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From DNA to phenotype

Epigenetics

Waddington’s definition of epigenetics

Epigenetics encompasses the molecular mechanisms by which the genes of
the genotype bring about phenotypic changes [Waddington, 1942].
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From DNA to phenotype

Epigenetics: understanding how the genetic code is
interpreted (~ gene expression)
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From DNA to phenotype

DNA does not occur naked in eukaryotic cells
Histone proteins are small alkaline proteins around which the DNA molecule is wrapped.
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From DNA to phenotype

Chromatin = DNA + proteins + ncRNA

The most obvious function of chromatin is DNA compaction.
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From DNA to phenotype

DNA compaction

Friederike Dündar (ABC, WCM) Epigenomics assays: ChIP-seq and ATAC-seq March 31, 2020 10 / 86



From DNA to phenotype

DNA compaction

Example for relatively trivial compaction:
375 m (~1230 ft) of yarn packed into a ball of about 10 cm x 4 cm

(4”x1.6”) using simple coils
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Studying Chromatin

From DNA to phenotype: epigenetics

The current assumption is that the
chromatin structure is an essential
part of defining an individual cell’s
fate, i.e. by interacting tightly with
DNA and regulating access to it,
chromatin has a key role in how
transcription is achieved in a highly
time- and tissue-dependent
manner.

“Understanding the chromatin structure can give a perspective of how a
certain mRNA expression state was reached and how a cell might advance.”

[Winter et al., 2015]
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Studying Chromatin

2 basic chromatin states based on nucleosome occupancy
For transcription to occur, the RNA Pol II machinery needs to access the
naked DNA strand, i.e. the chromatin needs to be made locally
accessible.
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Studying Chromatin

Open chromatin harbors numerous regulatory elements

Trans-regulatory elements = DNA encoding transcription factors ⇒ the
actual effectors are proteins (e.g. RNA Pol II, Mediator, TF
Cis-regulatory elements (CRE) = non-protein-coding DNA that regulates
transcription of neighboring genes ⇒ the effectors are thought to be (at least
partially) the DNA sequences (and sometimes their corresponding transcripts)
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Studying Chromatin

Open chromatin harbors numerous regulatory elements
Cis-regulatory elements (CRE) = non-protein-coding DNA that influences gene
transcription

promoter:

“beginning” of a gene: region
where the Pol II and its co-factors
(100s!) assemble
between 500-3,000 bp

Distant CREs:

enhancers, silencers; fairly small
(ca. 50-100 bp)
regions where additional TF or
inhibitor proteins bind
often form indirect interactions
with the target promoter

insulators:

e.g. prevent chromatin
condensation of active regions
some insulators maintain
enhancers’ specificities by blocking
them from impinging on other
genes
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Studying Chromatin

Understanding cell-type specific chromatin accessibility
patterns helps dissect different cell type lineages
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Studying Chromatin

NGS techniques for studying chromatin and DNA
modifications

Basic concept

Enriching for DNA regions of interest and inferring their location
via NGS-based quantification.

Similar to RNA-seq, we’re trying to
quantify regions of interest. In contrast to
RNA-seq, however, we’re quantifying DNA
regions with specific properties – such as
being accessible – that make them
amenable to biochemical enrichment
strategies that exploit these properties.
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Studying Chromatin

NGS techniques for studying chromatin and DNA
modifications

Basic concept

Enriching for DNA regions of interest and inferring their location
via NGS-based quantification.

red dot = region of interest, e.g. transcription factor binding site
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Studying Chromatin

NGS techniques for studying chromatin and DNA
modifications

Enriching for DNA regions of interest and inferring their location
via NGS-based quantification.
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ATAC-seq principles

Identifying accessible chromatin regions
Active CRE (promoters, gene bodies, enhancers, TFBS) are expected to be
accessible.

