 —

L

1

2 3

QC using Epinomics website (www.epinomics.co/)Greenleaf initiative)

Collaboration Elemento, Ashley Doane

Illumina NGS workflow

- Good quality nucleic acid: DNA and RNA
 - DNA eukaryotic or prokaryotic, DNA methylation, from immunoprecipitations, from ATACseq, from Hi-C
 - Total RNA, immunoprecipitated RNA, RNA from FFPE (degraded)
- Library preparation: (from DNA)
 - random fragmentation of DNA, addition of 5' and 3' adapters
 - (which will allow binding to the Illumina flowcell) and then undergo PCR amplification if needed.

Sequencing indexing strategy must be thought out before the libraries are made

Cluster Generation:

• library is loaded into an Illumina flowcell, DNA fragments are captured on a lawn of surface bound oligos complementary to the library adapters. Fragments are amplified into clonal clusters through bridge amplification.

• Sequencing:

• proprietary reversible terminator-based method that detects single bases as they are incorporated into DNA template strands.

Library preparation

- 1. Shear substrate to ~200bp
- 2. End repair, A-tailing
- 3. Adapter ligation

4. Size selection of DNA from 250-350bp (original DNA ~130-230bp)

5. PCR amplification

• Library preparation:

Epigenomics Core <

 (\mathbf{B})

- fragmentation of DNA
- addition of 5' and 3' adapters (will tether the DNA to the Illumina flowcell)
- PCR amplification if needed.
- 5' end has a UNIVERSAL primer

Flow cell

Quality Control of Library preparation

Before sequencing, libraries are analyzed for quantity and quality

ATACseq libraries

RNAseq libraries

36 gDNA for methylation sequencing (RRBS) , all passed DNA QC ...

Illumina NGS workflow

- Good quality nucleic acid: DNA and RNA
 - DNA eukaryotic or prokaryotic, DNA methylation, from immunoprecipitations, from ATACseq, from Hi-C
 - Total RNA, immunoprecipitated RNA, RNA from FFPE (degraded)
- Library preparation: (from DNA)
 - random fragmentation of DNA, addition of 5' and 3' adapters
 - (which will allow binding to the Illumina flowcell) and then undergo PCR amplification if needed.

Sequencing indexing strategy must be thought out before the libraries are made

Cluster Generation:

• library is loaded into an Illumina flowcell, DNA fragments are captured on a lawn of surface bound oligos complementary to the library adapters. Fragments are amplified into clonal clusters through bridge amplification.

• Sequencing:

• proprietary reversible terminator-based method that detects single bases as they are incorporated into DNA template strands.

Illumina Clustering and Sequencing

http://www.illumina.com/technology/sequencing_technology.ilmn

```
<sup>36</sup>
© Illumina, Inc.
```
Sequencing run quality control

This is a good run:

Run: 181114_D00796_ACCVYFANXX: Charts

23

QScore Distribution

Surface

Sequencing run quality control

Some lanes on this run need to be repeated

Run: 190325_K00237_BH3GJJBBXY: Charts

Flow Cell: H3GJJBBXY Extracted: 59 Called: 59 Scored: 59

15

20 25 30

Q Score

70.00

60.00

50.00

40.00

30.00

20.00

10.00

0.00

(billion)

Total

QScore Distribution

Both Surfaces 🔻

•

•

-

Surface

Lane

Read

Cycle

All Lanes

All Reads

All Cycles

Fix Scale

50

% >= Q30

96.2G

93.0%

35 40

Bulk vs Single Cell Genomics

39

Ye et al., J. Hematology Onc. 2017

Single cells methylation sequencing (RRBS)

Manual, 96 cells at a time

Pooling of the 96 cells together on 1 lane of HiSeq

Single Cell Quality Control of Library preparation

[bp]

But, for single cell ...

11 1

35 150

.

T T T T T T T T T T T T

300 500 1000 7000 [bp]

Single Cell Quality Control of Sequencing Run

But, for single cell ...

Sequencing QC

Base Composition

Single cell transcriptomics

10 X Chromium Platform: Single Cell 3' Digital Expression 500-10,000 cells

3 Components:

- 1. Gel beads with 750,000 unique barcodes
- 2. Cell suspension with RT reagents
- 3. Partitioning oil

Single-use microfluidics chip

Single Cell transcriptomics

3 Components:

- 1. Gel beads with 750,000 unique barcodes
- 2. Cell suspension with RT reagents
- 3. Partitioning oil

Chromium platform, Bioinformatics Support

- Sequence Chromium libraries
- Cell Ranger[™] pipeline converts sequence data to single cell gene expression profiles
- Loupe[™] Cell Browser enables interactive analysis

