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From DNA to phenotype
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From DNA to phenotype

Epigenetics

Woaddington's definition of epigenetics

Epigenetics encompasses the molecular mechanisms by which the genes of
the genotype bring about phenotypic changes [Waddington, 1942].
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From DNA to phenotype

Epigenetics: understanding how the genetic code is

interpreted (~ gene expression)

Genomicsjand epigenomics Transcriptomics

RO EANVAVAVAN

The study of the DNA sequence and The study of the RNA molecules
associated heritable biochemical present in a sample
modifications
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From DNA to phenotype

DNA does not occur naked in eukaryotic cells

Histone proteins are small alkaline proteins around which the DNA molecule is wrapped.
f Chen et al. (2014) doi: 10.1038/cddis.2014.337
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From DNA to phenotype

Chromatin = DNA + proteins + ncRNA

1400 nm
50-250K bp

histone

nucleo-
some

©Joe Kloc 11 nm “beads”
http://berkeleysciencereview.com/article/reading-between-the-genes/ ~ 147 bp

The most obvious function of chromatin is DNA compaction.
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From DNA to phenotype

DNA compaction

eukaryotic nucleus
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From DNA to phenotype

DNA compaction

Example for relatively trivial compaction:
375 m (~1230 ft) of yarn packed into a ball of about 10 cm x 4 cm
(4"x1.6") using simple coils

WILLIAM WONDRISKA

A LONG PIECE OF STRIN
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From DNA to phenotype

LE00
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DNA compaction relies on
a complicated
hierarchy of coils,
spools and loops
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http://berkeleysciencereview.com/article/reading-between-the-genes/ ~ 147 bp
Friederike Diindar (ABC, WCM) Epigenomics assays: ChlP-seq and ATAC-seq March 31, 2020 12 / 86




Studying Chromatin



Studying Chromatin

From DNA to phenotype: epigenetics

The current assumption is that the
chromatin structure is an essential

Pluripotent

part of defining an individual cell’s &8
fate, i.e. by interacting tightly with “"f

DNA and regulating access to it,
chromatin has a key role in how
transcription is achieved in a highly
time- and tissue-dependent

manner.
Transdifferentiation

“Understanding the chromatin structure can give a perspective of how a
certain mRNA expression state was reached and how a cell might advance.”
[Winter et al., 2015]
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Studying Chromatin

2 basic chromatin states based on nucleosome occupancy

For transcription to occur, the RNA Pol |l machinery needs to access the
naked DNA strand, i.e. the chromatin needs to be made locally
accessible.

Histone Histone
DNA proteins tails Heterochromatin
> 95% of the DNA
compacted and transcriptionally
repressed

Nucleosome

>

nucleosome
remodelers Euchromatin
2-3% of the DNA
“open” and
transcriptionally
permissive

wd

Transcription begins
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Studying Chromatin

Open chromatin harbors numerous regulatory elements

o Trans-regulatory elements = DNA encoding transcription factors = the
actual effectors are proteins (e.g. RNA Pol Il, Mediator, TF

o Cis-regulatory elements (CRE) = non-protein-coding DNA that regulates
transcription of neighboring genes = the effectors are thought to be (at least
partially) the DNA sequences (and sometimes their corresponding transcripts)

Enhancer/Silencer

Insulators Core

. promoter
[ranscription

7 7
‘DNA-looping’ I
ping
Core
promoter
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Studying Chromatin

Open chromatin harbors numerous regulatory elements

Cis-regulatory elements (CRE) = non-protein-coding DNA that influences gene
transcription

Distant CREs:

\,'A;r;ﬁ‘, o enhancers, silencers; fairly small
e (ca. 50-100 bp)
promotr o regions where additional TF or
inhibitor proteins bind
o often form indirect interactions

with the target promoter

promoter

promoter:
insulators:
o “beginning” of a gene: region )
where the Pol Il and its co-factors o eg prever.lt chroma-tln .
(10051) assemble condensation of active regions
o between 500-3,000 bp @ some insulators maintain
enhancers’ specificities by blocking
them from impinging on other
genes
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Studying Chromatin

Understanding cell-type specific chromatin accessibility

patterns helps dissect different cell type lineages
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Studying Chromatin

NGS techniques for studying chromatin and DNA
modifications

Basic concept

Enriching for DNA regions of interest and inferring their location
via NGS-based quantification.

Similar to RNA-seq, we're trying to
quantify regions of interest. In contrast to
RNA-seq, however, we're quantifying DNA
regions with specific properties — such as
being accessible — that make them
amenable to biochemical enrichment
strategies that exploit these properties.

