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In addition to performing exploratory analyses based on normalized measures of expression levels, numerous
efforts have been dedicated to optimize statistical tests to decide whether a (single!) given gene’s expression
varies between two (or more) conditions based on the information gleaned from as little as two or three
replicates per condition. The two basic tasks of all DGE tools are:

1. Estimate the magnitude of differential expression between two or more conditions based on read counts
from replicated samples, i.e., calculate the fold change of read counts, taking into account the differences
in sequencing depth and variability.

2. Estimate the significance of the difference and correct for multiple testing.

The best performing tools tend to be edgeR (Robinson et al., 2010), DESeq/DESeq2 (Anders and Huber,
2010; Love et al., 2014), and limma-voom (Ritchie et al., 2015) (see Rapaport et al. (2013); Soneson and
Delorenzi (2013); Schurch et al. (2015) for reviews of DGE tools). DESeq and limma-voom tend to be more
conservative than edgeR (better control of false positives), but edgeR is recommended for experiments with
fewer than 12 replicates (Schurch et al., 2015). These tools are all based on the R language and make heavy
use of numerous statistical methods that have been developed and implemented over the past two decades to
improve the power to detect robust changes based on extremely small numbers of replicates and to help deal
with the quirks of integer count data. These tools basically follow the same approach, i.e., they estimate the
gene expression difference for a given gene using regression-based models (and taking the factors discussed
during the session on normalization into account), followed by a statistical test based on the null hypothesis
that the difference is close to zero, which would mean that there is no difference in the gene expression
values that could be explained by the conditions. Table 1 has a summary of the key properties of the most
popular DGE tools; the next two sections will explain some more details of the two key steps of the DGE
analyses.

! 
All statistical methods developed for read counts rely on approximations of various kinds, so that
assumptions must be made about the data properties. edgeR and DESeq, for example, assume that
the majority of the transcriptome is unchanged between the two conditions. If this assumption is
not met by the data, both log2 fold change and the significance indicators are most likely incorrect!
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Table 1: Comparison of programs for differential gene expression identification. Information shown here is based on
the user guides of DESeq2, edgeR, limmaVoom and Rapaport et al. (2013), Seyednasrollah et al. (2015), and Schurch
et al. (2015). LRT stands for log-likelihood ratio test.

Feature DESeq2 edgeR limmaVoom Cuffdiff

Seq. depth normalization Sample-wise size
factor

Gene-wise trimmed
median of means
(TMM)

Gene-wise trimmed
median of means
(TMM)

FPKM-like or
DESeq-like

Dispersion estimate Cox-Reid
approximate
conditional inference
with focus on
maximum individual
dispersion estimate

Cox-Reid
approximate
conditional inference
moderated towards
the mean

squeezes gene-wise
residual variances
towards the global
variance

Assumed distribution Neg. binomial Neg. binomial log-normal Neg. binomial

Test for DE Wald test (2 factors);
LRT for multiple
factors

exact test for 2
factors; LRT for
multiple factors

t-test t-test

False positives Low Low Low High

Detection of differential
isoforms

No No No Yes

Support for
multi-factored
experiments

Yes Yes Yes No

Runtime (3-5 replicates) Seconds to minutes Seconds to minutes Seconds to minutes Hours

Page 2 of 5 © 2015-2020 Applied Bioinformatics Core | Weill Cornell Medicine



1. Estimating the difference between read counts for a given gene

1 Estimating the difference between read counts for a given gene

To determine whether the read count differences between different conditions for a given gene are greater
than expected by chance, DGE tools must find a way to estimate that difference using the information from
the replicates of each condition. edgeR (Robinson et al., 2010), DESeq/DESeq2 (Anders and Huber, 2010;
Love et al., 2014), and limma-voom (Ritchie et al., 2015) all use regression models that are applied to every
single gene. Linear regression models usually take the following form: Y = b0 + b1 ∗ x + e and they are
typically used to assess the strength of the relationship between Y and x, i.e., how much does Y really
depend on x? The observed values are used to estimate the values of b0 and b1 to obtain the closest fit
to the data at hand. Regression coefficients represent the mean change in the response variable, Y , for one
unit of change in the predictor variable, x. Therefore, the closer b1 is to zero, the weaker is the relationship
between Y and x. Regression models are usually used to predict unknown values of Y , i.e., one often wants
to find a function that returns Y at any given point along a certain trajectory captured by the model where
x is typically sampled from a continuous distribution of values (Figure 1).

(a)

(b)

Figure 1: (a) Typical example of a regression model application. Here, Y represent the numbers of ice creams sold and
the question of interest is the dependence of Y on the outside temperature (x). (b) Explanations for the relationship
of the different terms of the linear model. Figures from https://bit.ly/2PoYJ6d and https://bit.ly/3cbogJJ.

In the case of RNA-seq, Y represents the observed expression values and x represents the different conditions
from which the expression values of Y stem, i.e. instead of x assuming continuous values, we are assigning
ordinal values to x. Since the regression coefficients represent the mean change in Y for one unit of change in
x, we can use b1 to determine whether the expression values for one specific gene change depending on which
group of x they came from. For normally distributed and abundantly replicated data, the same goal could
be achieved with a t-test. Remember, however, that RNA-seq data does not meet either criterion, which is
why more sophisticated models are used to estimate the regression coefficients.