10 X Chromium Platform: Single Cell 3' Digital Expression

Cell Ranger analysis pipeline

Estimated Number of Cells 3,520 Mean Reads per Cell Median Genes per Cell 41,267 2,151 Sequencing Number of Reads 145,260,501 Valid Barcodes 98.3% Reads Mapped Confidently to Transcriptome 55.5% Reads Mapped Confidently to Exonic Regions 58.6% Reads Mapped Confidently to Intronic Regions 15.3% Reads Mapped Confidently to Intergenic Regions 3.4% Sequencing Saturation 61.4% Q30 Bases in Barcode 95.9% Q30 Bases in RNA Read 87.5% Q30 Bases in Sample Index 95.6% Q30 Bases in UMI 96.4%

10 X Chromium Platform: Single Cell 3' Digital Expression

Estimated Number of Cells 3,574 Mean Reads per Cell 48,598 Sequencing Number of Reads 173,689,296 Valid Barcodes Sequencing 98.5% Sequencing 46.1%

30.370
46.1%
98.9%
61.3%
95.5%
98.7%

Mapping	0
Reads Mapped to Genome	90.7%
Reads Mapped Confidently to Genome	88.0%
Reads Mapped Confidently to Intergenic Regions	4.8%
Reads Mapped Confidently to Intronic Regions	19.2%
Reads Mapped Confidently to Exonic Regions	64.1%
Reads Mapped Confidently to Transcriptome	61.4%
Reads Mapped Antisense to Gene	0.6%

Single Cell 3' v3

3.0.0

Chemistry

Cell Ranger Version

61.1%

0.7%

Reads Mapped Confidently to Transcriptome

Reads Mapped Antisense to Gene

Sometimes, it fails ...

Cells	0
SUDO 100% 2 1000 2 1000 2 1000 2 1000 2 100 2 10	Cells Background
Barcodes	
Estimated Number of Cells	184
Fraction Reads in Cells	83.7%
Mean Reads per Cell	959,423
Median Genes per Cell	1,856
Median Genes per Cell Total Genes Detected	1,856

Samp	ble
Name	1429A
Description	
Transcriptome	hg19
Chemistry	Single Cell 3' v3
Cell Ranger Version	3.0.0

10 X Chromium Platform: Single Cell ATACseq

Cells ?

Barcodes

Genomic analysis keep expanding, we keep expanding!

In development (collaboration with Landau's lab)

- Single cell methylation (RRBS)/RNAseq single cell plate
- Single cell ATACseq/Rnaseq –single cell plate
- With 10x platform
 - Single cell expression with associated genotyping (paper re-submitted)

Testing commercial platforms

- Tapestri, Mission Bio high throughput single cell DNA tumor variant phenotypes
- GeoMx DPS, Nanostring spatial genomics –allows to detect both protein and RNA expression at a 10μM/100μM resolution

With Genomics Core

Transition from HiSeq2500/4000 to NovaSeq

In spite of daily challenges, our core thrives!

co[®] Services

🖀 Home

Overview

The Epigenomics Core Facility of Weill Cornell Medicine provides an array of epigenomics and bioinformatics research resources and services that include:

- DNA methylation profiling [More]
- Protein-nucleic acid association [More]
- Single Cell Transcriptomics, Immune Profiling and Epigenomics [More]
- Long Range DNA Sequencing [More]
- Bioinformatics analysis [More]

Core resources and services include sample preparation services and data generation on the Illumina HiSeq 2500, HiSeq 4000, NextSeq and MiSeq platforms.

🐸 People

Resources

.

Recent Publications

We require that core clients acknowledge the Epigenomics Core of Weill Cornell Medical College in publications and presentions enabled by our resources.

Check out our latest paper on the comprehensive evaluation of four DNA methylation measurement platforms:

Kacmarczyk T.J. et al. Epigenetics Chromatin. 2018. May 25;11(1):21. [PubMed]

Moriyama, S. et al. Science 2018. 359(6379):1056-1061. [PubMed]

- Klose, C.S.N. et al. Nature 2017. 549, 282–286. [PubMed]
- Wang, H. et al. Nature Commun. 2017. 8(1):767. [PubMed]
- McIntyre, ABR. et al. Genome Biol. 2017. 18(1):182. [PubMed]
- Vu, LP., Pickering BF., Cheng Y. et al. Nat Med. 2017. Sept 18 EPub. [PubMed]
- Zhang, T. et al. Blood Cancer J. 2017. 7(9):e606. [PubMed]
- Xu, R. et al. J Bone Miner Res. 2017. 32(9):1811-1815. [PubMed]
- Glass, JL. et al. Cancer Discov. 2017. 7(8):868-883. [PubMed]
- Dhingra, P. et al. Genome Biol. 2017. 18(1):141. [PubMed]
- Murata, K. et al. Immunity, 2017, 47(1):66-79.e5. [PubMed]
- Loupasakis, K. et al. PLoS One. 2017. 12(7):e0179762. [PubMed]
- Kan, L. et al. Nat Commun. 2017. 8:15737. [PubMed]
- Kurt, IC. et al. Cel Death Dis. 2017. 8(6):e2897 [PubMed]
- Sigueira, LG. et al. Biol Reprod. 2017. 96(4):743-757. [PubMed]
- Anelli, V. et al. Elife. 2017. pii: e20728. [PubMed]