Open chromatin is identified via ATAC-, DNase-, MNase-seq (and more).
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ATAC-seq principles

Assay for transposase-accessible chromatin (ATAC)
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ATAC-seq principles

ATAC-seq profiles
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ATAC-seq principles

Interpretation of ATAC-seq data
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ATAC-seq principles

ATAC-seq profiles are typically population snapshots

ATAC-seq
profiles usually
represent the
average

accessibility of
a heterogeneous
collection of

single molecules.
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ATAC-seq principles

ATAC-seq profiles are typically population snapshots, but
scATAC-seq is possible
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Processing ATAC-seq data

the usual QC of FASTQ and alignment apply
alignment should be performed with an aligner tailored for genome
sequencing, i.e. not STAR, but rather BWA
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Processing ATAC-seq data

Established ATAC-seq pipelines

ENCODE
I lots of QC scores and guidelines for identfying samples that

worked/failed
I somewhat cumbersome implementation

Tom Carroll’s R-based workflow
I mostly follows ENCODE’s guidelines
I every command is shown including some explanations about important

parameters
I R is not the best-suited environment for some of the steps (e.g. bigWig

generation)
Harvard FAS

I some steps of the ENCODE pipeline are re-worked/re-thought
I alternative peak caller (not yet peer-reviewed, but more

versatile/ATAC-seq-oriented than MACS2)

See Yan et al. [2020] for a detailed processing guide.
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Processing ATAC-seq data

Raw data processing: FASTQ to BAM

FastQC – the usual suspects: sequencing quality, duplications,
contaminations
adapter removal may be warranted

I PE sequencing will often lead to frequent adapter sequences for
ATAC-seq data because many fragments are shorter than 2x50bp

genome aligners for short reads, e.g. Bowtie2 or BWA
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Processing ATAC-seq data

Raw data QC: filtering the BAM files

The following reads are removed:
mitochondrial reads
discordantly “paired” reads
non-uniquely aligned reads
PCR duplicates
reads corresponding to
fragments < 40 bp (see slides
about fragment size
distributions)
reads overlapping with
blacklisted regions
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Processing ATAC-seq data

PCR duplicates are frequent – more so for low cell
numbers!

See Daley and Smith [2013] and their preseqR package for predicting library complexities.
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Processing ATAC-seq data

The dominant fragment size distribution signal in
ATAC-seq should reflect the nucleosome pattern
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Processing ATAC-seq data

Examples of ATAC-seq frag. size distributions
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Processing ATAC-seq data

Blacklisted regions: regions with spurious signals

typically appear uniquely mappable
often found at specific types of repeats such as centromeres, telomeres and
satellite repeats
especially important to remove these regions before computing measures of
similarity

Blacklists were generated empirically by the (mod)ENCODE consortium:
http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/

bedtools intersect -abam reads.bam -b blacklisted.bed > filtered_reads.bam
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Processing ATAC-seq data
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Processing ATAC-seq data

Checking the signal enrichment for ATAC-seq

Following the filtering of the BAM files, the next QC steps include:
fraction of reads in peaks (FRiP)
enrichments around active TSS
visual inspection (genome browser!)
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Processing ATAC-seq data

Checking the signal enrichment: generating coverage files

deepTools [Ramírez et al., 2016] offers the bamCoverage function that is
fairly versatile and flexible

check out the documentation!
several types of normalization to account for sequencing depth
differences

I RPGC (reads per gen. content): reads per bin
(all reads ∗fragment length/effective genome size)

recommended
I RPKM: division by total number of reads

bamCoverage --bam a.bam -o a.SeqDepthNorm.bw --binSize 10 \
--normalizeUsing RPGC --effectiveGenomeSize 2150570000 \
--ignoreForNormalization chrX –minFragmentLength 40
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Processing ATAC-seq data

Checking the signal enrichment: TSS focus

deepTools offers functions for
visualizations of the bigWig files
$ computeMatrix reference-point \
-S ATACseq.bigwig -R genes.bed \
--referencePoint TSS \
-a 2000 -b 2000 \ ## bp before and

# after refPoint
-out ATAC_TSS.tab.gz

$ plotHeatmap -m ATAC_TSS.tab.gz \
-out hm_ATAC.png \

--heatmapHeight 15 \
--refPointLabel center
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Processing ATAC-seq data

Checking the signal enrichment: peak calling

= identifying regions with higher read coverage than expected based on the
background
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Processing ATAC-seq data

Checking the signal enrichment: peak calling
Starting from the BAM file:

1 generate a signal of fragment counts along the genome
2 identify regions of enrichment

3 assess significance of enrichment

We usually use MACS [Zhang et al., 2008]; mostly because it’s part of most pipelines, not
because it’s such a great tool (but it has proven itself to be fairly robust and useful).
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Processing ATAC-seq data

