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Single-cell RNA sequencing
approaches are vastly increasing in
scale, with individual experiments
routinely profiling thousands or even
hundreds of thousands of cells.

Despite technical limitations asso-
ciated with low-input sequencing, cell
classification through unsupervised
clustering is surprisingly replicable
across studies. This can be attributed
to the intrinsic low dimensionality of cell
types dominating the variability seen in
expression profiles.

Low dimensionality of expression
profiles implies gene co-expression.
An exploration of the history of
co-expression highlights the perils of
making gene-level inferences in light of
collinearity, an issue that has
previously arisen in cancer subtyping
analysis.

Co-expression has been both the
saving grace and the original sin of
single-cell RNA-seq, enabling sample
characterization at the cost of gene-
level inference.
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As a fundamental unit of life, the cell has rightfully been the subject of intense
investigation throughout the history of biology. Technical innovations now
make it possible to assay cellular features at genomic scale, yielding
breakthroughs in our understanding of the molecular organization of tissues,
and even whole organisms. As these data accumulate we will soon be faced
with a new challenge: making sense of the plethora of results. Early
investigations into the replicability of cell type profiles inferred from single-cell
RNA sequencing data have indicated that this is likely to be surprisingly
straightforward due to consistent gene co-expression. In this opinion article
we discuss the evidence for this claim and its implications for interpreting cell
type-specific gene expression.

Single-Cell Rising
Single-cell RNA sequencing (scRNA-seq) technologies have exponentially increased in capac-
ity over a few short years. Far from early studies of a few hand-picked cells, individual
experiments now routinely run to thousands or even hundreds of thousands of cells [1]. This
technical progress has fostered biological discovery at the single-cell level, including impressive
approaches for whole-organism profiling [2–4] and cell lineage tracing [5]. Computational
methods have proliferated in turn, and already more than 200 analysis tools have been
catalogued as part of the scRNA-tools database [6].

Previous review articles have emphasized the novelty of the analytic challenges posed by
single-cell data (e.g., [7,8]). By contrast, in this opinion article we aim to show the deep roots of
scRNA-seq within the greater history of expression analysis, and particularly co-expression
network analysis. We are motivated by recent evidence that single-cell studies show surprising
replicability in spite of technical issues. Our thesis is that this can only be explained by robust
gene co-expression. We discuss the link between low dimensionality in scRNA-seq and gene
co-expression, and describe previous efforts to use co-expression for sample characterization
in cancer. These examples clarify the major limitation of relying on co-expression for single-cell
analysis: collinearity confounds gene-level inference (Box 1). For convenience, we focus on the
simpler case of linear relationships, although more complex dependencies can be explored
within the same framework. We conclude with a discussion of outstanding questions within this
young field and highlight possible avenues for progress.

The Surprising Replicability of scRNA-Seq
Many single-cell studies are motivated by thehypothesis that characterizing theextent and causes
of cellular heterogeneity will enable deeper understanding of biological systems [9]. One particular
hope of single-cell approaches is that they will resolve the long-standing issue of whether
differential expression in bulk tissue results from unequal cell type proportions or from changes
to gene regulation within a cell type across samples. In recent years scRNA-seq has gained
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Box 1. Key Concepts

Collinearity and Co-expression
Collinearity (or multicollinearity) occurs when one explanatory variable can be linearly predicted using one or more of the
other explanatory variables. In expression analysis, genes are the explanatory variables that characterize differences
between sample groups, and they will be collinear if their expression profiles are correlated across samples. Correlation
between genes is also known as co-expression, a well-established feature of high-throughput expression data. While
perfectly benign as an observation, collinearity has important consequences for interpreting results. If 100 genes are
correlated with cell differentiation, which gene is the driver? The data alone cannot tell us.

Low Dimensionality
If we consider expression data as a matrix with the form N columns x P rows, where the columns give different samples
and the rows are genes, the dimension of each sample is P, the number of attributes listed for that sample. Most human
scRNA-seq experiments use polyA-selection methods and map to protein-coding genes, making P � 20 000, which is
high relative to the number of samples (historically). Yet because genes are co-expressed, the number of dimensions
necessary to characterize each sample is lower than it might at first appear: some of the dimensions (genes) are
redundant. Principal component analysis (PCA) and other dimension reduction methods aim to extract the maximal
amount of variability from a matrix using the fewest dimensions. Because these methods have been so successful at
separating cell types, often requiring only 10–100 dimensions depending on the tissue and number of samples, there is
a strong claim that cell types are low dimensional.
enormous popularity thanks to advances in microfluidics technology that enable high-throughput
liquid handling and an economy of scale through barcoding strategies [1]. Some of the most
prominent applications of scRNA-seq have been attempts to define all cell types within a tissue as
a sort of molecular census [10–13] (Box 2). The early success of these strategies has prompted
even greater interest in this approach, and the Human Cell Atlas project is a notable example of a
large-scale effort to catalogue cell types with single-cell technology [14].

