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Many slides today were influenced or taken from the
excellent book Data Analysis for the Life Sciences by
Rafael Irizarry and Michael Love, and training material
developed by the Harvard Chan Bioinformatics Core.

Go and check them out for even more details! The
Harvard Chan Bioinformatics Core's material can be found
at their github page:

https://github.com /hbctraining/DGE_ workshop
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General bioinformatics workflow for RNA-seq data

Mapping Counting Normalizing DE test
STAR featureCounts DESeqg2, edgeR DESeq2, edgeR, limma

Raw reads ‘ - |Aligned reads | - Read - Normalized read - List of fold changes

- count table count table & statistical values
.fastg .sam/.bam -
Ltxt .Robj .Robj, .txt
Estimated
transcript
Pseudoalignment | abundances | Summarizing to gene
kallisto, salmon levels & Normalizing

DESeqg2, edgeR
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Normalization of read counts



Normalization of read counts

Read counts are influenced by numerous factors, not just

expression strength

Raw counts?: number of reads (or fragments) overlapping with the union of
exons of a gene.

Raw count numbers are not just a reflection of the actual number of
captured transcripts!

They are strongly influenced by:
o sequencing depth
o gene length
o DNA sequence content (% GC)
o expression of all other genes in the same sample

2also true for "estimated" gene counts from pseudoaligners
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Normalization of read counts

Influences on read count numbers

1. Sequencing depth
sequencing depth of Sample A > Sample B

Sample A Reads Sample B Reads

o R LT T T

HBC Training
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Normalization of read counts

Influences on read count numbers

2. Gene length (and GC bias)

"Ba 1 e
T S T
Ea i SR R

HBC Training
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Normalization of read counts

Influences on read count numbers

3. RNA composition - individual gene abundances

VARNA T
VARNA |

very highly expressed transcript in the absence of that highly
soaks up significant portion of the expressed transcript, the remaining
reads reducing the range of read transcripts’ expression differences
counts available for other transcripts become more clear
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Normalization of read counts

Influences on read count numbers - summary

* sequencing depth

* gene length

* expression of all
other genes within
the same sample

* transcript
sequence (% GC)

need to corrected when
need to be corrected when comparing the same gene

comparing different genes between different samples

Which biases are relevant for comparing different
samples?
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Normalization of read counts

Different units for expression values

* Raw counts: number of reads/ X
fragments overlapping with the union ?
of exons of a gene

RPEM; = —
+ [RFJPKM: Reads/Fragments per (LN
Kilobase of gene per Million reads gone ot . depth

mapped — AVOID! .
(X, 1
TPM; = — & == 10°

. - l X\
* TPM: Transcripts Per Million qono road— Z, l—‘
counts per bp \\\ k
) z// gene
* rlog: log2-transformed count data o

normalized for small counts and library
size (DESeq2)
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Normalization of read counts
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20

sanjea pazijew.iou 6o

RawCount

RPKM

uQ Med DESeq TMM

TC

them!
o if you need normalized expression values for exploratory plots, use TPM

o [RF]JPKM values are not comparable between samples — Do NOT use

or DESeq2’s rlog values

12 / 56

February 26, 2019

Analysis of bulk RNA-seq data - Part II: From

F. Diindar (ABC, WCM)



Normalization of read counts

Working with read counts

o Download the featureCounts results to your laptop.
o Read the featureCounts results into R.
o Let's normalize!
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Exploratory analyses



Exploratory analyses

Exploratory analyses

Exploratory analyses do not test a null hypothesis! They are meant

to familiarize yourself with the data to discover biases and unexpected
variability!

Typical exploratory analyses:

o correlation of gene expression
between different samples

o (hierarchical) clustering

o dimensionality reduction
methods, e.g. PCA

o dot plots/box plots/violin
plots of individual genes

[ Use normalized and transformed read counts for data exploration! ]
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Exploratory analyses

Pairwise correlation of gene expression values

o replicates of the same condition

Y
should show high correlations o
[ ]
(>0.9)
o Pearson method: metric o 08 ke

differences between samples g° e
» influenced by outliers
» covariance of two variables
divided by the product of Y ot rmenas e
their standard deviation
» suitable for normally
distributed values
o Spearman method: based on
rankings
> less sensitive
> less driven by outliers

o R function: cor()

no- of fragments in file 2
10 20 30 40 50 60 70

no- of fragments in file 4
70 20 30 40 50 60 70

70 20 30 40 50 60 70
no- of fragments in file 3
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Exploratory analyses