Peak calling
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Processing ATAC-seq data

Peak calling

Identifying and assessing regions of enrichment with MACS
1 Sliding a window of length 2 x bandwidth (= half of estimated

sonication size) across genome and determine read counts
2 Retain windows with counts > MFOLD (fold-enrichment of

treatment/back-ground)
3 PEAKS: probability of an enrichment being stronger than expected

I H0: reads are randomly distributed throughout the genome following a
Poisson distribution

I Determine the background distribution (λ) by sliding a window of size 2
x fragment size across the background to estimate the local coverage

MACS2 callpeak -t pairedEnd.bam -f BAMPE --outdir path/to/output/ \
--name pairedEndPeakName -g 2.7e9

See Tom Carroll’s pipeline for detailed MACS2 commands.

The result of MACS is a BED file of regions with sign.
enrichments, i.e. peaks.
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Processing ATAC-seq data

Checking signal enrichments: FRiP

FRiP = reads in peaks
total reads

FRiP > 0.3 is optimal; FRiP > 0.2 acceptable by ENCODE standards.
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Processing ATAC-seq data

QC checklist ATAC-seq

fragments of 40 - 100 bp size should be over-represented
1/3 of the reads should fall into peaks (FRiP)
very sharp and not too broad enrichments around TSS of active genes
IGV snapshots: the signal should look sharp and high
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Processing ATAC-seq data

Typical downstream analyses following ATAC-seq peak
identification

Peaks = regions of open chromatin

annotation with known genes, i.e. do the peaks overlap with
TSS/exons/introns?

I bedtools suite [Quinlan, 2014], ChIPpeakAnno [Zhu et al., 2010],
ChIPseeker [Yu et al., 2015]

overlap with known enhancers, e.g. via GREAT McLean et al. [2010]
motif analysis – difficult without additional information b/c TFBS motifs are
often very short and exceedingly frequent throughout the genome

I MEME suite: de novo motif detection & motif enrichment analysis
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Processing ATAC-seq data

Open chromatin != expression

Correlating open chromatin regions with specific gene expression is not
straight-forward (except for the TSS, perhaps).

Despite heterogenous
chromatin accessibility
across the different cell
types, the TET gene is
constitutively
expressed throughout.
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ChIP-seq principles
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ChIP-seq principles

NGS techniques for studying chromatin and DNA
modifications

The majority of epigenomics data
entails profiles of nucleosome

occupancy, specific histone marks
and transcription factor binding.

These information are all inferred
based on which DNA sequences
we find over-represented in our

data set.
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ChIP-seq principles

NGS techniques for studying chromatin and DNA
modifications

Depending on the type of insights you’re interested in, there are different
ways of enrichment.

Table based on Friedman and Rando [2015]
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ChIP-seq principles

Identifying transcription factor binding sites with ChIP
(The “chromatin” in ChIP just means “any protein interacting with DNA”)

The vast majority of TFBS has been found in regions of open chromatin.
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ChIP-seq principles

Extracting DNA sites bound by a TF of interest
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ChIP-seq principles

Extracting DNA sites bound by a TF of interest

Principles of immunoprecipitation
based on the principle of antibody-antigen interaction: antibody is
incubated with cell lysates that contain the target protein bound to
DNA
the DNA-protein-antibody complex is then captured by
antibody-binding proteins that are attached to magnetic beads
the DNA bound to the initial target protein can then be eluted from
the beads for further analysis.
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ChIP-seq principles

Extracting DNA sites bound by a TF of interest: principles
of immunoprecipitation
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ChIP-seq principles

Extracting DNA sites bound by a TF of interest: principles
of immunoprecipitation
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ChIP-seq principles

Extracting DNA sites bound by a TF of interest: principles
of immunoprecipitation
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ChIP-seq principles

ChIP + NGS = ChIP-seq

Immunoprecipitation (= enrichment of DNA
bound to the protein of interest) is followed
by high-throughput sequencing of the
recovered DNA fragments.
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ChIP-seq principles

In contrast to ATAC-seq, nobody would say ChIP-seq was
“easy”

cross-linking is a frequent source of bias
I too short → proteins will be lost during the sonication
I the longer the fixation, the more proteins are artificially linked with DNA

("non-specific capturing of reactive soluble proteins" [Baranello et al.,
2016])

sonication can be fickle and inherently favors open chromatin regions
ChIP depends on antibodies