News

Sep 2018: In order to serve our scientific community more efficiently, all RNASeq, DNASeq and sequencing will be performed by the Weill Cornell Medicine Genomics Resources Core Facility (GRCF). If you require these services - please submit your samples directly to the GRCF. Please contact Dr. Jenny Xiang if you have any questions about these services.

If you have ongoing/legacy projects, questions or concerns, please contact us at epigenomicscore@med.cornell.edu

If you require an Epigenomics Core library preparation service, submit a request as before (see the Getting Started section in our Services page).

Aug 2018: The Epigenomics Core will be discontinuing RNASeq, DNASeq and Sequencing Only services next month. To continue availing of these services, please contact Dr. Jenny Xiang at the Genomics Resources Core Facility (GRCF). [GRCF Service Request Portal]

May 2018: Introducing Microbiome Services - officially launching June 2018! [Microbiome Core]

Tweets by @wcmcenigenomics

Doron Betel

θ

THE END

Sequencing by Synthesis (SBS)

Michael Metzker, 2010

Now three kinds of chemistry

Figure 2: Four-, Two-, and One-Channel Chemistry — Four-channel chemistry uses a mixture of nucleotides labeled with four different fluorescent dyes. Two-channel chemistry uses only one dye. The images are processed by image analysis software to determine nucleotide identity.

Paired-End Sequencing allows for two looks at a sequence

© Illumina, Inc.

Indexed sequencing method is now standard for single and paired reads

THE TOPIC: SPATIAL GENOMICS

KEEPING SPATIAL INFORMATION – SPATIAL GENOMICS

Spatial genomics – Network analysis

Single cell transcriptomics: full gene body coverage vs 3' gene body coverage

Cell-seq, MARS-seq, Dropseq, InDrop, ddSeq, Chromium

Genomic Diversity and Index Diversity Matter!!!

Algorithm that calls the base on a cluster is set up using the 1st 25 bases of the run.
These bases are expected to be color-balanced for A,G,C,T; if not the base call is incorrect
Index run also needs to be balanced

Sequencing Coverage

• Coverage (or depth):

number of reads that are likely to be aligned at a given reference position

Coverage = read length x number of reads genome length (haploid)

• Coverage for Methylation sequencing of the human genome Using one lane of a HiSeq 2500 v4 chemistry

 $\frac{(100bp) \times (280 \times 10^6)}{3 \times 10^9} = 9.3X \text{ coverage}$

• Illumina's website has a coverage calculator app

http://support.illumina.com/downloadssequencing_coverage_calculator.html

Genomic DNA sample QC: ~40kb, no RNA contamination

Using an agarose gel

Using the Perkin Elmer Labchip GX

Enhanced Reduced Representation of Bisulfate Conversion (ERRBS)

Read 2

Enhanced Reduced Representation of Bisulfate Conversion (ERRBS)

5. Size selection (150-250bp and 250-400bp) (DNA size 30-280bp)

Two fractions are carried over for the rest of the preparation

6. Bisulfite conversion, all C are modified to U DNA is no longer complementary ie single stranded

Enhanced Reduced Representation of Bisulfate Conversion (ERRBS)

Sequencing QC

- Akalin A1, Garrett-Bakelman FE, Kormaksson M, Busuttil J, Zhang L, Khrebtukova I, Milne TA, Huang Y, Biswas D, Hess JL, Allis CD, Roeder RG, Valk PJ, Löwenberg B, Delwel R, Fernandez HF, Paietta E, Tallman MS, Schroth GP, Mason CE, Melnick A, Figueroa ME. Base-pair resolution DNA methylation sequencing reveals profoundly divergent epigenetic landscapes in acute myeloid leukemia. <u>PLoS Genet.</u> 2012;8(6):e1002781. doi: 10.1371/journal.pgen.1002781. Epub 2012 Jun 21.
- Garrett-Bakelman, F.E., Sheridan, C.K., Kacmarczyk, T.J., Ishii, J., Betel, D., Alonso, A., Mason, C.E., Figueroa, M.E., Melnick, A.M. Enhanced Reduced Representation Bisulfite Sequencing for Assessment of DNA Methylation at Base Pair Resolution. J. Vis. Exp. (96), e52246, doi:10.3791/52246 (2015).

