
Read counts to DGE, Part I
Friederike Duendar, ABC, WCM

02/26/2019

Contents
featureCounts results . 1
DESeq2 setup . 1

countData . 2
colData . 4
Generate the DESeqDataSet . 5

Normalizing for sequencing depth and RNA composition differences 7
Understanding more properties of read count data . 9

Reducing the dependence of the variance on the mean . 11

featureCounts results

We aligned five samples for the WT and SNF2 condition, respectively.

• How can you check which command was used to generate those BAM files?

Let’s read the result file into R (you’ll have to download it to your laptop first).

Loading additional libraries:
library(ggplot2) # for making plots
library(magrittr) # for "pipe"-like coding in R

First, make sure you set the path to your working directory which should contain the count table.
folder <- "~/Documents/Teaching/ANGSD/RNA/" # download count table!
folder <- "./"
setwd(folder)
reading in featureCounts output
readcounts <- read.table(paste0(folder, "featCounts_Gierlinski_genes.txt"),

header=TRUE)

DESeq2 setup

We will use the DESeq2 package to normalize the samples for differences in their sequencing depth and to
explore them.
not available via install.packages(), but through bioconductor
source("http://bioconductor.org/biocLite.R")
biocLite("DESeq2")

library(DESeq2)

1

We will have to generate a DESeqDataSet, which is a specific R class that combines data.frames and one or
more matrices into one object. The data.frames typically contain metadata about the samples and genes
(e.g. gene IDs, sample conditions), while the matrices contain the expression values.

• Find out via ?DESeqDataSetFromMatrix how to generate a DESeqDataSet!

We need two tables: countData and colData.

• colData: data.frame with all the variables you know about your samples, e.g., experimental condition,
the type, and date of sequencing and so on. Its row.names should correspond to the unique sample
names.

• countData: should contain a matrix of the actual values associated with the genes and samples.
Conveniently, this is almost exactly the format of the featureCounts output.

countData

head(readcounts)

Geneid Chr Start End Strand Length
1 YAL012W chrI 130799 131983 + 1185
2 YAL069W chrI 335 649 + 315
3 YAL068W-A chrI 538 792 + 255
4 YAL068C chrI 1807 2169 - 363
5 YAL067W-A chrI 2480 2707 + 228
6 YAL067C chrI 7235 9016 - 1782
...alignment.SNF2_1_Aligned.sortedByCoord.out.bam
1 7351
2 0
3 0
4 2
5 0
6 103
...alignment.SNF2_2_Aligned.sortedByCoord.out.bam
1 7180
2 0
3 0
4 2
5 0
6 51
...alignment.SNF2_3_Aligned.sortedByCoord.out.bam
1 7648
2 0
3 0
4 2
5 0
6 44
...alignment.SNF2_4_Aligned.sortedByCoord.out.bam
1 8119
2 0
3 0
4 1
5 0
6 90
...alignment.SNF2_5_Aligned.sortedByCoord.out.bam
1 5944

2

2 0
3 0
4 0
5 0
6 53
...alignment.WT_1_Aligned.sortedByCoord.out.bam
1 4312
2 0
3 0
4 0
5 0
6 12
...alignment.WT_2_Aligned.sortedByCoord.out.bam
1 3767
2 0
3 0
4 0
5 0
6 23
...alignment.WT_3_Aligned.sortedByCoord.out.bam
1 3040
2 0
3 0
4 0
5 0
6 21
...alignment.WT_4_Aligned.sortedByCoord.out.bam
1 5604
2 0
3 0
4 2
5 0
6 30
...alignment.WT_5_Aligned.sortedByCoord.out.bam
1 4167
2 0
3 0
4 2
5 0
6 29

In principle, this is the format that we’ll need (columns = Samples, rows = genes), but particularly the
sample names are a bit unwielding and we’re completely missing row.names. In addition, the first couple
of columns contain meta data information that need to be separated from the counts (e.g. gene IDs, gene
lengths etc.).
gene IDs should be stored as row.names
row.names(readcounts) <- make.names(readcounts$Geneid)

exclude the columns without read counts (columns 1 to 6 contain additional
info such as genomic coordinates)
readcounts <- readcounts[, -c(1:6)]

give meaningful sample names - there are many ways to achieve this
orig_names <- names(readcounts) # keep a back-up copy of the original names

3

names(readcounts) <- c("SNF2_1", "SNF2_2", "SNF2_3", "SNF2_4", "SNF2_5",
"WT_1", "WT_2", "WT_3", "WT_4", "WT_5") # most error-prone way!

alternatives:
names(readcounts) <- c(paste("SNF2", c(1:5), sep = "_"),

paste("WT", c(1:5), sep = "_")) # less potential for typos
even safer
names(readcounts) <- gsub(".*(WT|SNF2)(_[0-9]+).*", "\\1\\2", orig_names)