Hierarchical clustering — grouping similar samples

Goal: partition the objects into homogeneous groups, such that the
within-group similarities are large.

o Result: dendrogram
> clustering is obtained by
cutting the dendrogram at
the desired level

o Similarity measure

Experiment 1

Experlment )

single-sample (or single-gene) clusters are
successively joined, starting with the least
dissimilar two samples
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Exploratory analyses

Hierarchical clustering — grouping similar samples

Goal: partition the objects into homogeneous groups, such that the
within-group similarities are large.

o Result: dendrogram
> clustering is obtained by
cutting the dendrogram at
the desired level
o Similarity measure
» Euclidean

Experiment 1

Experlment )

single-sample (or single-gene) clusters are
successively joined, starting with the least
dissimilar two samples
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Exploratory analyses

Hierarchical clustering — grouping similar samples

Goal: partition the objects into homogeneous groups, such that the
within-group similarities are large.

o Result: dendrogram
> clustering is obtained by
cutting the dendrogram at
the desired level
o Similarity measure
» Euclidean
> Pearson

Experiment 1

Experlment )

single-sample (or single-gene) clusters are
successively joined, starting with the least
dissimilar two samples
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Exploratory analyses

Hierarchical clustering — grouping similar samples

Goal: partition the objects into homogeneous groups, such that the
within-group similarities are large.

o Result: dendrogram
> clustering is obtained by
cutting the dendrogram at
the desired level
o Similarity measure
» Euclidean
> Pearson

Experiment 1

o Distance measure

Experlment )

single-sample (or single-gene) clusters are
successively joined, starting with the least
dissimilar two samples
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Exploratory analyses

Hierarchical clustering — grouping similar samples

Goal: partition the objects into homogeneous groups, such that the
within-group similarities are large.

o Result: dendrogram
> clustering is obtained by
cutting the dendrogram at
the desired level
o Similarity measure
» Euclidean
> Pearson

Experiment 1

o Distance measure
» Complete: largest distance

Experlment )

single-sample (or single-gene) clusters are
successively joined, starting with the least
dissimilar two samples
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Exploratory analyses

Hierarchical clustering — grouping similar samples

Goal: partition the objects into homogeneous groups, such that the
within-group similarities are large.

o Result: dendrogram
> clustering is obtained by
cutting the dendrogram at
the desired level
o Similarity measure
» Euclidean
» Pearson

Experiment 1

o Distance measure

» Complete: largest distance
> Average: average distance

Experlment )

single-sample (or single-gene) clusters are
successively joined, starting with the least
dissimilar two samples
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Exploratory analyses

Hiearchical clustering - R code

## calculate the correlation between columns of a matriz
pw_cor <- cor(rlog.norm.counts, method = "pearson" )

## use the correlation as a distance measure
distance.m_rlog <- as.dist(1 - pw_cor)

## plot() can directly interpret the output of hclust() to generate
## a dendrogram
plot( hclust(distance.m_rlog),

labels = colnames(rlog.norm.counts),

main = "rlog transformed read counts")
rlog transformed read counts no rlog
g 8
o o

% % 0 ]

2 gl = - -

* g [ T s » ~ o o ™
D N o N o) E NN o | :| - P S
g £ g ST gy E£EEE
5 5 5 6 & © 865G %

hclust (*, "comp!ete") hclust (*, "complete”)
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Exploratory analyses

Principal component analysis — capturing variability

Goal: reduce the dataset to have fewer dimensions, yet approx.
preserve the distance between samples
starting point: matrix with expression values per gene and sample,
e.g. 6,600 genes x 10 samples

SNF2_1 SNF2_2 SNF2_3 SNF2_4 SNF2_5 WT_1 WT_2 WT_3 WT_4 WT_5
YDL248W 109 84 100 112 62 47 65 60 95 43

YOL247TW.A @ 11 e 3 o o 1 e o assay(DESeq.rlog)[topVarGenes,])