Alongside the many advances has come a greater appreciation of the potential pitfalls of low-
input RNA sequencing, including technical variation caused by PCR amplification or signal
drop-out [15–17] and prominent batch effects [18]. Further questions have been raised
Box 2. Inferring Cell Types from Expression Data

One of the primary tasks in single-cell transcriptomics has been to use expression data to characterize the heterogeneity
of cells within a given cell type or tissue. A common workflow for this is to group the cells by their expression profiles and
then compare expression values between groups. But what are these groups? Do they represent novel cell types or
subtypes? Answering these questions requires us to formally define these terms, and field-wide standards in nomen-
clature have yet to be achieved. A standard working definition would discriminate between two key aspects of cell
identity: cell type and cell state. Cell type refers to more permanent features of a cell’s identity (a neuron does not
become a red blood cell), whereas cell state is more variable and often reflects temporally limited processes (circadian
rhythm, cell cycle). In this opinion article we are primarily concerned with studies that aim to define cell types from single
cell data, which are often organized in a hierarchical taxonomy that can be further divided into subtypes.

The basic steps involved in scRNA-seq are as follows: cells are captured and lysed and mRNA is reverse transcribed to
generate cDNA libraries, often including cell and molecular barcodes for multiplexing and reducing PCR-amplification
bias, respectively; then, sequencing proceeds as usual. After quality control and normalization, sample clustering is a
key step of almost any single-cell analysis pipeline. To obtain a robust representation of the underlying data, analysts rely
on dimension reduction techniques such as PCA, often calculated based on a subset of highly variable genes. Distances
are measured between cells based on their co-ordinates within this reduced space, and cells are counted as similar if
they occupy similar positions (i.e., cluster).

This is the area of single-cell analysis that receives the most attention, and yet it is often the most opaque. Published
protocols and bioinformatics packages suggest choosing the number of clusters that ‘agrees with your intuition’
(https://github.com/hb-gitified/cellrangerRkit/blob/master/vignettes/cellrangerrkit-PBMC-vignette-knitr.pdf) or that
maximizes some measure of modularity [12,69]. Still others suggest taking the consensus across multiple parameter
choices [70,71]. Without external data for validation, clustering is necessarily exploratory rather than confirmatory, and
the risk of overfitting (finding idiosyncratic clusters) is high. These issues are partially resolved by resampling within the
data but are best addressed through cross-dataset replicability analysis. Transcriptome-based classifications ultimately
require biological validation via independent assays into cell identity and function.
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regarding appropriate normalization and handling of biological confounders such as the cell
cycle or transcriptional bursting [19–21]. Despite these challenges, it is becoming increasingly
clear that cell profiles can be aligned across technical and biological sources of variation
[22–29], and our own work has indicated that more than half of the computationally identified
interneuron subtype profiles are highly replicable [30]. We and others [29] have also demon-
strated high replicability among five studies of the human pancreas. How can these unexpected
successes be explained?

Cell Types Are Low Dimensional
One plausible reason is that cell identity signals are highly robust. For example, we know a
principal source of noise in single-cell data is incomplete sampling of the total mRNA pool,
which means that a high proportion of genes are not detected within an individual sample.
However, if many genes encode cell identity, then we will be able to read out this property
regardless of individual gene drop-outs (Figure 1). The robustness of cell type transcriptional
profiles was first suggested by early downsampling and multiplexing experiments that showed
that cell type identification was possible with quite a small number of reads [31,32], and this
message has been re-iterated by Drop-seq proponents [12,24].

