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Many slides today were influenced or taken from the
excellent book Data Analysis for the Life Sciences by
Rafael Irizarry and Michael Love, and training material
developed by the Harvard Chan Bioinformatics Core.

Go and check them out for even more details! The
Harvard Chan Bioinformatics Core’s material can be found
at their github page:
https://github.com/hbctraining/DGE_workshop
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General bioinformatics workflow for RNA-seq data
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Normalization of read counts

Normalization of read counts
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Normalization of read counts

Read counts are influenced by numerous factors, not just
expression strength

Raw counts2: number of reads (or fragments) overlapping with the union of
exons of a gene.

Raw count numbers are not just a reflection of the actual number of
captured transcripts!

They are strongly influenced by:
sequencing depth
gene length
DNA sequence content (% GC)
expression of all other genes in the same sample

2also true for "estimated" gene counts from pseudoaligners
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Normalization of read counts

Influences on read count numbers

1. Sequencing depth
sequencing depth of Sample A � Sample B
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Normalization of read counts

Influences on read count numbers

2. Gene length (and GC bias)
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Normalization of read counts

Influences on read count numbers

3. RNA composition - individual gene abundances
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Normalization of read counts

Influences on read count numbers - summary

Which biases are relevant for comparing different
samples?

F. Dündar (ABC, WCM) Analysis of bulk RNA-seq data - Part II: From counts to DGEFebruary 26, 2019 10 / 56



Normalization of read counts

Different units for expression values
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Normalization of read counts

Why not RPKMs?

[RF]PKM values are not comparable between samples – Do NOT use
them!
if you need normalized expression values for exploratory plots, use TPM
or DESeq2’s rlog values
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Normalization of read counts

Working with read counts

Download the featureCounts results to your laptop.
Read the featureCounts results into R.
Let’s normalize!
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Exploratory analyses

Exploratory analyses
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Exploratory analyses

Exploratory analyses

Exploratory analyses do not test a null hypothesis! They are meant
to familiarize yourself with the data to discover biases and unexpected
variability!

Typical exploratory analyses:
correlation of gene expression
between different samples
(hierarchical) clustering
dimensionality reduction
methods, e.g. PCA
dot plots/box plots/violin
plots of individual genes

Use normalized and transformed read counts for data exploration!
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Exploratory analyses

Pairwise correlation of gene expression values

replicates of the same condition
should show high correlations
(>0.9)
Pearson method: metric
differences between samples

I influenced by outliers
I covariance of two variables

divided by the product of
their standard deviation

I suitable for normally
distributed values

Spearman method: based on
rankings

I less sensitive
I less driven by outliers

R function: cor()
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Exploratory analyses

Hierarchical clustering – grouping similar samples

Goal: partition the objects into homogeneous groups, such that the
within-group similarities are large.

single-sample (or single-gene) clusters are
successively joined, starting with the least
dissimilar two samples

Result: dendrogram
I clustering is obtained by
cutting the dendrogram at
the desired level

Similarity measure
I Euclidean
I Pearson

Distance measure
I Complete: largest distance
I Average: average distance
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Exploratory analyses

Hiearchical clustering - R code
## calculate the correlation between columns of a matrix
pw_cor <- cor(rlog.norm.counts, method = "pearson" )

## use the correlation as a distance measure
distance.m_rlog <- as.dist(1 - pw_cor)

## plot() can directly interpret the output of hclust() to generate
## a dendrogram
plot( hclust(distance.m_rlog),

labels = colnames(rlog.norm.counts),
main = "rlog transformed read counts")
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Exploratory analyses

Principal component analysis – capturing variability
Goal: reduce the dataset to have fewer dimensions, yet approx.
preserve the distance between samples

starting point: matrix with expression values per gene and sample,
e.g. 6,600 genes x 10 samples

assay(DESeq.rlog)[topVarGenes,])
%>% t %>% prcomp

transformed into 6,600 principal components x 10 samples
linear combi of optimally
weighted observed variables
the vectors along which the
variation between samples is
maximal
PC1-3 are usually sufficient to
capture the major trends!
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Exploratory analyses

PCA vs. hierarchical clustering

often similar results because both techniques should capture the most
dominant patterns
PCA will always be run on just a subset of the data!
clustering will ALWAYS return clusters, PCA may not if the patterns of
variation are too random

See practical_exploratory.Rmd R code
to generate exploratory plots.