YDL247W 6 6 1 3 4 2 3 4 7
0, 0, 0, 0,
YDL246C 6 6 1 4 4 1 3 2 4 o >ht %>% prcomp
YDL245C 1 6 9 5 3 6 2 5 5 6
YDL244W 79 59 49 60 37 9 8 12 30 14

transformed into 6,600 principal components x 10 samples

PC1 PC2 o linear combi of optimally
SNF2_1 -9.322866 0.8929154 - ;
SNF2.2 -0.300920 -B.€A78100 weighted observed variables
SNF2_3 -9.176814 0.3460428 o the vectors along which the

SNF2_4 -9.693035 1.2174519 iati b t | .
SNF2_5 -9.450847 -0.3668670 variation between samples Is

WT_1  8.378671 -6.3321623 maximal

WT_2  10.421518 4.6749399 .
WT3  8.486379 -1.1793146 o PC1-3 are usually sufficient to

WT_4  8.517490 -4.5814481 capture the major trends!
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Exploratory analyses

PCA vs. hierarchical clustering

o often similar results because both techniques should capture the most

dominant patterns
o PCA will always be run on just a subset of the data!
o clustering will ALWAYS return clusters, PCA may not if the patterns of

variation are too random

°
s | g o .
s N =
2 :: E } group
e | s ® snR2
s I, = O ® wr
5.
WT.s o .
°
-0 5 5 10

PC1: S;% variance
See the chapter “Distance and Dimension
Reduction” in Irizarry and Love [2015] for
more details and the StatQuest video(s) on
youtube.

See practical_exploratory.Rmd R code
to generate exploratory plots.
Use the pcaExplorer package!
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Differential gene expression

Understand your null hypothesis!

o DGE: Differential Gene Expression
» Has the total ouput of a gene changed?
» input for the statistical testing: (estimated) counts per gene used by

DESeq2/edgeR/limma
» see Soneson et al. [2015] and bioconductor's tximport package

vignette for details
February 26, 2019 22 / 56
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Differential gene expression

Understand your null hypothesis!

o DGE: Differential Gene Expression
» Has the total ouput of a gene changed?
» input for the statistical testing: (estimated) counts per gene used by
DESeq2/edgeR/limma
» see Soneson et al. [2015] and bioconductor's tximport package
vignette for details

o DTU: Differential Transcript Usage
» Has the isoform composition for a given gene changed? l.e. are there
different dominant isoforms depending on the condition?
» common when comparing different cell types (incl. healthy vs. cancer)
» input for the statistical testing: (estimated) counts per transcript used
by DEXSeq (!)
» see Love et al. [2018] for details

F. Diindar (ABC, WCM) Analysis of bulk RNA-seq data - Part II: From February 26, 2019 22 / 56



Differential gene expression

DGE basics

[ Ho: There is no difference in the read distributions of the 2 conditions. ]

== ] . .
1. Estimate magnitude of DE

e taking into account \d
al differences in sequencing

depth, technical, and \EQ_FQ
biological read count

== Condition 1 variability.
== Condition 2

. Estimate the significance of
the difference accounting\for
performing thousands of \
tests. (adjusted)
p-value /

Probability
N

Expression estimator value

1 test per genel!
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Differential gene expression

Applying linear models for read count modeling

Normalized expression values of snf2 (YOR290C)

Y

rlog

SNF2
genotype

February 26, 2019 24 / 56
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Differential gene expression
Applying linear models for read count modeling

Normalized expression values of snf2 (YOR290C)
A TEse- 9.78
9 -

]
L)
~ 8-

7 -

e 6.67
SNF2 wT
genotype
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Differential gene expression

Applying linear models for read count modeling

rlog

To describe all expression values of

Normalized expression values of snf2 (YOR290C)
one (1) example gene (snf2), we can

by 2sneenns- 6.67

A

use a linear model like this:

Y =b, + b *x + e

expression intercept genotype

values (discrete
factor here!)

Linear models model a response variable as
i a linear combination of predictors (betas),
plus randomly distributed noise (e).