125.1 Mb
|

I VO X
I
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Studying Chromatin

NGS techniques for studying chromatin and DNA
modifications

Basic concept

Enriching for DNA regions of interest and inferring their location
via NGS-based quantification.

O red dot = region of interest, e.g. transcription factor binding site
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Studying Chromatin

NGS techniques for studying chromatin and DNA
modifications

Basic concept

Enriching for DNA regions of interest and inferring their location
via NGS-based quantification.
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Studying Chromatin

NGS techniques for studying chromatin and DNA

modifications

Enriching for DNA regions of interest and inferring their location
via NGS-based quantification.
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ATAC-seq principles



ATAC-seq principles

|dentifying accessible chromatin regions

Active CRE (promoters, gene bodies, enhancers, TFBS) are expected to be
accessible.

[ MNase } https://www.the-scientist.com/

lab-tools/reveling-in-the-
Ly revealed-34261
ATAC
e

i s

s alln ol
11T T

ATAC

[ Open chromatin is identified via ATAC-, DNase-, MNase-seq (and more). ]
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ATAC-seq principles

Assay for transposase-accessible chromatin (ATAC)

Klerm et al (2019). /_@@7 ,—@@7 Tnb transposase with
doi 101038/ * sequencing adapters
s41576-018-0089-8 l

“attacks” nucleosome-
free DNA regions

]

- ~ TAGMENTATION
= DNA fragmentation +
adaptor-tagging

1 PCR and nuclei size select l

T —
™ ———————
L e— .
fragments that will be
l sequenced represent
Sequence short fragments nucleosome-free DNA
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ATAC-seq principles

ATAC-seq profiles
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ATAC-seq principles

Interpretation of ATAC-seq data

b Data interpretation

e AGGAAG
Peak calling to identify Transcription factor-
genomic regions "

enriched for a particular

binding motif
chromatin feature

Reconstructed model
of chromatin state and
Cell-type 1

‘ binding motifs

Differential regions
of enrichment
between cell types

Cell-type 2

Winter et al. (2015).
doi: 10.1038/nri3884

Shared

Differential
promoter enhancer
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ATAC-seq principles

ATAC-seq profiles are typically population snapshots

Klemm et al. (2019). doi: 10.1038/s41576-018-0089-8
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ATAC-seq principles

ATAC-seq profiles are typically population snapshots, but

scATAC-seq is possible
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Processing ATAC-seq data



Processing ATAC-seq data

Buouanbag

| 12
y Library complexity 7o)

(@) Data Analysis Workflow Quality Control
o FASTQ
c
— Raw data
7 4
hd

=4
o
© i) +4_-5 BAM BED
© Ararcregr
[m)] TCCACCTCAN ’ [
2 — —
& Reads alignment,

Remove adapter shifting, filtering

o the usual QC of FASTQ and alignment apply

Length distribution |

]
N ——

o alignment should be performed with an aligner tailored for genome

sequencing, i.e. not STAR, but rather BWA
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Processing ATAC-seq data

Established ATAC-seq pipelines

o ENCODE
> lots of QC scores and guidelines for identfying samples that
worked /failed
» somewhat cumbersome implementation
o Tom Carroll's R-based workflow
» mostly follows ENCODE's guidelines
» every command is shown including some explanations about important
parameters
» R is not the best-suited environment for some of the steps (e.g. bigWig
generation)

o Harvard FAS

» some steps of the ENCODE pipeline are re-worked /re-thought
» alternative peak caller (not yet peer-reviewed, but more
versatile/ATAC-seq-oriented than MACS2)

[ See Yan et al. [2020] for a detailed processing guide. ]
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https://www.encodeproject.org/atac-seq/
https://github.com/ThomasCarroll/ATAC_Workshop/blob/master/RU_ATAC_Workshop.Rmd
https://informatics.fas.harvard.edu/atac-seq-guidelines.html

Processing ATAC-seq data

Raw data processing: FASTQ to BAM

o FastQC — the usual suspects: sequencing quality, duplications,
contaminations
o adapter removal may be warranted
» PE sequencing will often lead to frequent adapter sequences for
ATAC-seq data because many fragments are shorter than 2x50bp

DNA fragment > 2x read length
R1 R2

N —
DNA fragment < 2x read length
R1 R2

- —

o genome aligners for short reads, e.g. Bowtie2 or BWA
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Processing ATAC-seq data

