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Different types of RNA – different library preps

General steps of RNA-seq preparation

1 RNA extraction (cell lysis, RNA purification)
2 enrichment of the RNA of interest
3 fragmentation (ca. 200 bp)
4 cDNA synthesis
5 library prep to obtain cDNA with adapters for
sequencing
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Different types of RNA – different library preps

Different types of RNA (there are more!)
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Different types of RNA – different library preps

Different types of RNA (there are more!)

See, e.g., Wilkes et al. [2017] and Bartoszewski and Sikorski [2018] for an introduction
into ncRNAs and their functions.F. Dündar (ABC, WCM) Analysis of bulk RNA-seq data February 19, 2019 6 / 66



Different types of RNA – different library preps

Sequencing prep protocol depends on the RNA properties

It is not a one-size-fits-all situation!
abundance and stability

I rRNA: 90-95% (!)
I tRNA: 3-5%
I mRNA: 2%
I all other non-coding RNAs:

well below 1%
cellular location

I most are in the cytoplasm
size

I miRNAs: 18-23bp
I mRNA: several 100 to 1000 bp

specific
sequences/modifications

I poly(A) tails of mRNA
I 2D structure
I antisense transcripts
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Different types of RNA – different library preps

mRNA alone has numerous facets
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Different types of RNA – different library preps

Focus today

Bulk RNA-seq of mRNA

expression quantification of (mostly) mRNA transcripts
extracted from populations of cells
and tested for gene-specific differences between distinct
conditions
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Different types of RNA – different library preps

General steps of RNA-seq preparation

1 RNA extraction2 (cell lysis, RNA purification)
2 enrichment of the RNA of interest
3 fragmentation (ca. 200 bp)
4 cDNA synthesis
5 library prep to obtain cDNA with adapters for
sequencing

2Most standard extraction methods will lose RNA <100 bp!
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Different types of RNA – different library preps

The most common library preparation methods

(A) classical
unstranded
mRNA library
prep
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Different types of RNA – different library preps

The most common library preparation methods

(A) classical
unstranded
mRNA library
prep

(B) stranded
mRNA
(dUTP-based)
(see Levin et al.
[2010] and Zhao
et al. [2015] for
details)
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Different types of RNA – different library preps

The most common library preparation methods

Unstranded vs. stranded
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Different types of RNA – different library preps

The most common library preparation methods

(A) classical
unstranded mRNA
library prep
(B) stranded
mRNA
(dUTP-based) (see
Levin et al. [2010]
and Zhao et al.
[2015] for details)
(C) small RNAs
(miRNA, piRNA,
tRNA, ... <100 bp)
using 2 adapters –
not optimal for
differential
expression
analyses!
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Different types of RNA – different library preps

QC of RNA extraction

Avoid degraded RNA! Optimum: RNA Integraty Score (RIN) of 10.
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Different types of RNA – different library preps

General steps of RNA-seq preparation

1 RNA extraction (cell lysis, RNA purification)
2 enrichment of the RNA of interest

I mRNA: poly(A) enrichment vs. ribosomal-depletion
I small RNAs: size-based enrichment

3 fragmentation (ca. 200 bp)
4 cDNA synthesis
5 library prep to obtain cDNA with adapters for
sequencing
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Different types of RNA – different library preps

Every step has consequences – example: mRNA
enrichment
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Different types of RNA – different library preps

Every step has consequences

Do not mix different strategies for samples that are to be
compared to each other!

I extraction, enrichment, library prep

There are many papers comparing different aspects of different RNA-seq
approaches, e.g.

Library preparation methods for next-generation sequencing: Tone
down the bias [van Dijk et al., 2014]
Systematic comparison of small RNA library preparation protocols for
next-generation sequencing [Dard-Dascot et al., 2018]
A comprehensive assessment of RNA-seq protocols for degraded and
low-quantity samples. [Schuierer et al., 2017]
many more – PubMed is your friend!

Make an informed decision!
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Gene expression quantification

Gene expression quantification
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Gene expression quantification

General bioinformatics workflow for bulk RNA-seq data

Gene expression quantification (counting reads per gene following alignment)
is typically followed by differential gene expression (DE or DGE) analysis.