Use the pcaExplorer package!

See the chapter “Distance and Dimension
Reduction” in Irizarry and Love [2015] for
more details and the StatQuest video(s) on

youtube.

F. Dündar (ABC, WCM) Analysis of bulk RNA-seq data - Part II: From counts to DGEFebruary 26, 2019 20 / 56

https://www.youtube.com/watch?v=_UVHneBUBW0


Differential gene expression

Differential gene expression
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Differential gene expression

Understand your null hypothesis!

DGE: Differential Gene Expression
I Has the total ouput of a gene changed?
I input for the statistical testing: (estimated) counts per gene used by

DESeq2/edgeR/limma
I see Soneson et al. [2015] and bioconductor’s tximport package

vignette for details

DTU: Differential Transcript Usage
I Has the isoform composition for a given gene changed? I.e. are there

different dominant isoforms depending on the condition?
I common when comparing different cell types (incl. healthy vs. cancer)
I input for the statistical testing: (estimated) counts per transcript used

by DEXSeq (!)
I see Love et al. [2018] for details
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Differential gene expression

DGE basics

H0: There is no difference in the read distributions of the 2 conditions.
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Differential gene expression

Applying linear models for read count modeling
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Differential gene expression

Applying linear models for read count modeling

F. Dündar (ABC, WCM) Analysis of bulk RNA-seq data - Part II: From counts to DGEFebruary 26, 2019 25 / 56



Differential gene expression

Applying linear models for read count modeling

To describe all expression values of
one (!) example gene (snf2), we can
use a linear model like this:

Linear models model a response variable as
a linear combination of predictors (betas),
plus randomly distributed noise (e).
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Differential gene expression

Applying linear models for read count modeling

To describe all expression values of
one (!) example gene (snf2), we can
use a linear model like this:

Linear models model a response variable as
a linear combination of predictors (betas),
plus randomly distributed noise (e).

b0: intercept, i.e. average value of the baseline group
b1: difference between baseline and non-reference group
x : 0 if genotype == “SNF2”, 1 if genotype == “WT”

F. Dündar (ABC, WCM) Analysis of bulk RNA-seq data - Part II: From counts to DGEFebruary 26, 2019 27 / 56



Differential gene expression

Model formulae syntax in R

regression functions in R (e.g., lm(), glm() use a “model formula”
interface
the basic format is: response variable ~ explanatory
variables 3, e.g. lm( y ~ x )

If you find yourself using linear models and somewhat complicated
experimental designs more often than not, we strongly recommend to
work through chapters 4 and 5 of the PH525x series **Biomedical
Data Science** [Irizarry and Love, 2016]

3Tilde means "is modeled by" or "is modeled as a function of". See King [2016] for
more details on the specialy meaning of mathematical operators within formula contexts.
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Differential gene expression

Applying linear models for read count modeling

b0: intercept, i.e. average value of
the baseline group
b1: difference between baseline and
non-reference group
x : 0 if genotype == "SNF2", 1 if
genotype == "WT"

Describe expression values snf2
using a linear model:

Factor of interest (b1) can be
estimated as follows:

# 1. FIT the model
> lmfit <- lm(rlog.norm ~ genotype)
# 2. ESTIMATE the coefficients
> coef(lmfit)
(Intercept) genotypeWT

6.666 3.111

Both values (b0, b1) are estimates!
(They’re spot-on because the values are so

clear and the model is so simple!)
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Differential gene expression

DGE basics

H0: There is no difference in the read distributions of the 2 conditions.
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Differential gene expression

DGE steps (formulae from DESeq2)

1 Fitting a sophisticated regression model to the read counts (per gene!)
I library size factor
I dispersion estimate using information across multiple genes
I negative binomial distribution of read counts is assumed

2 Estimating coefficients to obtain the difference (log2FC)
3 Test whether the log2FC is “far away” from zero (remember H0!)
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Differential gene expression

DGE steps (formulae from DESeq2)

1 Fitting a more sophisticated model to the read counts (per gene!)
I library size factor
I dispersion estimate using information across multiple genes
I negative binomial distribution of read counts is assumed