SNF2

genotype

F. Diindar (ABC, WCM)

February 26, 2019 26 / 56
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Differential gene expression
Applying linear models for read count modeling

Normalized expression values of snf2 (YOR290C) To describe all expression values of

A == 978 one (1) example gene (snf2), we can
use a linear model like this:
94
2 b, Y =Db, + b, *x + e
= 81 expression intercept genotype
values (discrete
factor here!)
a R 6.67 Linear models model a response variable as
! i i a linear combination of predictors (betas),
SNF2 wr | domly distributed noi
genotype plus randomly distributed noise (e).

o by: intercept, i.e. average value of the baseline group
o b;: difference between baseline and non-reference group
o x: 0 if genotype == “SNF2", 1 if genotype == “WT"
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Differential gene expression
Model formulae syntax in R

o regression functions in R (e.g., Im(), glm() use a “model formula

interface
o the basic format is: response variable ~ explanatory

variables 3, eg. Im( y ~ x )

If you find yourself using linear models and somewhat complicated
experimental designs more often than not, we strongly recommend to
work through chapters 4 and 5 of the PH525x series **Biomedical

Data Science** [lrizarry and Love, 2016]

3Tilde means "is modeled by" or "is modeled as a function of". See King [2016] for

more details on the specialy meaning of mathematical operators within formula contexts.
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Differential gene expression

Applying linear models for read count modeling

0 Normalized expression values of snf2 (YOR290C) Descri be expression va | ues sn 2

g vEmee- 978 using a linear model:
o Y =b, + b *x + e
expression intercept genotype
2 b, values (discrete
= 8 factor here!)
Factor of interest (b;) can be
71 .
by 2-eomei- 6.67 estimated as follows:
SNF2 WT # 1. FIT the model
genotype > 1lmfit <- Im(rlog.norm ~ genotype)
i . # 2. ESTIMATE the coefficients
Q bo: mterf:ept, i.e. average value of D
the baseline group (Intercept) genotypeWT
@ by: difference between baseline and 6.666 3.111
non-reference group Both values (b0, bl) are estimates!
@ x: 0 if genotype == "SNF2", 1 if (They're spot-on because the values are so
genotype == "WT" clear and the model is so simple!)
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Differential gene expression

DGE basics

[ Ho: There is no difference in the read distributions of the 2 conditions. ]

== ] . .
1. Estimate magnitude of DE

e taking into account \d
al differences in sequencing

depth, technical, and \EQ_FQ
biological read count

== Condition 1 variability.
== Condition 2

. Estimate the significance of
the difference accounting\for
performing thousands of \
tests. (adjusted)
p-value /

Probability
N

Expression estimator value

1 test per genel!
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Differential gene expression

DGE steps (formulae from DESeq2)

@ Fitting a sophisticated regression model to the read counts (per gene!)
> library size factor
» dispersion estimate using information across multiple genes
» negative binomial distribution of read counts is assumed

Kij ~ NB(pij, ;)

@ Estimating coefficients to obtain the difference (log2FC)
@ Test whether the log2FC is “far away"” from zero (remember HO!)
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Differential gene expression

DGE steps (formulae from DESeq2)

@ Fitting a more sophisticated model to the read counts (per gene!)
» library size factor
» dispersion estimate using information across multiple genes
» negative binomial distribution of read counts is assumed

gene-specific dispersion
parameter

/
. . .\ (fitted towards the
Kz] g NB (/’L'LJ 9 az ) average dispersion)
read counts for
gene i and sample j

@ Estimating coefficients to obtain the difference (log2FC)
@ Test whether the log2FC is “far away" from zero (remember HO!)
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Differential gene expression

DGE steps (formulae from DESeq2)

@ Fitting a more sophisticated model to the read counts (per gene!)
» library size factor
» dispersion estimate using information across multiple genes
> negative binomial distribution of read counts is assumed

gene-specific dispersion
parameter

/
(fitted towards the
K’[/j ~ NB m QZ) average dispersion)

read counts for

gene i and sample j mean expr. library size
factor
Hij = S54ij

@ Estimating coefficients to obtain the difference (log2FC)
@ Test whether the log2FC is “far away" from zero (remember HO!)
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Differential gene expression

DGE steps (formulae from DESeq2)

@ Fitting a more sophisticated model to the read counts (per gene!)
» library size factor
» dispersion estimate using information across multiple genes
> negative binomial distribution of read counts is assumed

Kij ~ NB(p4j, o)

@ Estimating coefficients to obtain the difference (log2FC)
» define the contrast of interest, e.g. ~ condition or ~ batchEffect
+ condition
» always put the factor of interest last
» order of the factor levels determines the direction of fold change that is
reported

@ Test whether the log2FC is “far away” from zero (remember HQ!)
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Differential gene expression

Summary: read counts to DGE and other analyses

matrix of read counts

—
gene-wise
v dispersion

) estimation
rlog
| S—

shrinking gene-
wise dispersion
estimates

gene-wise GLM fit PESeq ()
coefficient
estimation

v
QC

exploratory
analyses

genes with logFC
and stat values

some downstream results ()

analyses
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Differential gene expression

Comparison of additional tools for DGE analysis

Table 5: Comparison of programs for differential gene expression identification. Based on (Rapaport et al., 2013;
Seyednasrollah et al., 2013; Schurch et al., 2015).