Raw data QC: filtering the BAM files

A Properly paired alignments B Unpaired alignments

The following reads are removed: s S
. . R1 R2 R2 R2
o mitochondrial reads — < % —
o discordantly “paired” reads R1 R2
. . RI R2 S — m—
o non-uniquely aligned reads = R Rl
. <=
Q PCR dUp||CateS https://informatics.fas.harvard.edu/ . R
. atac-seg-guidelines.html#qc _:>—<:|_
o reads corresponding to

~—
more than valid length (bowtie2 -X)

fragments < 40 bp (see slides
about fragment size
distributions) ———
o reads overlapping with
blacklisted regions

ol chrM

o T e TP R
UL T I e I R A R IR e RN N LI L R R AR N IR R R AR IR R RERIR IR A
chr9

e e e s Mlesecaahdibiae e e ‘Ahnm‘lu.. v b edoabhasn ot s o o sl

Montefiori et al. (2017) doi: 10.1038/s41598-017-02547-w SYK
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Processing ATAC-seq data

PCR duplicates are frequent — more so for low cell

numbers!

Sample
100-  =w= SRR891269-50K

=»= SRR891270-50K

<z

2 o= SRR891271-50K

% 757 e SRRE91272-500 ideally, library complexities
S ~w= SRRB91274-500 should be similar between
5 replicates...
£ so-

T

[

-

k]

a

~few cells — lots of PCR — decreased lib. complexity
Ou et al (2018). doi: 10.1186/s12864-018-4559-3

0 100 200 300 400
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Processing ATAC-seq data

The dominant fragment size distribution signal in

ATAC-seq should reflect the nucleosome pattern

% <«——inherent preference for short fragments
8-
= 40 — 100 bp fragments: nucleosome-free
= 160 — 250 bp fragments: mono-nucleosomes
2 ' = 260 — 400 bp fragments: di-nucleosomes
S~ .
O
(@]
®
L W
€ &
O A1 Wei et al. (2018). doi: 10.1093/bioinformatics/bty141

0 250 500 750 1000
Fragment Length (bp)
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Processing ATAC-seq data

Examples of ATAC-seq frag. size distributions

a SRR891270 l SRR580802
.
.
. pe
% i
i.
i it
:
B T S B S~
et E—
Ou'etal (2018). doi: 10.1186/512864-018-4559-3
g SRR5720369

= typical problems seen here: EI:

= overdigestion/too much Tn5

= too little Tn5/incomplete
digestion

= flawed size selection

Normatzed rend donsiy x 10°
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Processing ATAC-seq data

Blacklisted regions: regions with spurious signals

o typically appear uniquely mappable

o often found at specific types of repeats such as centromeres, telomeres and
satellite repeats

o especially important to remove these regions before computing measures of
similarity

Blacklists were generated empirically by the (mod)ENCODE consortium:
http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/

INPUT_S2cels.
t200_b1.bw

PR N T sttt

Input_MSL2_RN;
i_A_male bw

Input_MOF _fem:
bw

Input_MOF _mal

Genes“ s b ia Lhandi "

bedtools intersect -abam reads.bam -b blacklisted.bed > filtered_reads.bam

Friederike Diindar (ABC, WCM) Epigenomics assays: ChlP-seq and ATAC-seq March 31, 2020 38/ 86


http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/

Processing ATAC-seq data

(a) Data Analysis Workflow
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Processing ATAC-seq data

Checking the signal enrichment for ATAC-seq

Following the filtering of the BAM files, the next QC steps include:
o fraction of reads in peaks (FRiP)
o enrichments around active TSS
o visual inspection (genome browser!)

FASTQ

S\

BWA
n MACS2 deepTools BEDGRARHY

peaks coverage files
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Processing ATAC-seq data

Checking the signal enrichment: generating coverage files

BAM file bedGraph/bigWig

39VBAVEIBCORLHACI:1216:16137:31960 163 chrt 2000307 42 51M = 2 100100 100124
CTGTAGTTACTGTTTGCTTACCTAGATTCTTCTTTTCCAGAATTCTCTTAG chez 1ot g
CCCFFFFFHHHGHIIIIJJIGHFGIGIIJJJHIHEHIGIIIJIGF AS:i:0 XN:i:0 XM:i:0 o}
XO:i:0 XG:i:0 NM:i:0 MD:Z:51 YS:i:0 YT:Z:CP '

Fso00

Position (bp)

deepTools [Ramirez et al., 2016] offers the bamCoverage function that is
fairly versatile and flexible
o check out the documentation!
o several types of normalization to account for sequencing depth
differences
» RPGC (reads per gen. content):
recommended
» RPKM: division by total number of reads

reads per bin
(all reads xfragment length/ effective genome size)

bamCoverage --bam a.bam -o a.SegDepthNorm.bw --binSize 10 \
--normalizeUsing RPGC -—-effectiveGenomeSize 2150570000 \
--ignoreForNormalization chrX -minFragmentLength 40
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https://deeptools.readthedocs.io/en/develop/content/tools/bamCoverage.html