Null hypothesis

There is no difference in the expression levels of inidividual genes in
condition A and condition B.
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Gene expression quantification

Quantification of gene expression

1 Align
I with splice-aware alignment tools! e.g. STAR

2 Count reads that overlap with annotated genes
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Gene expression quantification

1. Aligning reads using STAR

$ mkdir alignment
$ cd alignment/
$ ln -s ~frd2007/ANGSD_2019/RNA-seq/raw_reads_Gierlinski_yeast/

I had previously downloaded numerous samples of the Gierlinski data set. These are stored
in the folder RNA-seq/raw_reads* to which I have now created a symbolic link:
$ ls -lahF raw_reads_Gierlinski_yeast/
total 44K
drwxr-xr-x 12 frd2007 abc 126 Jan 31 14:51 ./
drwxr-xr-x 3 frd2007 abc 4.0K Jan 31 14:55 ../
drwxr-xr-x 2 frd2007 abc 4.0K Jan 31 14:51 SNF2_1/
drwxr-xr-x 2 frd2007 abc 4.0K Jan 31 14:51 SNF2_2/
drwxr-xr-x 2 frd2007 abc 4.0K Jan 31 14:51 SNF2_3/
drwxr-xr-x 2 frd2007 abc 4.0K Jan 31 14:51 SNF2_4/
drwxr-xr-x 2 frd2007 abc 4.0K Jan 31 14:51 SNF2_5/
drwxr-xr-x 2 frd2007 abc 4.0K Jan 31 14:51 WT_1/
drwxr-xr-x 2 frd2007 abc 4.0K Jan 31 14:49 WT_2/
drwxr-xr-x 2 frd2007 abc 4.0K Jan 31 14:50 WT_3/
drwxr-xr-x 2 frd2007 abc 4.0K Jan 31 14:50 WT_4/
drwxr-xr-x 2 frd2007 abc 4.0K Jan 31 14:50 WT_5/
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Gene expression quantification

1. Aligning reads using STAR

Every subfolder contains the technical replicates of the respective sample:
$ ls -lahF raw_reads_Gierlinski_yeast/SNF2_1/
total 627M
drwxr-xr-x 2 frd2007 abc 4.0K Jan 31 14:51 ./
drwxr-xr-x 12 frd2007 abc 126 Jan 31 14:51 ../
-rw-r--r-- 1 frd2007 abc 98M Jan 31 14:50 ERR458500.fastq.gz
-rw-r--r-- 1 frd2007 abc 97M Jan 31 14:51 ERR458501.fastq.gz
-rw-r--r-- 1 frd2007 abc 96M Jan 31 14:51 ERR458502.fastq.gz
-rw-r--r-- 1 frd2007 abc 88M Jan 31 14:51 ERR458503.fastq.gz
-rw-r--r-- 1 frd2007 abc 76M Jan 31 14:51 ERR458504.fastq.gz
-rw-r--r-- 1 frd2007 abc 77M Jan 31 14:51 ERR458505.fastq.gz
-rw-r--r-- 1 frd2007 abc 98M Jan 31 14:51 ERR458506.fastq.gz

For the alignment, I will use STAR.
$ spack find | egrep -i STAR
star@2.5.3a
star@2.6.1a

$ spack load star@2.6.1a
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Gene expression quantification

1. Aligning reads using STAR

To determine suitable numbers for IntronMin and IntronMax parameters,
we downloaded a bed file for the yeast introns from UCSC table browser
(details https://www.biostars.org/p/13290/)
ln -s ~frd2007/ANGSD_2019/RNA-seq/refGenome_S_cerevisiae/introns_yeast.bed
# get min. intron size
awk '{print $3-$2}' introns_yeast.bed | sort -k1n | uniq | head -n 3
1
31
35

# get max. intron size
awk '{print $3-$2}' introns_yeast.bed | sort -k1n | uniq | tail -n 3
1623
2448
2483

Now that we have a feeling for what the sizes of annotated introns look like, we can run
STAR.
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Gene expression quantification

1. Aligning reads using STAR: Genome Index with exon
boundary info

REMEMBER!