Always check your data set after you manipulated it!
str(readcounts)

'data.frame': 6692 obs. of 10 variables:
$ SNF2_1: int 7351 0 0 2 0 103 2 5 13 46 ...
$ SNF2_2: int 7180 0 0 2 0 51 0 9 8 58 ...
$ SNF2_3: int 7648 0 0 2 0 44 0 6 10 45 ...
$ SNF2_4: int 8119 0 0 1 0 90 0 3 9 61 ...
$ SNF2_5: int 5944 0 0 0 0 53 0 1 6 40 ...
$ WT_1 : int 4312 0 0 0 0 12 0 10 9 33 ...
$ WT_2 : int 3767 0 0 0 0 23 0 5 12 41 ...
$ WT_3 : int 3040 0 0 0 0 21 0 2 4 31 ...
$ WT_4 : int 5604 0 0 2 0 30 0 4 4 45 ...
$ WT_5 : int 4167 0 0 2 0 29 0 3 8 25 ...
head(readcounts)

SNF2_1 SNF2_2 SNF2_3 SNF2_4 SNF2_5 WT_1 WT_2 WT_3 WT_4 WT_5
YAL012W 7351 7180 7648 8119 5944 4312 3767 3040 5604 4167
YAL069W 0 0 0 0 0 0 0 0 0 0
YAL068W.A 0 0 0 0 0 0 0 0 0 0
YAL068C 2 2 2 1 0 0 0 0 2 2
YAL067W.A 0 0 0 0 0 0 0 0 0 0
YAL067C 103 51 44 90 53 12 23 21 30 29

This would be the data that we will store in the counts (or assay) slot of the DESeq2 object. Now, we turn
to the colData.

colData

According to ?colData, this should be a data.frame, where the rows directly match the columns of the
count data.

Here’s how this could be generated in R matching the readcounts data.frame we already have:
sample_info <- DataFrame(condition = gsub("_[0-9]+", "", names(readcounts)),

row.names = names(readcounts))
sample_info

DataFrame with 10 rows and 1 column
condition
<character>
SNF2_1 SNF2
SNF2_2 SNF2
SNF2_3 SNF2
SNF2_4 SNF2

4

SNF2_5 SNF2
WT_1 WT
WT_2 WT
WT_3 WT
WT_4 WT
WT_5 WT
str(sample_info)

Formal class 'DataFrame' [package "S4Vectors"] with 6 slots
..@ rownames : chr [1:10] "SNF2_1" "SNF2_2" "SNF2_3" "SNF2_4" ...
..@ nrows : int 10
..@ listData :List of 1
.. ..$ condition: chr [1:10] "SNF2" "SNF2" "SNF2" "SNF2" ...
..@ elementType : chr "ANY"
..@ elementMetadata: NULL
..@ metadata : list()

Generate the DESeqDataSet

DESeq.ds <- DESeqDataSetFromMatrix(countData = readcounts,
colData = sample_info,
design = ~ condition)

DESeq.ds

class: DESeqDataSet
dim: 6692 10
metadata(1): version
assays(1): counts
rownames(6692): YAL012W YAL069W ... YMR325W YMR326C
rowData names(0):
colnames(10): SNF2_1 SNF2_2 ... WT_4 WT_5
colData names(1): condition
head(counts(DESeq.ds))

SNF2_1 SNF2_2 SNF2_3 SNF2_4 SNF2_5 WT_1 WT_2 WT_3 WT_4 WT_5
YAL012W 7351 7180 7648 8119 5944 4312 3767 3040 5604 4167
YAL069W 0 0 0 0 0 0 0 0 0 0
YAL068W.A 0 0 0 0 0 0 0 0 0 0
YAL068C 2 2 2 1 0 0 0 0 2 2
YAL067W.A 0 0 0 0 0 0 0 0 0 0
YAL067C 103 51 44 90 53 12 23 21 30 29

How many reads were counted for each sample (= library sizes)?
colSums(counts(DESeq.ds))

SNF2_1 SNF2_2 SNF2_3 SNF2_4 SNF2_5 WT_1 WT_2 WT_3 WT_4
9518261 8025575 8099295 9933479 6389328 5393487 7211200 5894001 9487091
WT_5
7280514
colSums(counts(DESeq.ds)) %>% barplot

5

SNF2_1 SNF2_2 SNF2_3 SNF2_4 SNF2_5 WT_1 WT_2 WT_3 WT_4 WT_5

0e
+

00
2e

+
06

4e
+

06
6e

+
06

8e
+

06

Remove genes with no reads.
keep_genes <- rowSums(counts(DESeq.ds)) > 0
dim(DESeq.ds)

[1] 6692 10
DESeq.ds <- DESeq.ds[keep_genes,]
dim(DESeq.ds)

