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Why measure single cells?
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Why measure single cells?

Bulk RNA-seq returns the average expression of an entire
cell population.

1 Tissues/organs2 are usually made up of very different types of cells
that are often difficult to separate prior to the experiment.

I endothelial cells, osteocytes, myocytes, neurons, lymphocytes,
macrophages, erythrocytes, oocytes, alveolar cells, chondrocytes, . . .

I stem cells, secreting cells, metabolizing cells, pacemaker cells, . . .

2Many solid tumors, too.
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Why measure single cells?

Why is bulk RNA-seq not enough?

2 Even very similar cells/clonal
cell cultures display
heterogeneity at the
molecular level when
interrogated at a defined time
point.

I cell cycle, age, exposure to
environmental stimuli/stress,
metabolic state
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Why measure single cells?

Why is bulk RNA-seq not enough?

The average behavior measured in millions of cells
does not necessarily reflect the behavior in individual

cells

In theory, we should therefore apply single-cell approaches to all studies of
cells because transcription is, fundamentally, a stochastic process and

mammalian cells are known to have non-continuous, bursting transcription,
which inherently leads to variable cellular states.
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Why measure single cells?

Why is bulk RNA-seq not enough?

In practice, most scRNA-seq studies published to date deal with the
higher-level complexities of organs and tissues:

characterizing developmental processes
I traditionally hampered by extremely low cell numbers

cell type catalogues of entire organs or very heterogeneous tissues
I pancreas, brain, liver, lung, retina

immune cell studies
I often coupled with single-cell clonotyping
I helps distinguish numerous activation states of T/B cells

tumor studies
I so far, mostly distinguishing between malignant and physiological cells

(e.g. infiltrating immune cells)

"Single-cell analyses are needed to fully understand the cellular speci-
ficity and complexity of tissue microenvironments."
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Why measure single cells?

“Traditional” single-cell methods

Microscopy and cytometry have been used for decades to understand
properties of single cells. The major limitations have been throughput and

the number of features that could be assessed simultaneously.
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How to sequence the transcriptome of single cells?

From bulk to single cell transcriptomes

The main challenges:
automated cell isolation

I FACS vs. microfluidics
untargeted whole transcriptome
amplification

I required input: 0.1–1 µg
total RNA

I [RNA] per cell: 0.1–50 pg (!)
parallel processing

I individual cell lysis & RT
carried out in wells (<100
cells), microchambers
(Fluidigm chip),
nanochambers, or droplets
(>10,000s cells)

Details: Saliba et al. [2014] & Chen et al.
[2018].

Major innovations:
microfluidics
random cell capture
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How to sequence the transcriptome of single cells?

Numerous solutions have been proposed in the past decade

100s cells thanks to multiplexing, ca. 1,000 cells thanks to fluidics,
10,000s cells thanks to random cell captures techniques with nanodroplets

and picowells, 100K cells thanks to in situ barcoding
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How to sequence the transcriptome of single cells?

Sensitivity vs. quantity
Given a fixed population of cells and a total number of reads available,
reads can either be used to sequence fewer cells more deeply or to

sequence more cells at a shallower depth.
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How to sequence the transcriptome of single cells?

Sensitivity vs. quantity

"manual" cell isolation
e.g. SMART-seq, CEL-seq2

low-throughput

labor intensive and costly (every cell
gets its own library prep!)
100s cells ⇒ 100K - 4mio reads per
(!) cell
Smart-seq allows for full-length
transcripts
CEL-seq2 enables great gene diversity
and reliably picks up even weakly
expressed genes [Mereu et al., 2019]

Droplet-based cell isolation
e.g. inDrop, 10X Chromium

high-throughput

can be automated
1,000s-10,000s of cells ⇒ 20K -
200K reads per cell
usually 3’ end counting only
strand information is preserved
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How to sequence the transcriptome of single cells?

The most popular scRNA-seq methods
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How to sequence the transcriptome of single cells?

Droplet-based sequencing
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How to sequence the transcriptome of single cells?

Droplet-based sequencing

1. Droplet generation
Using microfluidics, individual cells are captured together with a large set of (barcoded)
poly(dT) primers (that are attached to hydrogel beads for the purpose of delivery).

The final droplet contains cell + primers + reagents for cell lysis and RT.
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How to sequence the transcriptome of single cells?

Droplet-based sequencing: droplet content
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How to sequence the transcriptome of single cells?

Droplet-based sequencing: capture & barcoding of mRNA
transcripts
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How to sequence the transcriptome of single cells?

Droplet-based sequencing: Barcode details

ex.: inDrop (most similar to the commercial 10X Chromium)
1 bead-specific barcode (⇒ cell)
2 primer-specific unique

molecular identifier (UMI) (⇒
individual transcripts!)

3 (Illumina adapters)
4 oligo(dT) for poly(A)-mRNA

capture

Barcode diversity can be increased through multiple rounds of
oligo-additions (see [Zilionis et al., 2017] for details).
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How to sequence the transcriptome of single cells?