2 Estimating coefficients to obtain the difference (log2FC)
I define the contrast of interest, e.g. ~ condition or ~ batchEffect

+ condition
I always put the factor of interest last
I order of the factor levels determines the direction of fold change that is

reported
3 Test whether the log2FC is “far away” from zero (remember H0!)
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Differential gene expression

Summary: read counts to DGE and other analyses
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Differential gene expression

Comparison of additional tools for DGE analysis

When in doubt, compare the results of limma, edgeR, and DESeq2 to get a feeling for
how robust your favorite DE genes are.
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Downstream analyses

Downstream analyses
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Downstream analyses

Understanding the RESULTS of the DGE analysis

Investigate the results()
output:

I How many DE genes?
(FDR/q-value!)

I How strongly do the DE
genes change?

I Directions of change?
I Are your favorite genes

among the DE genes?

Spend some time on this to perform
some sanity checks! This will help
you spot discrepancies early on!
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Downstream analyses

Understanding the FUNCTIONS of your DE genes
There are myriad tools for this – many are web-based, many are R packages,
many will address very specific questions. Typical points of interest are:

enriched gene ontology (GO) terms
I ontology = standardized vocabulary
I 3 classes of gene ontologies are maintained:

biological processes (BP), cell components (CC), and molecular
functions (MF)

enriched pathways
I gene sets: e.g. from MSigDB [Liberzon et al., 2015]
I physical interaction networks: e.g. from STRING [Szklarczyk et al., 2017]
I metabolic (and other) pathways: e.g. from KEGG [Kanehisa et al., 2017]

upstream regulators

None (!) of these methods should lead you to make definitive claims about the
role of certain pathways for your phenotype. These are hypothesis-generating
tools!
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Downstream analyses

Two typical approaches of enrichment analyses

1. Over-representation analysis (ORA)
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Downstream analyses

Two typical approaches of enrichment analyses

1. Over-representation analysis (ORA)
“2x2 table method”
assessing overlap of DE genes with genes of a given pathway
statistical test: e.g. hypergeometric test
limitations:

I direction of change is ignored
I magnitude of change is ignored
I interprets genes as well as pathways as independent entities

See Khatri et al. [2012] for details!

F. Dündar (ABC, WCM) Analysis of bulk RNA-seq data - Part II: From counts to DGEFebruary 26, 2019 41 / 56



Downstream analyses

Two typical approaches of enrichment analyses

1. Over-representation analysis (ORA)
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Downstream analyses

Two typical approaches of enrichment analyses

2. Functional Class Scoring (“Gene set enrichment”)
gene-level statistics for all genes in a pathway are aggregated into a
single pathway-level statistic
score will depend on size of the pathway, and the amount of correlation
between genes in the pathway
all genes are used
direction and magnitude of change matter
coordinated changes of genes within the same pathway matter, too
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Downstream analyses

Two typical approaches of enrichment analyses

2. Functional Class Scoring (“Gene set enrichment”)
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Downstream analyses

Two typical approaches of enrichment analyses

2. Functional Class Scoring: Example GSEA
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Downstream analyses

Two typical approaches of enrichment analyses

2. Functional Class Scoring (“Gene set enrichment”)

Example GSEA results for positive and negative correlation
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Downstream analyses

Summary – downstream analyses

Know your biological question(s) of interest!

all enrichment methods potentially suffer from gene length bias
I long genes will get more reads [Young et al., 2010]

for GO terms:
I use goseq to identify enriched GO terms
I use additional tools, such as GOrilla, REVIGO [Eden et al., 2009, Supek

et al., 2011] to summarize the often redundant GO term lists
for KEGG pathways:

I e.g. GAGE and PATHVIEW [Luo and Brouwer, 2013, Luo et al., 2017] 4

miscellaneous including attempts to predict upstream regulators
I Enrichr [Chen et al., 2013]
I RegulatorTrail [Kehl et al., 2017]
I Ingenuity Pathway Analysis Studio (proprietory software!)

See the additional links and material on our course website!
4https://www.r-bloggers.com/tutorial-rna-seq-differential-expression-pathway-

analysis-with-sailfish-deseq2-gage-and-pathview/
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