In their 2016 paper, Heimberg and colleagues explored the conceptual basis of this phenome-
non in detail [33]. Taking inspiration from signal processing where it is known that many natural
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Figure 1. Cell Type Identity Is Encoded in Many Genes. (A) Schematic of ground-truth expression profiles for two cell types, A and B, where each row is a cell and
the color indicates the expression level. Many genes are similarly expressed in both cell types, but a handful of markers are expressed exclusively in one cell type or the
other. (B) A heatmap of single-cell RNA sequencing data comparing five A cells and five B cells. While many genes are not detected, the aggregate signals across genes
still provide sufficient information to differentiate between the two cell types, even when cells have perfectly mutually exclusive marker expression, as in the first two
columns of cell type B. (C) A heatmap of single-cell data from unlabeled samples. Aggregate marker gene expression for each sample is plotted below the heatmap. Cell
type identity can be inferred in noisy data because it is encoded in many genes.
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signals can be modeled in low-dimensional space, the authors propose that expression data
may also have this property. So just as images can be reconstructed from low dimensions
thanks to high correlations between adjacent pixels, the authors argue that gene co-regulatory
modules may be recoverable from high gene-gene correlations, effectively reducing the search
space from 20 000 genes to a space of a few principal components that capture co-expressed
gene modules. This is similar to the motivation behind the L1000 platform designed to measure
the expression of 1000 ‘landmark’ genes that recover a large fraction of information from the full
transcriptome [34] and earlier work on expression imputation more broadly [35,36].

In a series of downsampling experiments, Heimberg et al. provide evidence that top principal
components are robust to noise induced by signal loss, with robustness scaling with the
proportion of variance explained. As such, they find that low-depth transcriptome coverage
(�100 genes detected) is sufficient to characterize cell type differences that are represented
within only a single principal component (glia versus neurons) but that higher depth (�1000
genes detected) is required to accurately recover cell types that differ along the top three
principal components (between neuronal subtypes). These results nicely fit our intuitions about
cell types and can be modeled to help researchers make decisions about experimental design.
This low dimensionality also allows us to ground single-cell research in an area of expression
analysis that has been of interest for decades: co-expression.

Linking Co-expression to Single-Cell Analysis
The observation that many genes jointly vary between cell types can be generalized to any
source of conditional variation between samples, such as differences in age, treatment, or
disease. Under any condition, genes that co-vary, or ‘co-expressed’ genes, can be identified by
their significantly similar patterns of expression across samples, often assessed genome-wide
between all possible gene pairs. Importantly, genes that are grouped by their expression
profiles share molecular and biological functions, as shown in Eisen et al.’s seminal 1998 paper
[37]. For example, members of the same protein complex, such as the proteasome, often have
highly correlated gene expression. Co-expression links between genes are usefully visualized
and analyzed as networks. While gene-gene networks often appear complex, they are moti-
vated by the simple principle that genes with similar functions are preferentially connected [38].
As in single-cell analysis, the known functional groupings defined within these networks also
imply lower dimensionality of transcriptional data relative to the number of genes. A natural
question is whether the low dimensionality in single-cell data is directly linked to the low
dimensionality implied by co-expression in bulk data.

This can be addressed by comparing co-expression networks built from bulk RNA-seq to those
built from single-cell data. Here, the question is more precisely framed: Are the co-expression
patterns observed in single-cell data unique, or do they overlap with the modules found in bulk
RNA-seq networks? In an analysis of more than 400 bulk and single-cell co-expression
networks our group found very similar results across the two data types [39], thus confirming
a link between the low dimensionality of bulk and single-cell data. We also found that
aggregating data across individual single-cell experiments strongly improved connectivity
within known gene modules. Taken together, these two results support the strong conclusion
that there exists a shared low-dimensional space that underlies cell identification across
experiments and that these dimensions are observable in bulk co-expression. However,
co-expression signals are strikingly weak in individual scRNA-seq datasets [40], regardless
of the number of samples or the extent of cell type heterogeneity. This may be due to technical
issues such as gene drop-out or to biological features such as transcriptional bursting that can
826 Trends in Genetics, November 2018, Vol. 34, No. 11



reduce the signal-to-noise ratio for cell type-relevant genes [41]. Even though cell type variation
can be observed, a great deal of information is likely to be missing from any individual dataset.

To date, most co-expression applications in the single-cell field have been targeted toward
correcting expression data for sample inference [42,43]. Eventually, gene-targeted evaluation
will be the goal. Here again, prior experience from bulk analysis can help to guide us. We
discuss this in more detail in the following section.