Processing ATAC-seq data

Checking the signal enrichment: TSS focus

g T deepTools offers functions for
i .
£ast . visualizations of the bigWig files
§ 15 R $ computeMatrix reference-point \
; -S ATACseq.bigwig -R genes.bed \
5L . ] --referencePoint TSS \

20  center 2.0Kb -a 2000 -b 2000 \ ## bp before and

# after refPoint
—out ATAC_TSS.tab.gz

uster_1

$ plotHeatmap -m ATAC_TSS.tab.gz \
-out hm_ATAC.png \
—-heatmapHeight 15 \

--refPointLabel center
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Processing ATAC-seq data

Checking the signal enrichment: peak calling

identifying regions with higher read coverage than expected based on the
background

TN T

S T F T
el Lald | B

e i N e 2 a . e
- I % Lad
F'—'—'T"M—"—"'—'HH—W - ~ - = ol [

Friederike Diindar (ABC, WCM) Epigenomics assays: ChlP-seq and ATAC-seq March 31, 2020 43 / 86



Processing ATAC-seq data

Checking the signal enrichment: peak calling

Starting from the BAM file:

@ generate a signal of fragment counts along the genome
@ identify regions of enrichment

processed
read counts

—W/\m

position on chromosome (bp)

@ assess significance of enrichment

Enrichment Enrichment
‘/@]‘5 ratio: 4
Chip 15 2

Enrichment
ratio: 15

---------------------------------- p-values
ool =0T A FDR
enrichment ratios: 1.5 4 1.5

We usually use MACS [Zhang et al., 2008]; mostly because it's part of most pipelines, not
because it's such a great tool (but it has proven itself to be fairly robust and useful).

Friederike Diindar (ABC, WCM) Epigenomics assays: ChlP-seq and ATAC-seq March 31, 2020 44 / 86



Processing ATAC-seq data

Peak calling

COUNT-BASED

SICER/epic2

© ZINB
ZINBA |}

[ F-seq |\ © Kernel density estimation
[ PeakpEck

© Gaussian mixture model
JAMM  |——————————

© None

Wl SHAPE-BASED 1

© Bayesian hierarchical truncated t-mixture model
PICS |

© Mixture of multivariate Polya distribution A
PolyaPeak [r |

© Gaussian filter and Mahalanobis distance "

= MARKOV MODEL

Yan et al. (2020)

j

CLC

HMMRATAC
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Processing ATAC-seq data

Peak calling

Identifying and assessing regions of enrichment with MACS

@ Sliding a window of length 2 x bandwidth (= half of estimated
sonication size) across genome and determine read counts

@ Retain windows with counts > MFOLD (fold-enrichment of
treatment/back-ground)

@ PEAKS: probability of an enrichment being stronger than expected

» HO: reads are randomly distributed throughout the genome following a
Poisson distribution

» Determine the background distribution (A\) by sliding a window of size 2
x fragment size across the background to estimate the local coverage

MACS2 callpeak -t pairedEnd.bam -f BAMPE --outdir path/to/output/ \
--name pairedEndPeakName -g 2.7e9

See Tom Carroll's pipeline for detailed MACS2 commands.
The result of MACS is a BED file of regions with sign.
enrichments, i.e. peaks.
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https://github.com/ThomasCarroll/ATAC_Workshop/blob/master/RU_ATAC_Workshop.Rmd

Processing ATAC-seq data

Checking signal enrichments: FRiP

. __ reads in peaks
FRiP = total reads

T T .1 L
Ll b ) l
O U VTN Y W | R

A o i W T
e e Y NI W WA VI
B s =

FRiP > 0.3 is optimal; FRiP > 0.2 acceptable by ENCODE standards.
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Processing ATAC-seq data

checklist ATAC-seq

o fragments of 40 - 100 bp size should be over-represented
o 1/3 of the reads should fall into peaks (FRiP)

o very sharp and not too broad enrichments around TSS of active genes
o IGV snapshots: the signal should look sharp and high

a SRR891270 ‘:T_‘,Tu_u c
w =
3 .
i
E -« < &9
% T T - § & 1o 0 w0 100
Scale Buenrostro et al g013). doi: 10.1038/nmeth.2688
Chrig: POKDY 1hgt
36,150,000/ 36,200,0001 36,250,0001
1-
ATAC-seq
(50,000 cells
per replicate) l
0- i
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Processing ATAC-seq data