1 build an index
2 align

## GENOME & TRANSCRIPTOME INDEX BUILDING
mkdir /home/frd2007/ANGSD_2019/RNA-seq/refGenome_S_cerevisiae/STARindex
ln -s /home/frd2007/ANGSD_2019/RNA-seq/refGenome_S_cerevisiae/

# Run STAR in "genomeGenerate" mode
$ STAR --runMode genomeGenerate
--genomeDir refGenome_S_cerevisiae/STARindex # where index will be stored
--genomeFastaFiles refGenome_S_cerevisiae/sacCer3.fa # ref. genome seq.
--sjdbGTFfile refGenome_S_cerevisiae/sacCer3.gtf # annotation file
--sjdbOverhang 49 # should be read length minus 1

--runThreadN 1 # can be used to define more processors

F. Dündar (ABC, WCM) Analysis of bulk RNA-seq data February 19, 2019 25 / 66



Gene expression quantification

1. Aligning reads using STAR

For the alignment, I will use a for-loop over all the samples (WT repl. 1-5
and SNF2 repl. 1-5)
In order to make STAR use all the reads from all the technical replicates per
sample, we need to list the respective files as comma-separated lists. This
is not as trivial as it sounds, so I double-check that my command works:

$ 'ls' raw_reads_Gierlinski_yeast/WT_1/*.fastq.gz | paste -s -d , -
raw_reads_Gierlinski_yeast/WT_1/ERR458493.fastq.gz,
raw_reads_Gierlinski_yeast/WT_1/ERR458494.fastq.gz,
raw_reads_Gierlinski_yeast/WT_1/ERR458495.fastq.gz,
raw_reads_Gierlinski_yeast/WT_1/ERR458496.fastq.gz,
raw_reads_Gierlinski_yeast/WT_1/ERR458497.fastq.gz,
raw_reads_Gierlinski_yeast/WT_1/ERR458498.fastq.gz,
raw_reads_Gierlinski_yeast/WT_1/ERR458499.fastq.gz

Looks good! Off to the alignment then! I’ll write a short (not very robust or generic!)
script that I will use in a for-loop on all the samples.
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Gene expression quantification

1. Aligning reads using STAR

$ cat align_Gierlinski.sh
#! /bin/bash
# Read in arguments
STAR_DIR=$1
FASTQ_DIR=$2
SAMPLE=$3

# Define the list of fastq files per sample
FILES=`'ls' ${FASTQ_DIR}/${SAMPLE}/*.fastq.gz | paste -s -d , -`

# Run STAR
STAR --genomeDir ${STAR_DIR}/ --readFilesIn $FILES \

--readFilesCommand gunzip -c --outFileNamePrefix ${SAMPLE}_ \
--outFilterMultimapNmax 1 \
--outSAMtype BAM SortedByCoordinate \
--runThreadN 4 --twopassMode Basic \
--alignIntronMin 1 --alignIntronMax 3000

You can see the entire script here:
~frd2007/ANGSD_2019/alignment/align_Gierlinski.sh.
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Gene expression quantification

1. Aligning reads using STAR

# Make the script executable:
$ chmod 755 align_Gierlinski.sh

# Run it for all the samples of interest:
for SAMPLE in WT_1 WT_2 WT_3 WT_4 WT_5 SNF2_1 SNF2_2 SNF2_3 SNF2_4 SNF2_5
do
./align_Gierlinski.sh refGenome_S_cerevisiae/STARindex/ \

raw_reads_Gierlinski_yeast/ $SAMPLE
done

# Should have added the indexing of the BAM files to the script,
# now I have to do it manually:
$ spack load samtools@1.9%gcc@6.3.0
$ for i in *bam

do
samtools index $i

done
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Alignment QC: RNA-seq-specific biases

Alignment QC: RNA-seq-specific biases
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Alignment QC: RNA-seq-specific biases

Typical biases of aligned reads of RNA-seq

lack of gene diversity:
dominance of rRNAs, tRNAs
(and/or other highly abundant
transripts)

I should be visible in FastQC
results already

read distribution
I high intron coverage:

incomplete poly(A)
enrichment

I many intergenic reads:
gDNA contamination

gene body coverage
I 3’ bias: RNA degradation

(and indicator of poly(A)
enrichment)
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Alignment QC: RNA-seq-specific biases

RSeQC package

$ spack find | egrep -i rseqc
py-rseqc@2.6.4
$ spack load -r py-rseqc@2.6.4 # note the -r to load all dependencies
# for this python-based tool

publication: Wang et al. [2012]
http://rseqc.sourceforge.net contains the documentation
see Table 11 of the RNA-seq workshop for a list of its scripts

I the ones we use most often are are read_distribution and
geneBody_coverage.py

commands are not well standardized
I e.g. sometimes the results are just printed to the screen, sometimes it

generates a result file silently, sometimes you need to define a file name
via -o

result files are not well standardized, either
I from text output to R scripts to PDF documents