Feature DESeq2 edgeR limmaVoom Cuffdiff
Seq. depth Sample-wise size Gene-wise Gene-wise FPKM-like or
normalization factor trimmed median trimmed median DESeq-like
of means (TMM)  of means (TMM)
Assumed Neg. binomial Neg. binomial log-normal Neg. binomial
distribution
Test for DE Exact test (Wald) Exact test for Generalized t-test
over-dispersed linear model
data
False positives Low Low Low High
Detection of No No No Yes
differential
isoforms
Support for Yes Yes Yes No
multi-factored
experiments
Runtime (3-5 Seconds to Seconds to Seconds to Hours
replicates) minutes minutes minutes

When in doubt, compare the results of limma, edgeR, and DESeq2 to get a feeling for
how robust your favorite DE genes are.
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Downstream analyses



Downstream analyses

Understanding the RESULTS of the DGE analysis

o Investigate the results() MA plot
output: .
» How many DE genes?
(FDR/g-value!) '
» How strongly do the DE
genes change? H
Directions of change? 3
Are your favorite genes g
among the DE genes?
Expression of snf2 Expression of actin
(YOR290C) (YFL039C)
® R ° . 54 B
ER g1 : ! T T T T
g one of the most 1e-01 1e+01 1e+03 1e+05
strongly g o
E’;{ g | changing genes g g1 ° mean expression
FIER H .
t fs) g
g g g2
&1 : 2 oo does not pass
o | % 8 FDR threshold
wr w2 wr 2
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Downstream analyses

Understanding the FUNCTIONS of your DE genes

There are myriad tools for this — many are web-based, many are R packages,
many will address very specific questions. Typical points of interest are:

o enriched gene ontology (GO) terms
» ontology = standardized vocabulary
> 3 classes of gene ontologies are maintained:
o biological processes (BP), cell components (CC), and molecular
functions (MF)
o enriched pathways
» gene sets: e.g. from MSigDB [Liberzon et al., 2015]
» physical interaction networks: e.g. from STRING [Szklarczyk et al., 2017]
» metabolic (and other) pathways: e.g. from KEGG [Kanehisa et al., 2017]

o upstream regulators

None (!) of these methods should lead you to make definitive claims about the
role of certain pathways for your phenotype. These are hypothesis-generating
tools!
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Downstream analyses

Two typical approaches of enrichment analyses

1. Over-representation analysis (ORA)

All known genes in a species
(categorized into groups)

& & o A
0‘0’0’ -Aﬁ
A LA L Xk A“

‘f“:‘ ?‘* £

Cate- | Back- Over-
* gory |ground repre-
.. . * .I: ‘ sented?

HBC Training

A 35/6600 25/500 likely

5... ".‘““ B 56/6600 2/500 unlikely

C 10/6600 9/500 likely

F. Diindar (ABC, WCM) Analysis of bulk RNA-seq data - Part II: From February 26, 2019 40 / 56



Downstream analyses

Two typical approaches of enrichment analyses

1. Over-representation analysis (ORA)

o “2x2 table method”
o assessing overlap of DE genes with genes of a given pathway
o statistical test: e.g. hypergeometric test
o limitations:
» direction of change is ignored
» magnitude of change is ignored
> interprets genes as well as pathways as independent entities

See Khatri et al. [2012] for details!
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Downstream analyses

Two typical approaches of enrichment analyses

1. Over-representation analysis (ORA)

Table S1. ORA pathway analysis tools.
Khatri et al. (2012). doi: 0.1371/journal.pcbi.1002375