Typical downstream analyses following ATAC-seq peak

identification

Peaks = regions of open chromatin

o annotation with known genes, i.e. do the peaks overlap with
TSS/exons/introns?
» bedtools suite [Quinlan, 2014], ChIPpeakAnno [Zhu et al., 2010],
ChIPseeker [Yu et al., 2015]
o overlap with known enhancers, e.g. via GREAT McLean et al. [2010]
o motif analysis — difficult without additional information b/c TFBS motifs are
often very short and exceedingly frequent throughout the genome
» MEME suite: de novo motif detection & motif enrichment analysis
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https://bedtools.readthedocs.io/en/latest/content/bedtools-suite.html
http://great.stanford.edu/public/html/
http://meme-suite.org/

Processing ATAC-seq data

Open chromatin != expression

Correlating open chromatin regions with specific gene expression is not
straight-forward (except for the TSS, perhaps).

g Corces et al. (2016) Nat Genetics  ATAC-seq RNA-seq
HSC 1 J o
© 17 TN J L]l
cMP @1 i H
Despite heterogenous
GMP EI .- L
@ chromatin accessibility
MEP 01 I 1 across the different cell
J 1L (N I L i types, the TET gene is
cDs o] l constitutively
Lol L 1 expressed throughout.
@] || |
l 1 " (e |
A A A A
NK HSPC  TSS Lymphoid O 4000 8,000
Normalized
TETZ)»——i——ﬂ counts
(TET2)
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ChlP-seq principles



ChlIP-seq principles

NGS techniques for studying chromatin and DNA

modifications

Scale = q
1bp DNA modifications
5mC  CS5-methylcytosine DMP.
shmC  Co-hydroxymethylcytosine | DMES
/ 5(C_ Cs-formylcytosine Feras
5caC  Cs-carboxylcytosine 3
§ 3mC  N3-methylcytosine PMB; 4
5 6mA  N6-methyladenine COMETs

spew

Histone modifications and variants
12 modifications.
30 variants

The majority of epigenomics data
130 PTM sites i
{m.mmmmhmpmm } entails profiles of nucleosome

hmyy{ll!on. formylation, smwo!htlm . .
occupancy, specific histone marks
and transcription factor binding.

crotonylation, proline isomerization and
ADP ribosylation

DNase-seq, FAIRE-seq,
DGF,NOME-seq and

These information are all inferred
R based on which DNA sequences
ChAFET and S we find over-represented in our
data set.

Stricker et al. (2016) doi: 10.1038/nrg.2016.138

T
sameay

Chromatin domains
TADs, LADs, LRESs,
LREAs, COMETs and LOCKs
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ChlIP-seq principles

NGS techniques for studying chromatin and DNA

modifications

Depending on the type of insights you're interested in, there are different

ways of enrichment.

How to enrich for the NA Biological insights

Example technique

Nuclease susceptibility nucleosome packaging
regulatory regions

DNase-seq, MNase-seq
ATAC-seq

Affinity-based enrichments protein-DNA interactions
histone modifications
protein-RNA interactions
chromatin-chromatin interactions
RNA modifications

ChlIP-seq

CLIP-seq
ChIA-PET
mb6A-seq, MeRIP-Seq,

Proximity ligation chromatin-chromatin interactions

3C, Hi-C, ChlA-PET, ...

Chemical susceptibility DNA modifications

WGBS, RRBS

Table based on Friedman and Rando [2015]
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ChlIP-seq principles

|dentifying transcription factor binding sites with ChIP

(The “chromatin” in ChIP just means “any protein interacting with DNA")

Chromatin immuno-precipitation

https://www.the-scientist.com/
lab-tools/reveling-in-the-
revealed-34261

MNase

DNase

ATAC

The vast majority of TFBS has been found in regions of open chromatin.
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ChlIP-seq principles

Extracting DNA sites bound by a TF of interest

Mundade et al. (2014)
doi: 10.4161/15384101.2014.949201

I ATGGCGGCGATGGCGGCAACCACCAC l

Crosslink the prot!nDNA complexes '_"_I_I_“ |_I_|]_|_|j_]_|_|_|_'
NN
Sonicate protein-DNA fragments

vig ¥

Cross-links are reversed, and [DNA is
purified and ready for library prep.