Co-expression Implies Collinearity: Lessons from Bulk Expression Analysis
As we have discussed, co-expression is inherent to expression data, provides low-dimensional
properties, and makes characterization of samples robust, as in scRNA-seq. These are useful
features, but it is important to understand their full implications to accurately model and
interpret results. For this, we can learn from previous work to analyze gene expression data
over the past decades, which highlighted the conceptual and statistical pitfalls that arise when
co-expression is neglected, and genes are treated as independent variables. Gene collinearity
complicates inference (Figure 2).
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Figure 2. The Implications of Multi-gene Encoding of Cell Type. A single-cell expression dataset is shown in the top
left of the schematic, where each row is a gene and each column is a cell. In this example, the three cell types (indicated by
their distinct morphologies and colors) are distinguishable by their expression of two sets of genes: one set is expressed in
cell types A and C and one set is expressed in cell types B and C. This has three corollaries (clockwise from right): (1) co-
expression, where the genes that characterize cell types show correlated expression across samples, thus forming
clustered modules; (2) low dimensionality, where cell types are easily separated in low-dimensional space; and (3)
collinearity, where many gene pairs are equally predictive of cell type. This illustrates the importance of gene-gene
relationships for cell identification and suggests caution when interpreting the significance of individual genes.
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One area where this has been of particular importance is cancer subtyping. Similar to scRNA-
seq applications, cancer researchers have aimed to define substructure among samples
through unsupervised clustering approaches [44]. Rather than defining cell types, here the
goal has been to define tumor subtypes and use these subtypes to predict patient-specific
features such as prognosis or drug response. In breast cancer, for example, only a subset of
patients respond to anti-estrogen therapy [45]. Could microarray technology determine the
molecular characteristics of tumors that are unresponsive to known therapies? To an extent,
the answer was yes: clustering did reveal structure among tumors, and the identified marker
genes predicted patient survival [46,47]. Yet it came as a surprise when it was discovered that
almost any set of genes could predict outcome [48]. This finding can readily be explained by
co-expression. If co-expression is common, then each marker gene can be regarded as a
stand-in for some module of genes with related expression profiles. If these modules are large
(i.e., expression data are low dimensional), then a random set of genes will sample from these
modules and therefore capture much of the performance historically observed by any marker
set. Concretely, we might imagine that only two gene programs drive cancer progression:
increased cell proliferation and reduced apoptosis. If 10% of genes were involved in each
process, then randomly sampling even a hundred genes leaves one quite likely to obtain useful
markers. In such a scenario, the exact genes chosen as markers are only a broad clue into the
molecular processes important for phenotype.

These examples illustrate that it is critical to determine whether a gene is co-expressed or
independent to correctly interpret its significance, and suggest caution for the interpretation of
markers derived from single-cell data. We discuss this and related issues in more detail below.

Limitations of Co-expression for scRNA-Seq
There is a strong expectation that single-cell RNA-seq will continue to yield insights into the
cellular composition of tissues and certainly in those that have yet to be profiled. The evidence
from the single-cell literature supports the notion that many cell types can be identified on the
basis of broad changes in gene co-expression and that this underlies the success of droplet-
based, high-throughput sequencing approaches that only shallowly sample from the total RNA
pool. Yet there are clear limitations that arise from relying on co-expression as our saving grace.

First, if cell types do not conform to expectations of characteristically broad changes in gene
co-expression, then current approaches will fail. In the simplest case, where cell types differ
from their nearest relatives via the expression of only a small number of genes, we will be hard
pressed to find them if there are too few genes captured per cell or if too few cells are sampled.
This has nicely been discussed by Torre et al. in their recent comparison of scRNA-seq and
single-molecule RNA fluorescence in situ hybridization (FISH) [49]. When designing single-cell
experiments, it is therefore important to have a clear hypothesis and goal in mind, as one size
will not fit all.

Second, by contrast, if cell identification truly does require the co-expression of hundreds or
thousands of genes, this creates an important conceptual problem, as we have discussed. In
this case, nearly all genes are potential markers. Collinearity between genes makes it difficult at
least, and meaningless at worst, to prioritize one gene as the most significant for cell function
[50]. For this reason, although we may be able to identify cells from their co-expression
patterns, we may not be characterizing them very much. Intuitively, if only a few randomly
chosen genes are ever necessary to identify a cell, mechanistic understandings of cell identity
are likely to remain out of reach using current data. However, what collinearity may lack in
explanatory power on a per-gene basis, it may compensate for in practical utility. In addition to
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Outstanding Questions
Are all cell type differences distributed
across many genes? Most current
expression protocols rely on this, but
some important heterogeneity
between cells might be reflected in
the differential expression of just a
few genes or from differential isoform
usage.