Name Scope of P-value Correction for Multi- Availability

Analysis ple Hypotheses
Onto-Express GO Hypergeometric, bino- FDR, Bonferroni, Sidak, Web

mial, chi-square Holm
GenMAPP/ GO, KEGG, Percentage/z-score None Standalone
MAPPFinder MAPP
(High  through- GO Relative  enrichment, None Standalone,
put) GoMiner Hypergeometric ‘Web
FatiGO GO, KEGG  Hypergeometric None ‘Web
GOstat GO Chi-square FDR
GOTree Machine GO Hypergeometric None ‘Web
FuncAssociate GO Hypergeometric Bootstrap ‘Web
GOToolBox GO Hypergeometric Bonferroni, Holm, FDR,
Hommel, Hochberg
GeneMerge GO Hypergeometric Bonferroni ‘Web
GOEAST GO Hypergeometric, Chi- Benjamini-Yekutieli Web
square

ClueGO GO, KEGG, Hypergeometric Bonferroni, Bonferroni  Standalone

BioCarta, step-down, Benjamini-

User defined Hochberg
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Downstream analyses

Two typical approaches of enrichment analyses

2. Functional Class Scoring (“Gene set enrichment”)

o gene-level statistics for all genes in a pathway are aggregated into a
single pathway-level statistic

o score will depend on size of the pathway, and the amount of correlation
between genes in the pathway

o all genes are used

o direction and magnitude of change matter

o coordinated changes of genes within the same pathway matter, too
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Downstream analyses

Two typical approaches of enrichment analyses

2. Functional Class Scoring (“Gene set enrichment”)

Table S2. FCS pathway analysis tools.
Khatri et al. (2012). doi: 0.1371/journal.pcbi. 1002375

Name Scope of Anal- Gene-level Statis- Gene Set  P-value Correction for Multi-  Availability
ysis tic isti ple Hypotheses
GSEA GO, KEGG, Signal-tonoise ra- K - P ype permu- FDR Standalone,
BioCarta, tio, t-test, cosine, Smirnov tation, Gene set R package
MAPP, tran-  euclidian and man- permutation
scription hattan distance,
factors, mi- Pearson correlation,
croRNA, cancer  (log2) fold-change,
molecules log difference
sigPathway GO,  KEGG, t-statistic Wilcoxon rank Phenotype permu- FDR (NPMLE) R package
BioCarta, hu- sum tation, Gene set
manpaths permutation
Category GO, KEGG t-statistic Phenotype permu-  NA R package
tation
SAFE GO, KEGG, Student’s t-test, Wilcoxon rank Phenotype permu- FWER (Bonferroni, R package
PFAM Welch’s t-test, SAM  sum, Fisher’s  tation Holm’s step-up), FDR
t-test,  f-statistic, exact test statis- (Benjamini-Hochberg,
Cox  proportional tic, Pearson’s Yekutieli-Benjamini)
hazards model, test, t-test of
linear regression average  differ-
ence
GlobalTest GO, KEGG NA simple and  Phenotype permu- NA R package

multinomial lo- tation, asymptotic
gistic regression,  distribution,

Q-statistics Gamma distribu-
mean tion
PCOT2 User specified Hotelling’s T2 Phenotype permu-  FDR (Benjamini- R package
tation, gene set Hochberg,  Yekutieli-
permutation Benjamini), FWER
(Bonferroni, Holm,
Hochberg, Hommel)
SAM-GS  User specified d-statistic sum of squared Phenotype permu- FDR Excel
d-statistic tation plug-in
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Downstream analyses

Two typical approaches of enrichment analyses

2. Functional Class Scoring: Example GSEA
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Downstream analyses

Two typical approaches of enrichment analyses

2. Functional Class Scoring (“Gene set enrichment”)

Example GSEA results for positive and negative correlation
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Doroszuk et al. (2012) doi: 10.1186/1471-2164-13-167
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Summary — downstream analyses

Know your biological question(s) of interest!

o all enrichment methods potentially suffer from gene length bias
» long genes will get more reads [Young et al., 2010]
o for GO terms:
> use goseq to identify enriched GO terms
» use additional tools, such as GOrilla, REVIGO [Eden et al., 2009, Supek
et al., 2011] to summarize the often redundant GO term lists
o for KEGG pathways:
» e.g. GAGE and PATHVIEW [Luo and Brouwer, 2013, Luo et al., 2017] 4
o miscellaneous including attempts to predict upstream regulators
» Enrichr [Chen et al., 2013]
» RegulatorTrail [Kehl et al., 2017]
» Ingenuity Pathway Analysis Studio (proprietory software!)

See the additional links and material on our course website!

*https: //www.r-bloggers.com /tutorial-rna-seq- differential-expression- pathway-
analysis-with-sailfish-deseq2-gage-and-pathview/
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