I expensive! (typically 1 vial of antibody per experiment)
I cross-reactivity: the antibody may bind to more than just the protein of

interest
I successful binding needs incredibly optimized conditions
I signal-to-noise ratio will depend on how abundantly the protein of

interest binds to DNA
entire protocol takes 3-4 days to complete (before sequencing!)
requires lots of cells (1-10 mio)

See, for example, Jordán-Pla and Visa [2018] for how to optimize ChIP experiments.
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Processing of ChIP-seq data

Processing of ChIP-seq data
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Processing of ChIP-seq data

many basic processing steps are the same for ATAC- and ChIP-seq
data, but some QC scores differ

Reads within FASTQ
files correspond to the
captured DNA, i.e.
pieces captured by the
antibody (e.g. against a
TF) as well as all the
background DNA. In fact,
the vast majority will be
representative of the
entire genome (>95%).
Alignment is necessary
prior to the identification
of regions where more
reads than expected by
chance are found
(quantification and
statistical assessment =
peak calling).
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Processing of ChIP-seq data

ChIP enrichments are often marginal and variable across
experiments

TF often yield well below (!) 1%
enrichment, histone marks usually
below 10% (check the y-axis here!)

the same histone mark (same
antibody) done in different labs
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Processing of ChIP-seq data

Different types of ChIP’ed factors will yield different types
of signals (idealized version)
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Processing of ChIP-seq data

Different types of ChIP’ed factors will yield different types
of signals (real-life example)
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Processing of ChIP-seq data

Peak calling: different ChIP’ed factors require different
peak callers
Identifying peaks for sharp, narrow, high enrichments is easy (⇒ MACS).

Assigning stats to broad enrichment is still an unsolved issue.
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Processing of ChIP-seq data
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Processing of ChIP-seq data

ChIP experiment absolutely require an “input” control

“Input” = the ChIP experiment without the antibody addition

Ideally, input samples should be done in parallel with the ChIP experiments; they
should also be sequenced at least as deeply or more deeply sequenced than the

ChIP samples.
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Processing of ChIP-seq data

Peak calling: take input samples into consideration!

Consider the bioconductor package
GreyListChIP to define
cell-type-specific regions of input biases.
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Processing of ChIP-seq data

Signal check: fingerprints instead of FRiP

How well can signal & background be separated?
A very specific and strong ChIP enrichment will be indicated by a prominent and
steep rise of the cumulative sum towards the highest rank. This means that a big
chunk of reads from the ChIP sample is located in few bins which corresponds to
high, narrow enrichments typically seen for transcription factors.

## another deepTools function
$ plotFingerprint -b testFiles/*bam --labels H3K4me3 H3K4me1 H3K27me3 \

--plotFile fingerprints.png --outRawCounts fingerprints.tab
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Processing of ChIP-seq data

Signal check: fingerprints instead of FRiP
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Processing of ChIP-seq data

Overview of typical ChIP-seq-based analyses
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Processing of ChIP-seq data

Comparing different ChIP-seq experiments

comparing the levels of ChIP (and ATAC)-seq enrichments across
different conditions is more difficult than one would have hoped for
[Guertin et al., 2018]

I Steinhauser et al. [2016] did a comparison of differential ChIP-seq tools
I the winner tends to be the bioconductor package DiffBind, which is

basically a sophisticated wrapper around DESeq
relatively few efforts have been made towards understanding
ChIP-seq/ATAC-seq-specific data properties, but the general consensus
is that particularly ChIP-seq is awfully noisy and dependent on too
many experimental parameters

"Although we would ideally want to study the absolute levels of binding, we
have to accept the limitations of ChIP-seq [and ATAC-seq] and adapt by
designing experiments in such a way that meaningful conclusions can be
drawn from relative levels." [Meyer and Liu, 2014]
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Summary

Summary
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Summary

NGS approaches for epigenomics

DNA = more or less immutable
code
RNA = the code’s local read-out
“epigenome” = additional
molecules or chemical DNA
modifications that govern the
process of DNA-to-RNA
transcription
technically, epigenetics only refers
to heritable marks that influence
transcription [Ptashne, 2013]
in practice, epigenomics is often
used to describe all kinds of
aspects of transcription regulation,
including highly dynamic ones!
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