More specifically:

• Y will entail all read counts (from all conditions) for a given gene;
• x encodes the condition (for RNA-seq, this is very often a discrete factor, e.g., “WT” or “mutant”, or,

in mathematical terms, 0 or 1);
• the value of the intercept, b0, represents the expression values of the baseline condition;
• the regression coefficient, b1, happens to capture the difference between Y from samples of different

conditions;
• e captures the error or uncertainty, i.e. the difference of the regression estimates from the observed

expression values.
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1. Estimating the difference between read counts for a given gene

Figure 2: For the most basic comparison of two condi-
tions, imagine a set of normalized expression values,
Y , which differ depending on which group of x they
belong to: “SNF2” or “WT”. If we want to under-
stand how Y changes depending on which instance
of x is chosen, we can use a regression model. x is
therefore interpreted as a discrete parameter, which
is set to 0 for the baseline condition (here: SNF2)
and set to 1 for the non-reference group (here: WT)
The intercept, b0, should then be close to the average
values of Y values of the baseline group. As shown
in the figure, it then follows that the regression coef-
ficient, b1, represents the difference between baseline
and non-baseline group: Y = b0 + b1 ∗ x.

The very simple model illustrated in Figure 2 could be fitted in R using the function
lm(rlog.norm[, ‘gene Z’ ∼ genotype) ∗,
which will return estimates for both b0 and b1, so that the average expression values of the baseline genotype
(e.g., SNF2 = 0) would correspond to Y = b0 + b1 ∗ 0 + e. This is equivalent to Y = b0 (assuming that e is
very small), thereby demonstrating why the intercept (b0) can be interpreted as the average of our baseline
group. b1, on the other hand, will be the coefficient whose closeness to zero will be evaluated during the
statistical testing step since it represents the magnitude of the difference for Y that is explained by the two
different groups of x.

While understanding the linear model approach is useful in order to understand why regression is used in
the first place for DE analyses, DESeq2 and edgeR rely on a negative binomial model to fit the observed read
counts to arrive at the estimate for the difference.

Originally, read counts had been modeled using the Poisson distribution because:

• individual reads can be interpreted as binary data (Bernoulli trials): they either originate from gene i
or not.

• we are trying to model the discrete probability distribution of the number of successes (success = read
is present in the sequenced library).

• the pool of possible reads that could be present is large, while the proportion of reads belonging to
gene i is quite small.

The convenient feature of a Poisson distribution is that variance = mean. Thus, if the RNA-seq experiment
gives us a precise estimate of the mean read counts per condition, we implicitly know what kind of variance
to expect for read counts that are not truly changing between two conditions. This, in turn, then allows us to
identify those genes that show greater differences between the two conditions than expected by chance.

Unfortunately, only read counts of the same library preparation (= technical replicates) can be well approx-
imated by the Poisson distribution; biological replicates have been shown to display greater variance (noise).
This overdispersion can be captured with the negative binomial distribution, which is a more general form
of the Poisson distribution where the variance is allowed to exceed the mean. This means that we now need
to estimate two parameters from the read counts: the mean as well as the dispersion. The precision of these
estimates strongly depends on the number (and variation) of replicates – the more replicates, the better
the grasp on the underlying mean expression values of unchanged genes and the variance that is due to
biological variation rather than the experimental treatment. For most RNA-seq experiments, only two to
three replicates are available, which is obviously not sufficient for robust mean and variance estimates. Some
tools therefore compensate for the lack of replication by borrowing information across genes with similar
expression values to artificially shrink a given gene’s variance towards the regressed values. These fitted
values of the mean and dispersion are then used instead of the raw estimates to test for differential gene
expression.

∗In plain English: rlog-normalized expression values for gene Z are modeled based on the genotype (Figure 2).
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2. Testing the null hypothesis

2 Testing the null hypothesis

The null hypothesis is that there is no systematic difference between the average read count values of the
different conditions for a given gene. In terms of the regression models this means that we are testing whether
the regression coefficient, b1, helps explain the differences among the observed expression values. Which test
is used to assign a p-value again depends on the tool (Table 1), but generally you can think of them as some
variation of the well-known t−test (How dissimilar are the means of two populations?) or ANOVAs (How
well does a reduced model capture the data when compared to the full model with all coefficients?). DESeq2

uses the Wald statistic, which is defined as W = β̂

ŝe(β̂)
where the hat symbol denotes the estimates of the

regression coefficient. If the resulting Wald statistic is close to zero (e.g. because the standard error, se, is
large), the null hypothesis cannot be rejected, which will be reflected by a p-value close to 1.

Once you’ve obtained a list of p-values for all the genes of your data set, it is important to realize that you
just performed the same type of test for thousands and thousands of genes. That means, that even if you
decide to focus on genes with a p-value smaller than 0.05, if you’ve looked at 10,000 genes your final list
may contain 0.05 ∗ 10, 000 = 500 false positive hits. To guard yourself against this, all the tools will offer
some sort of correction for the multiple hypotheses you tested, e.g. in the form of the Benjamini-Hochberg
formula. Generally, the severity of the “punishment” for the p-values will correspond to the number of
tests, i.e. the more genes you test, the smaller the raw p-values will have to be in order to pass the final
adjusted p-value threshold. You should definitely rely on the adjusted p-values rather than the original p-
values to identify possible candidate genes for downstream analyses and follow-up studies, but do look into
the independent filtering approach that DESeq2 employs (https://bioconductor.org/packages/release/
bioc/vignettes/DESeq2/inst/doc/DESeq2.html#indfilt).
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