VA
'.w

Primary antlbody&beads(B) j“ ,». }

e
b ® ©

IMMUNOPRECIPITATION
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ChlIP-seq principles

Extracting DNA sites bound by a TF of interest

Principles of immunoprecipitation

o based on the principle of antibody-antigen interaction: antibody is
incubated with cell lysates that contain the target protein bound to
DNA

o the DNA-protein-antibody complex is then captured by
antibody-binding proteins that are attached to magnetic beads

o the DNA bound to the initial target protein can then be eluted from
the beads for further analysis.
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ChlIP-seq principles

Extracting DNA sites bound by a TF of interest: principles

of immunoprecipitation

1. Ag-antibody complex

Heavy Chain

> o

Light Chain
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ChlIP-seq principles

Extracting DNA sites bound by a TF of interest:

principles

of immunoprecipitation

1. Ag-antibody complex

Heavy Chain e
Light Chain ;x_ﬁi >
< 5
EW.“ ’ %’__ 7

A !
AoteinA
=N beads
" Protein A/G

2. Ag-antibody complex bound by an antibody-binding protein (e.g.
protein A) + beads
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ChlIP-seq principles

Extracting DNA sites bound by a TF of interest:

of immunoprecipitation

principles

1. Ag-antibody complex

Heavy Chain

Light Chain

Proteln A
Protein G beads
Proteln AG

2. Ag-antibody complex bound by an antibody-binding protein (e.g.

protein A) + beads 1

D
p=d

S

3. Ag-ab-protA complex is purified & DNA is subsequently released
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ChlIP-seq principles

ChIP + NGS = ChlP-seq

‘ Immunoprecipitation

l DNA purification

Immunoprecipitation (= enrichment of DNA
— bound to the protein of interest) is followed

ﬁm&pmw by high-throughput sequencing of the
E— recovered DNA fragments.

l Cluster generation

1]

Sequence and map reads to
reference genome
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ChlIP-seq principles

In contrast to ATAC-seq, nobody would say ChIP-seq was

“easy”

o cross-linking is a frequent source of bias
> too short — proteins will be lost during the sonication
» the longer the fixation, the more proteins are artificially linked with DNA
("non-specific capturing of reactive soluble proteins" [Baranello et al.,
2016])
o sonication can be fickle and inherently favors open chromatin regions
o ChIP depends on antibodies
» expensive! (typically 1 vial of antibody per experiment)
> cross-reactivity: the antibody may bind to more than just the protein of
interest
» successful binding needs incredibly optimized conditions
» signal-to-noise ratio will depend on how abundantly the protein of
interest binds to DNA
o entire protocol takes 3-4 days to complete (before sequencing!)
o requires lots of cells (1-10 mio)

See, for example, Jordan-Pla and Visa [2018] for how to optimize ChIP experiments.
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Processing of ChlP-seq data



Qin et al. (2016). doi: 10.1186/512859-016-1274-4 4,

many basic processing steps are the same for ATAC- and ChlP-seq

Friederike Diindar (ABC, WCM)

Processing of ChIP-seq data

Data Analysis
D Quality control
/ I \ - Data processing

1. Reads Layer
a. Sequence B d c. Library
quality/GC apping contamination
contents B filte
b. Uniquely d. Library
mapped ratio complexity
. ChiP Layer L ]
A g. Reads ratio in
e. Fragment size p DHS/promoters/
exons
Replicates h. Peaks
f. FRiP correlation/ numbers by fold
overlap change
|

data, but some QC scores differ

Epigenomics assays: ChlP-seq and ATAC-seq

Reads within FASTQ
files correspond to the
captured DNA, i.e.
pieces captured by the
antibody (e.g. against a
TF) as well as all the
background DNA. In fact,
the vast majority will be
representative of the
entire genome (>95%).

Alignment is necessary
prior to the identification
of regions where more
reads than expected by
chance are found
(quantification and
statistical assessment =
peak calling).
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Processing of ChIP-seq data

ChIP enrichments are often marginal and variable across

experiments

TF often yield well below (!) 1% the same histone mark (same
enrichment, histone marks usually antibody) done in different labs
below 10% (check the y-axis here!)
3,989 bp
7,942,000bp 7,943,000 bp 7,944,000 bp
0045, TF 24 histone mark H3K4me3 : ‘ ‘
0.04 1 ®act osk “Apls2-P Rpla2-N ﬁgl():;ratoryA:
0006 2 replicate 1) aidben
- 0.03 16 (Elglg;ratory A
é e replicate 2) - M--
T o0 12 ESCs
£ o

(laboratory A;
0.015 0.8 replicate 3) .“

0.01 ESCs
0.4 (laboratory B)
0.005

0 0 Differentiated

cells fromESCs
Mef2 IP H3K27ac IP (laboratory B)
. . NI S}
Ghavi-Helm et al (2016). doi:10.1007/978-1-4939-6371-3_16