F. Dündar (ABC, WCM) Analysis of bulk RNA-seq data February 19, 2019 31 / 66

http://rseqc.sourceforge.net
http://chagall.med.cornell.edu/RNASEQcourse/Intro2RNAseq.pdf


Alignment QC: RNA-seq-specific biases

RSeQC: Read distribution
How many reads fall into exons? Based on annotation file (BED!)
$ for SAMPLE in WT_1 WT_2 WT_3 WT_4 WT_5 SNF2_1 SNF2_2 SNF2_3 SNF2_4 SNF2_5
do
read_distribution.py -i bams/${SAMPLE}*.bam
-r ../RNA-seq/refGenome_S_cerevisiae/sacCer3.bed > \
${SAMPLE}/rseqc_read_distribution.out
done

$ head -n10 WT_1/rseqc_read_distribution.out
Total Reads 1049466
Total Tags 1059871
Total Assigned Tags 992608
=====================================================================
Group Total_bases Tag_count Tags/Kb
CDS_Exons 8832031 990363 112.13
5'UTR_Exons 0 0 0.00
3'UTR_Exons 0 0 0.00
Introns 69259 630 9.10
TSS_up_1kb 2421198 1260 0.52
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Alignment QC: RNA-seq-specific biases

RSeQC: Gene body coverage

$ for SAMPLE in WT_1 WT_2 WT_3 WT_4 WT_5 SNF2_1 SNF2_2 SNF2_3 SNF2_4 SNF2_5
do
geneBody_coverage.py -i bams/${SAMPLE}*.bam \
-r ../RNA-seq/refGenome_S_cerevisiae/sacCer3.bed \
-o ${SAMPLE}/rseqc_geneBody_coverage.out &

done
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Alignment QC: RNA-seq-specific biases

QoRTs – an alternative to RSeQC

$ spack find | egrep -i qorts
$ spack load qorts@1.2.42
# we need the location of the java executable
$ QORTS_LOC=`spack location -i qorts`

# run QoRTs in summary mode
$ for SAMPLE in WT_1 WT_2 WT_3 WT_4 WT_5 SNF2_1 SNF2_2 SNF2_3 SNF2_4 SNF2_5
do

java -Xmx4G -jar ${QORTS_LOC}/bin/QoRTs.jar QC --singleEnded
--generatePdfReport \
bams/${SAMPLE}*.bam \

../RNA-seq/refGenome_S_cerevisiae/sacCer3.gtf $SAMPLE
done

more convenient and standardized usage than RSeQC
offers gene diversity plot and more fine-grained plots where genes are stratified by
expression strength [Hartley and Mullikin, 2015]
will bundle numerous analyses in one PDF and allows for direct cross-comparisons,
but MultiQC doesn’t handle it very robustly
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Alignment QC: RNA-seq-specific biases

Summary of RNA-seq alignment QC
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Alignment QC: RNA-seq-specific biases

Summary of RNA-seq alignment QC

1 Did you capture a diverse set of mRNAs? (or RNAs of the type
that you expect)?

2 Are the gene bodies covered similarly across different samples?
3 Is there evidence for contaminations, either from highly

abundant, irrelevant transcripts or from genomic DNA?
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Quantification of gene expression - Part II

Quantification of gene expression - Part II

F. Dündar (ABC, WCM) Analysis of bulk RNA-seq data February 19, 2019 37 / 66



Quantification of gene expression - Part II

Quantification of gene expression

1 Align
I with splice-aware alignment tools! e.g. STAR

2 Count reads that overlap with annotated genes
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Quantification of gene expression - Part II

Quantification of gene expression

1 Align
I with splice-aware alignment tools! e.g. STAR

2 Count reads that overlap with annotated genes
I complicated by alternative isoforms: genes != transcripts
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Quantification of gene expression - Part II

Different philosophies of expression quantification

(splice-aware) alignment followed by counting of reads overlapping
with a gene

I “traditional” way of obtaining expression values per gene
I STAR + featureCounts + normalizations

(splice-aware) alignment followed by identification of the minimal
number of transcripts that are supported by the reads aligning to a
given locus

I TopHat + Cufflinks (DO NOT USE THIS!)

direct transcript abundance estimation without alignment by
determining which known transcripts are compatible with a given pool
of sequenced reads

I kallisto, salmon, sailfish, RSEM
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Quantification of gene expression - Part II