[1] 6394 10
counts(DESeq.ds) %>% str

int [1:6394, 1:10] 7351 2 103 2 5 13 46 17 20 249 ...
- attr(*, "dimnames")=List of 2
..$: chr [1:6394] "YAL012W" "YAL068C" "YAL067C" "YAL066W" ...
..$: chr [1:10] "SNF2_1" "SNF2_2" "SNF2_3" "SNF2_4" ...
assay(DESeq.ds) %>% str

int [1:6394, 1:10] 7351 2 103 2 5 13 46 17 20 249 ...
- attr(*, "dimnames")=List of 2
..$: chr [1:6394] "YAL012W" "YAL068C" "YAL067C" "YAL066W" ...
..$: chr [1:10] "SNF2_1" "SNF2_2" "SNF2_3" "SNF2_4" ...

6

Normalizing for sequencing depth and RNA composition differences

Now that we have the data, we can start using DESeq2’s functions, e.g. estimateSizeFactors() for
sequencing depth normalization.

The size factor is calculated as follows:

1. For every gene, the geometric mean of counts is calculated across all samples (= “pseudo baseline
expression”).

2. For every gene, the ratio of its counts within a specific sample to the pseudo-baseline is calculated (e.g.,
Sample A/pseudo baseline, Sample B/pseudo baseline).

3. For every sample (columns!), the median of the ratios from step 2 is calculated. This is the size factor.

• There is the assumption that some genes are not changing across conditions!
• Size factors should be around 1.
• Normalized counts are calculated via countsgeneX,sampleA/sizefactorsampleA

DESeq.ds <- estimateSizeFactors(DESeq.ds)
sizeFactors(DESeq.ds)

SNF2_1 SNF2_2 SNF2_3 SNF2_4 SNF2_5 WT_1 WT_2
1.4257612 1.1080380 1.1007930 1.4800919 0.8917712 0.6003659 0.9428913
WT_3 WT_4 WT_5
0.7674773 1.1383612 0.9003437
plot(sizeFactors(DESeq.ds), colSums(counts(DESeq.ds)))

0.6 0.8 1.0 1.2 1.4

6e
+

06
8e

+
06

1e
+

07

sizeFactors(DESeq.ds)

co
lS

um
s(

co
un

ts
(D

E
S

eq
.d

s)
)

7

The read counts normalized for sequencing depth can be accessed via counts(..., normalized = TRUE).

Let’s check whether the normalization helped adjust global differences between the samples.
setting up the plotting layout
par(mfrow=c(1,2))

extracting normalized counts
counts.sf_normalized <- counts(DESeq.ds, normalized=TRUE)

adding the boxplots
boxplot(counts.sf_normalized, main = "SF normalized")
boxplot(counts(DESeq.ds), main = "read counts only")

SNF2_1 SNF2_3 SNF2_5 WT_2 WT_4

0
50

00
0

15
00

00
25

00
00

SF normalized

SNF2_1 SNF2_3 SNF2_5 WT_2 WT_4

0
50

00
0

15
00

00
25

00
00

read counts only

We can’t really see anything because the range of the read counts is so large that it covers several orders of
magnitude. For those cases, it is usually helpful to transform the normalized read counts to bring them onto
more similar scales.

• To see the influence of the sequencing depth normalization, make two box plots of log2(read counts):
– one for non-normalized counts
– the other one for normalized counts

par(mfrow=c(1,2)) # to plot the two box plots next to each other

bp of non-normalized
boxplot(log2(counts(DESeq.ds)+1), notch=TRUE,

main = "Non-normalized read counts",
ylab="log2(read counts)")

bp of size-factor normalized values
boxplot(log2(counts(DESeq.ds, normalize= TRUE) +1), notch=TRUE,

main = "Size-factor-normalized read counts",
ylab="log2(read counts)")

8

SNF2_1 SNF2_3 SNF2_5 WT_2 WT_4

0
5

10
15

Non−normalized read counts
lo

g2
(r

ea
d

co
un

ts
)

SNF2_1 SNF2_3 SNF2_5 WT_2 WT_4

0
5

10
15

Size−factor−normalized read counts

lo
g2

(r
ea

d
co

un
ts

)

Understanding more properties of read count data

Characteristics we’ve seen so far:

• zeros can mean two things: no expression or no detection

• fairly large dynamic range

• Make a scatterplot of log normalized counts against each other to see how well the actual values correlate
which each other per sample and gene. Focus on two samples.

non-normalized read counts plus pseudocount
log.counts <- log2(counts(DESeq.ds, normalized = FALSE) + 1)

instead of creating a new object, we could assign the values to a distinct matrix
within the DESeq.ds object
assay(DESeq.ds, "log.counts") <- log2(counts(DESeq.ds, normalized = FALSE) + 1)

normalized read counts
log.norm.counts <- log2(counts(DESeq.ds, normalized=TRUE) + 1)
assay(DESeq.ds, "log.norm.counts") <- log.norm.counts

par(mfrow=c(1,2))