Meyer & Liu (2014). g

doi: 10.1038/nrg3788 NANOG
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Processing of ChIP-seq data

Different types of ChlP'ed factors will yield different types

of signals (idealized version)

CTCF

/ very focused TFBS ———

ha A Aan A.LAM.A - e A A asan manama A A P A s A Ak

RNA polymerase Il ived signal:

massive peak @ TSS,
broad enrichment over gene

VY WY N s A NN AL Vo AN

H3K36me3 broad signal (enriched over transcribed region)

OV R N

broad signal

H3K27me3 non-transcribed region
FBXO7 Park (2009). doi: 10.1038/nrg2641
==
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Processing of ChIP-seq data

Different types of ChlP'ed factors will yield different types

of signals (real-life example)

DESI2
Qlonco . Clo101 gy Cam J
e mnd‘u Jaa 2lN Jaamoln Jea 00M mm;a 5
m Nakato & Shirahige (2017). doi: 10.1093/bib/bbw023 M
| e
RNA Pol 1l 4 200
‘M—‘-—‘M. PRSP - k. u—n&Lﬁ'
= 1000
H3K4me3 500
Ll L o : 4 : l
+ + + + 1 30
H3K36me3 IN | i 5 l 150
| + .m M -t WSS 200

HaKImes e
! 200

H3K9me3 1 100

MMMMM .

Input 200
244 244, 244 244 244 245, 2451
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Processing of ChIP-seq data

Peak calling: different ChlP'ed factors require different

peak callers

Identifying peaks for sharp, narrow, high enrichments is easy (= MACS).
Assigning stats to broad enrichment is still an unsolved issue.

narrow & strong é) e.g. MACS
o broad signal @
nput ‘ ‘ S TR
— ——— L. N
e —— A |
' See Wilbanks et al.
N @ [2010] and Thomas et
mixed signal
al. [2017] for
(755 binding pattem .
evaluations of peak

() Putative divergent (@) Transcription Terminator
Transcription Polll binding (i) Coding region Polll binding pattem ca | |ers X
pattem binding pattem

L il e - -
37 770 000 37772000 37774 000 37 776 000 37 778 000
Cyp26at
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Processing of ChIP-seq data

Peak calling: different ChlP'ed factors require different

peak callers

Identifying peaks for sharp, narrow, high enrichments is easy (= MACS).
Assigning stats to broad enrichment is still an unsolved issue.

%  Comprehensive list is at: https://omictools.com/peak-calling-category

MACS2 (MACS1.4)
Epic (SICER)
BayesPeak
Jmosaics

T-PIC

EDD

GEM

sPP

Most widely used peak caller. Can detect narrow and broad peaks.
Specialised for broad peaks

R/Bioconductor

Detects enriched regions jointly from replicates

Shape based

Detects megabase domain enrichment

Peak calling and motif discovery for ChIP-seq and ChIP-exo

Fragment length computation and saturation analysis to determine if read depth is
adequate.
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Processing of ChIP-seq data

ChIP experiment absolutely require an “input” control

“Input” = the ChIP experiment without the antibody addition

N —— -

ChIP—seq input DNA Park (2009). doi: 10.1038/nrg2641

MLMMWA

Pros35 CG4908 eEFId
L —-

10, 220 000 10, 225 000 10, 230 000

Ideally, input samples should be done in parallel with the ChIP experiments; they
should also be sequenced at least as deeply or more deeply sequenced than the
ChIP samples.
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Processing of ChIP-seq data

Peak calling: take input samples into consideration!

( Remove redundancy )‘ ( Remove redundancy )l

Select 1,000 regions with a
10- to 30-fold enrichment relative|
to the genome background
Build model and estimate
DNA fragment size d

Shift reads toward 3’ end by d )

Scale two libraries

(C_call candidate peaks relative to genome background )

( Calculate dynamic A for candidate peaks )

((calculate P value and flter candidate peaks ))

( Calculate FDR by exchanging treatment and control ),

Friederike Diindar (ABC, WCM)

INPUT_S2cells.¢

t200_b1.bw ]_ L
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Input_MOF_femg
bw
Input_MOF_male
k4 PP T Lol
Input_Polll_femal
e.bw '“ HI
H4_male. bw
H4_female.bw
(W T T T B IR

| sssimtssdinties ) bl

Epigenomics assays: ChlP-seq and ATAC-seq

Consider the bioconductor package
GreyListChIP to define
cell-type-specific regions of input biases.
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Processing of ChIP-seq data

Signal check: fingerprints instead of FRiP

How well can signal & background be separated?