Enhanced Reduced Representation of Bisulfate Conversion(ERRBS)

Sequencing depth

Sequencing recipe	Number of CpG covered (>10X)	Mean CpG coverage (>10X)
SR50	2,979,084	96.62
PE50	5,930,668	88.53
SR100	4,889,616	93.15
PE100	6,607,470	85.48

How does multiplexing affect ERRBS data?

ChIPseq

Chromatin Immunoprecipitation

- 1. End repair, A-tailing
- 2. Adapter ligation
- 3. Size selection of DNA from 250-350bp (original DNA ~130-230bp)
- 4. PCR amplification

ChIPseq

Sample QC

QC1: quantitation

a minimum of 11ng of ChIP DNA at \leq 1ng/ul, determined by Qubit

QC2: qualitative measurement

10% of total material must be in the size range of the DNA fraction required for library preparation (130-230bp)

1.5% agarose gel

BioAnalyzer High Sensitivity

Typical ChIPseq project

- QC2 BioA all samples >-10% within range
- QC1 not enough material for some samples

Core: will send an email informing libraries are ready to be tested by qPCR Fast QC report will give % duplication, which is one parameter to follow

ChIPseq

Sequencing depth:

depends on the antibody, number of binding sites, cell type, quality of the IP

Multiplexing of ChIP-Seq Samples in an Optimized Experimental Condition Has Minimal Impact on Peak Detection Thadeous J. Kacmarczyk, Caitlin Bourque, Xihui Zhang, Yanwen Jiang, Yariv Houvras, Alicia Alonso, and Doron Betel <u>PLoS One.</u> 2015 Jun 11;10(6):e0129350. doi: 10.1371/journal.pone.0129350. eCollection 2015.

Multiple libraries were made and sequenced on SR50 at different depths, from 181M to 27M

TruSeq mRNA prep

- 1. rRNA depletion: oligo dT hybridization, and purification
- 2. mRNA fragmentation: chemical cleavage (~150bp)
- 3. Random priming to obtain cDNA strand and dscDNA
- 4. End repair, A-tailing
- 5. Adapter ligation

6. PCR amplification

TruSeq stranded mRNA prep

- 1. rRNA depletion: oligo dT hybridization, and purification
- 2. mRNA fragmentation: chemical cleavage (~150bp)
- 3. Random priming to obtain cDNA strand
- 4. dUTP incorporation on the dscDNA
- 5. A-tailing
- 6. Adapter ligation

7. PCR amplification, removal of dUTP containing strand

TruSeq Total stranded RNA prep

- 1. rRNA depletion: rRNA hybridization, and purification
- 2. mRNA fragmentation: chemical cleavage (~150bp)
- 3. Random priming to obtain cDNA strand
- 4. dUTP incorporation on the dscDNA
- 5. A-tailing
- 6. Adapter ligation

7. PCR amplification, removal of dUTP containing strand

TAAA T

rRNA

-U----U-----

4. End repair, A-tailing, ligation of TruSeq adapters

5. PCR amplification

Comparison between data generated by RNAseq and Ultra Low Input RNAseq

	468VTF_V5-2 (RNAseq)	468VTF-5 (ultralow)	474IDH_V3-2 (RNAseq)	474IDH_V3 (ultralow)
RIN	8.3	8.3	8.3	8.3
% duplication	48.22	45.95	47.99	44.53
% mapped reads	98.90	97.85	98.80	98.02
RefSeq IDs with > 10 counts	18602	17997	17868	17168
% rRNA in bam(RSeQC)	2.71	7.42	3.3	7.69

Xihui, Yushan, Piali

Quality Control of ChIP DNA

Chromatin Immunoprecipitation

QC1: quantitation

a minimum of 11ng of ChIP DNA at \leq 1ng/ul, determined by Qubit

QC2: qualitative measurement

10% of total material must be in the size range of the DNA fraction required for library preparation (130-230bp)

1.5% agarose gel

BioAnalyzer High Sensitivity

Overview

The Epigenomics Core Facility of <u>Weill Cornell Medical College</u> provides an array of epigenomics and bioinformatics research resources and services that include:

- DNA methylation profiling [More]
- Protein-nucleic acid association [ChIP-Seq]
- Genome sequencing [More]
- Exome capture [More]
- RNA-seq [More]
- Bioinformatics analysis [More]

Core resources and services include sample preparation services and data generation on the Illumina HiSeq 2500, MiSeq platforms and Sequenom MassArray platform.

Mason

3' 5'

Illumina SBS Technology

Reversible Terminator Chemistry Foundation

http://www.illumina.com/technology/sequencing_technology.ilmn