Different philosophies of expression quantification

1. Counting read-gene overlaps with featureCounts
features = single rows within
the GTF file, e.g. exons
meta-features = how single
rows may be grouped together,
e.g. by transcript-id or
gene-id (define via -g option)
see http://bioinf.wehi.edu.au/
featureCounts/ and Chapter 7
of SubreadUsersGuide.pdf for
details!
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Quantification of gene expression - Part II

Different philosophies of expression quantification

1. Counting read-gene overlaps with featureCounts
Let’s do it!

Count the reads that overlap with genes (union of all exons per
gene).
Note: featureCounts is part of the subread package.
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Quantification of gene expression - Part II

Different philosophies of expression quantification

2. Transcript abundance estimation via pseudoalignment
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Quantification of gene expression - Part II

Different philosophies of expression quantification

2. Transcript abundance estimation via pseudoalignment – CAUTION!
abundance estimates for lowly expressed transcripts are highly variable
problem when coverage of the region defining an isoform is low

For very similar transcripts, collapsing all abundances per gene into a
gene-centric measure is more robust and accurate. [Soneson et al., 2015]
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Quantification of gene expression - Part II

Comparing “read count overlaps” to “pseudoalignments”

Traditional Pseudoalignment
Ex. workflow: STAR + featureCounts kallisto
Read mapping
based on:

Where does a read match
best?

Which equivalence class (EC)
does a read match best?

Reference: Genome seq. + exon bound-
aries

cDNA sequences

Mapping result: Genome coordinates (BAM) Read-EC table3
Expression quan-
tification:

Counting how many reads
overlap a gene4.

Summing up the reads as-
signed to each EC.

Output: Read counts (integers) Estimated transcript abun-
dances

Speed: +++ ++++

3As simple a table as it gets.
4The read sequence is irrelevant at this point.
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Quantification of gene expression - Part II

General bioinformatics workflow – updated
Understand your null hypothesis!(See Soneson et al. [2015], Love et al.
[2018])

DGE: Differential Gene Expression
I Has the total ouput of a gene changed?
I input for the statistical testing: (estimated) counts per gene used by

DESeq2/edgeR/limma
DTU: Differential Transcript Usage

I Has the isoform composition for a given gene changed? I.e. are there
different dominant isoforms depending on the condition?

I common when comparing different cell types (incl. healthy vs. cancer)
I input for the statistical testing: (estimated) counts per transcript used

by DEXSeq (!)
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Normalization

Normalization
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Normalization

Read counts are influenced by numerous factors, not just
expression strength

Raw counts5: number of reads (or fragments) overlapping with the union of
exons of a gene.
The raw counts are not just a reflection of the actual number of
captured transcripts!

5includes "estimated" gene counts from pseudoaligners
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Normalization

Different units for expression values
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Normalization

Effects of normalization methods on FC calculation and
DGE analysis
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Normalization

Working with read counts

Download the featureCounts results to your laptop.
Read the featureCounts results into R.
Let’s normalize and explore!
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Exploratory analyses
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Exploratory analyses

Exploratory analyses

CAVE

Exploratory analyses do not test a null hypothesis! They are meant
to familiarize yourself with the data!

correlations of gene expression
(hierarchical) clustering
dimensionality reduction methods, e.g. PCA
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Exploratory analyses

Which expression units should be used?

Exploratory analyses work better on normalized and
transformed read counts because they are:
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Exploratory analyses

Hierarchical clustering
Goal: partition the objects into homogeneous groups, such that the
within-group similarities are large.

single-sample (or single-gene)
clusters are successively joined,
starting with the least dissimilar two
samples

Result: dendrogram
I clustering is obtained by
cutting the dendrogram at
the desired level

Similarity measure
I Euclidean
I Pearson

Distance measure
I Complete: largest distance
I Average: average distance
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Exploratory analyses

PCA: Principal component analyses

starting point: matrix with expression values per gene and sample,
e.g. 7,100 genes x 10 samples

reduced to 2 principal components (or more) x 10 samples
linear combi of optimally
weighted observed variables
the vectors along which the
variation between samples is
maximal
their number is ≤ number of
original variables.
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Exploratory analyses

PCA vs. hierarchical clustering

often similar results because both techniques should capture the most
dominant patterns - first principal components should contain the
information that are separating different subgroups of the samples from
each other
PCA will always be run on just a subset of the data! (both, genes and
samples!)
clustering will ALWAYS return clusters, PCA may not if the patterns of
variation are too random
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