A very specific and strong ChIP enrichment will be indicated by a prominent and
steep rise of the cumulative sum towards the highest rank. This means that a big
chunk of reads from the ChlIP sample is located in few bins which corresponds to
high, narrow enrichments typically seen for transcription factors.

L
—— input
— H3K4me3

when counting the reads contained in 97% of

all genomic bins, only 55% of the maximum

.-==""""™ number of reads are reached, i.e. 3% of the
genome contain a very large fraction of reads!

o
=

this indicates very localized, very strong
enrichments! (as every biologist hopes for in a
%5 02 04 06 08 vw ChIP for H3K4me3)

## another deepTools function
$ plotFingerprint -b testFiles/*bam --labels H3K4me3 H3K4mel H3K27me3 \
--plotFile fingerprints.png --outRawCounts fingerprints.tab
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Processing of ChIP-seq data

Signal check: fingerprints instead of FRiP

10 . 10
—— input —— input

— H3K36me3 — H3K27me3
o8 this is an almost Lo
perfect input
06 “fingerprint”
Q

\
N

difference
between input
and ChlIP signal
04 is less clear
here

04

A

02 0.2

u%.ﬂ, s 02 04 06 o8 10 0'%.0 02 04 06 o8 10
Tt rank rank
pay attention to where the curves H3K27me3 is a mark that yields broad
start to rise — this already gives you domains instead of narrow peaks
an assessment of how much of the <
genome you have not sequenced at more difficult to distinguish input

all (i.e. bins containing zero reads) and ChIP, it does not mean,
however, that this particular ChIP
experiment failed
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Processing of ChIP-seq data

Overview of typical ChIP-seq-based analyses

~
Alignment to the Rsubread
genome Rsamtools
Peak Calling *MACS2
v
htSeqTools
Quality control chiPQC
GreyListChIP
J ¢ ¢ Downstream Analysis
l/ Differential Visualization of Peak Annotation g:;z_ceelzz
f Binding analysis ChiP-seq signal : peal nno}
{ unctional categories i
[ DiffBind . (Gene ontology, IGREAT ) ‘
[ DBChIP 50GGi ChiP-Enrich
i pathways)
! Manorm tracktables i ‘
*IGV MotifDB
N comp deepTools @ Motif analyses “MEME-ChiP

de Santiago, |., & Carroll, T. (2018). Analysis of ChIP-seq data in R/Bioconductor. Methods in Molecular Biology
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Processing of ChIP-seq data

Comparing different ChlP-seq experiments

o comparing the levels of ChIP (and ATAC)-seq enrichments across
different conditions is more difficult than one would have hoped for
[Guertin et al., 2018]

» Steinhauser et al. [2016] did a comparison of differential ChlP-seq tools
> the winner tends to be the bioconductor package DiffBind, which is
basically a sophisticated wrapper around DESeq

o relatively few efforts have been made towards understanding
ChlP-seq/ATAC-seq-specific data properties, but the general consensus
is that particularly ChlP-seq is awfully noisy and dependent on too
many experimental parameters

"Although we would ideally want to study the absolute levels of binding, we
have to accept the limitations of ChlP-seq [and ATAC-seq] and adapt by
designing experiments in such a way that meaningful conclusions can be
drawn from relative levels." [Meyer and Liu, 2014]
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Summary



Summary

NGS approaches for epigenomics

Transcriptome
Y - — ———— ‘:\\
y ) QN
RNA-seq 95@\ scRNA:-seq
| bulk IncRNA S single-cell |
| transcriptome  GCRNA transcriptome
\ miRNe / Exome
eRNA / y /.

WES

exome sequencing \
targeted genomic region |
sequencing v

ChiP-seq

\ g 4 K ,//'
\ )\ <
/" TF binding ATAC-seq
enhancers, \
p300
promoters
N HeKkaz7 /-~ chromatin
% //

i-c .
. chromatin topology BS-s@q me"v/atn”
5hmc-seq

~ Epigenome

Friederike Diindar (ABC, WCM)

Epigenomics assays: ChlP-seq and ATAC-seq

DNA = more or less immutable
code

RNA = the code's local read-out
“epigenome” = additional
molecules or chemical DNA
modifications that govern the
process of DNA-to-RNA
transcription

technically, epigenetics only refers
to heritable marks that influence
transcription [Ptashne, 2013]

in practice, epigenomics is often
used to describe all kinds of
aspects of transcription regulation,
including highly dynamic ones!
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