DESeq.ds[, c("WT_1","WT_2")] %>%
assay(., "log.norm.counts") %>%
plot(., cex=.1, main = "WT_1 vs. WT_2")

DESeq.ds[, c("SNF2_1","SNF2_2")] %>%
assay(., "log.norm.counts") %>%
plot(., cex=.1, main = "SNF2_1 vs SNF2_2")

9

0 5 10 15

0
5

10
15

WT_1 vs. WT_2

WT_1

W
T

_2

0 5 10 15

0
5

10
15

SNF2_1 vs SNF2_2

SNF2_1
S

N
F

2_
2

Every dot = one gene.

The fanning out of the points in the lower left corner (points below 25 = 32) indicates that read counts
correlate less well between replicates when they are low.

This observation indicates that the standard deviation of the expression levels may depend on the mean: the
lower the mean read counts per gene, the higher the standard deviation.

This can be assessed visually; the package vsn offers a simple function for this.
par(mfrow=c(1,1))

generate the base meanSdPlot using sequencing depth normalized log2(read counts)
log.norm.counts <- log2(counts(DESeq.ds, normalized=TRUE) + 1)
msd_plot <- vsn::meanSdPlot(log.norm.counts,

ranks=FALSE, # show the data on the original scale
plot = FALSE)

msd_plot$gg +
ggtitle("Sequencing depth normalized log2(read counts)") +
ylab("standard deviation")

Warning: package 'hexbin' was built under R version 3.4.3

10

0

1

2

3

0 5 10 15

mean

st
an

da
rd

 d
ev

ia
tio

n

 1

 7

55

count

Sequencing depth normalized log2(read counts)

From the help for meanSdPlot: The red dots depict the running median estimator (window-width 10 percent).
If there is no variance-mean dependence, then the line formed by the red dots should be approximately
horizontal.

The plot here shows that there is some variance-mean dependence for genes with low read counts. This means
that the data shows signs of heteroskedasticity.

Many tools expect data to be homoskedastic, i.e., all variables should have similar variances.

Reducing the dependence of the variance on the mean

DESeq offers two ways to shrink the log-transformed counts for genes with very low counts: rlog and
varianceStabilizingTransformation (vst).

We’ll use rlog here as it is an optimized method for RNA-seq read counts: it transforms the read counts to
the log2 scale while simultaneously minimizing the difference between samples for rows with small counts and
taking differences between library sizes of the samples into account. vst tends to depend a bit more on the
size factors, but generally, both methods should return similar results.
this actually generates a different type of object!
DESeq.rlog <- rlog(DESeq.ds, blind = TRUE)
set blind = FALSE if the conditions are expected to introduce
strong differences in a large proportion of the genes

11

Let’s visually check the results of the rlog transformation:
par(mfrow=c(1,2))

plot(log.norm.counts[,1:2], cex=.1,
main = "size factor and log2-transformed")

the rlog-transformed counts are stored in the accessor "assay"
plot(assay(DESeq.rlog)[,1],

assay(DESeq.rlog)[,2],
cex=.1, main = "rlog transformed",
xlab = colnames(assay(DESeq.rlog[,1])),
ylab = colnames(assay(DESeq.rlog[,2])))

0 5 10 15

0
5

10
15

size factor and log2−transformed

SNF2_1

S
N

F
2_

2

0 5 10 15

0
5

10
15

rlog transformed

SNF2_1

S
N

F
2_

2

rlog.norm.counts <- assay(DESeq.rlog)

As you can see in the left plot the variance - that is higher for small read counts - is tightened significantly
using rlog. What does the mean-sd-plot show?
rlog-transformed read counts
msd_plot <- vsn::meanSdPlot(rlog.norm.counts, ranks=FALSE, plot = FALSE)
msd_plot$gg + ggtitle("rlog transformation")

12

0.0

0.5

1.0

1.5

0 5 10 15

mean

sd

 1

 7

55

count

rlog transformation

It’s not perfect, but it looks much better than before (compare the y-axis ranges of this plot and the previous
one!).

Now, we have expression values that have been adjusted for:

• differences in sequencing depth
• differences in RNA composition
• heteroskedasticity
• large dynamic range

These values can now be used for exploratory analyses – for DE analyses, we will eventually supply the
raw counts, though (because the DE tests will require their own modeling of the gene counts).
save.image(file = "RNAseqGierlinski.RData")

13

	featureCounts results
	DESeq2 setup
	countData
	colData
	Generate the DESeqDataSet

	Normalizing for sequencing depth and RNA composition differences
	Understanding more properties of read count data
	Reducing the dependence of the variance on the mean