What are the dimensions of cell iden-
tity? How well do these generalize
across all cell types, conditions, or
species? Under what conditions does
differential co-expression occur? Indi-
vidual studies may be low dimensional
only because they each sample from a
relatively narrow space of existing cell
phenotypes.

How useful are discrete transcriptional
types for explaining and predicting cell
function? Continuous gradients natu-
rally occur in tissues and will also be
reflected by co-expression. Are cells
better modeled by continuous pro-
cesses? How would this help guide
further experimentation?

What genes are most important for
determining cell identity? Marker
genes are necessary for targeting cell
types but may not be required for cell
phenotype or function. What genes are
co-expressed with known markers?
How much do known markers explain
results?
enabling sparse representations of biological processes that describe cell types or cell states
[51], taking advantage of co-expression would allow researchers to tap into the same infor-
mation that is encoded in multiple genes by targeting the select few with pre-existing tools such
as Cre-driver lines or monoclonal antibodies. As long as the notion of a marker is clearly defined
as ‘one of many equivalents’, we should be safe from making conceptual errors when
interpreting results.

And third, we must note that despite its utility for cell identification, gene co-expression cannot
be assumed to make up for all of the missing data. Currently scRNA-seq is not a transcriptome-
wide method but rather a method to sample the transcriptome. Estimates from single-molecule
FISH suggest that only �10–20% of the transcriptome is assayed with scRNA-seq [49,52]. The
investigation of regulatory and network information from single cells is compromised by this
inherent low coverage. If broad co-expression is exploited to impute missing data, as in the
MAGIC pipeline [53] or with autoencoder approaches [54,55], we are unlikely to detect subtle
changes from expectation, which may be necessary as the field progresses. Indeed, after
imputation the assessment of gene-gene similarity is partially circular, exaggerating the simi-
larity of gene expression profiles and the apparent significance of resulting co-expression
relationships [42]. Unless transcriptome coverage increases dramatically, it will be necessary to
return to pooled samples or targeted assays to make any statement about individual genes. Of
course, this already occurs through cluster-based differential expression and with newer
approaches to smooth single-cell expression profiles by averaging across nearest neighbors
[56,57]. Whether it will be possible to define co-expression that is both genome-wide and driven
by variation between single cells remains to be seen.

Concluding Remarks and Future Perspectives
Early single-cell experiments have been remarkably successful thanks to gene co-expression
within individual cells and cell types: co-expression has been our saving grace. Yet the field’s
reliance on gene-gene covariation has been largely implicit, putting us at risk of misinterpreting
results and transforming co-expression into our original sin. To move the field forward it will be
important to evaluate covariation directly, as this will provide greater insight into the successes
and the failures of scRNA-seq, and will contribute to our understanding of cell types and cell
states (see Outstanding Questions). Indeed, over-reliance on global variance measures may
cause us to miss rare events, such as dysregulation limited to a small total number of genes. As
a start, we suggest that low-dimensional plots of single data should report what the dimensions
represent. The trend of displaying cells with t-distributed stochastic neighbor embedding has
been a roadblock to obtaining replicable features since the method does not consistently
represent cluster variability or distances [58]. More clarity in underlying methods will improve our
collective intuition about the quality of single-cell data and clustering solutions.

Understanding the mechanisms of cell identity, as opposed to just their correlates, will
ultimately require controlled perturbation experiments to characterize gene drivers of cell
phenotype. This is already beginning to be possible in a high-throughput way through Per-
turb-seq [59], CRISP-seq [60] and CROP-seq [61], and we are excited to see future application
and refinement of these techniques. We note that while broad co-expression underlies the
success and replicability of current cell clusters, new data may reveal that other classes of
variation are important for cell type characterization. Combining scRNA-seq with other tech-
niques such as multiplexed FISH, epitope barcoding [62,63], and for neurons, projection
mapping [64,65] and patch-clamp recording [66–68], may show that expression is low
dimensional even when cell identity is not, thus limiting the resolution of unsupervised techni-
ques based on expression data alone. External validation, beyond expression data, will be the
Trends in Genetics, November 2018, Vol. 34, No. 11 829



ultimate arbiter as researchers begin to unravel whether the cell types identified through large-
scale gene co-expression are useful for understanding the organization and function of
biological systems.
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