Droplet-based sequencing: Library preparation

getting the cDNA ready for Illumina-based sequencing

paired-end sequencing is a must, but the first read is typically much shorter since you do
not want to run into the poly(A)-tail (why?)
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How to sequence the transcriptome of single cells?

How to choose between different scRNA-seq platforms

See Chen et al. [2018], Svensson et al. [2018], Ziegenhain et al. [2017], Zhang et al.
[2019] for good overviews and reviews of different platforms.

All of these methods dissociate the tissues, i.e. spatial information is lost
and mRNA levels may also reflect the stress induced by the protocol.
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How to sequence the transcriptome of single cells?

The ideal single-cell transcriptomics method
From Beltrame et al. [2019]:

Obviously, the optimal solution does not exist. Pick the one that matches your needs
most closely. See, e.g. Mereu et al. [2019] and Ding et al. [2019] for benchmarking

studies of different platforms.
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Processing of scRNA-seq data
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Processing of scRNA-seq data

Processing overview
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Processing of scRNA-seq data

1. Count matrix acquisition: 2 FASTQ files per sample
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Processing of scRNA-seq data

1. Count matrix acquisition

UMIs are tremendously helpful in being able to ignore amplification bias:
only one UMI count is kept
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Processing of scRNA-seq data

1. Software for Count matrix acquisition

STARsolo provides the same functionalities as the CellRanger pipeline from
10X Genomics, but allows for greater flexibility and speed [Blibaum et al.,
2019]

python-based wrappers: scumi [Ding et al., 2019] ; R-wrappers: scPipe
[Tian et al., 2018]
pseudo-alignment based tools: alevin [Srivastava et al., 2019] or
kallisto/bustools [Melsted et al., 2019]
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Processing of scRNA-seq data

1. Processing raw reads: software for count matrix
generation

As always, your choices matter.
CellRanger uses a custom-filtered subset of the GENCODE annotation
most applications will only report reads overlapping with unique exons
different tools handle ambiguous reads and to intron definitions differently
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Processing of scRNA-seq data

2. Quality controls of the count matrix

GOALS:

get a feeling for how well the experiment worked
I how many cells were captured?
I how deeply was each cell sequenced? (= cell-specific library sizes)
I how many individual transcripts were captured per cell?

identify columns that contain the transcriptomes of real, single cells
identify genes that may reflect contaminants (e.g. they are
unexpectedly present in all cells)
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Processing of scRNA-seq data

2. Quality controls of the count matrix: Cells

In droplet-based sequencing, many
of the issues that we look for in the
cell-based QC are related to the
fact that we cannot be sure how
many cells a droplet contained
before library preparation.

The less healthy and separatable the
cells were, the worse these issues
will get.
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Processing of scRNA-seq data

2. Quality controls of the count matrix: Cells

# cells Observation & Consequences

Zero should have low UMI numbers
representing ambient RNA

1 intact
cell

optimal outcome; number of
transcripts should be a function
of the overall abundance of
transcripts of the original cell

1 dying
cell

apoptosis ⇒ membrane
permeabilization & mRNA
degradation (⇒ cytoplasmic
mRNA loss & overabundance of
RNA protected within
mitochondria

Multiple
cells

resulting transcriptome for a
single barcode will be a random
sample from all the cells
(usually around 5% of the
droplets!)
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Processing of scRNA-seq data

2. Quality controls of the count matrix: Deciding which
droplets represent the cells of interest
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Processing of scRNA-seq data

2. Quality controls of the count matrix: CellRanger’s
stanard output
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Processing of scRNA-seq data

2. Quality controls of the count matrix: filtering cells

The exclusion of cells should always be done in conjunction with visual inspection
of the diagnostic plots. Different sample types3 will yield different distributions and
will come with different expectations, too.

remove cells with very low UMI counts

remove cells with very few genes

remove cells with very high mitochrondrial
content

last year: cells with very high UMI counts
and genes were often removed because they
were suspected to be multiplets – more
recent approach: use an established
package to flag potential doublets (e.g.
scds [Bais and Kostka, 2019])

3uniformly or differently sized cells, metabolically active vs. quiescent etc.
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Processing of scRNA-seq data

2. Quality controls of the count matrix: example code

Taken from https://osca.bioconductor.org/quality-control.html.

## Load toy example
library(SingleCellExperiment); library(scater); library(AnnotationHub)
sce.416b <- scRNAseq::LunSpikeInData(which="416b")
sce.416b
## class: SingleCellExperiment
## dim: 46604 192
## metadata(0):
## assays(1): counts
## rownames(46604): ENSMUSG00000102693 ENSMUSG00000064842 ...
## ENSMUSG00000095742 CBFB-MYH11-mcherry
## rowData names(1): Length
## colnames(192): SLX-9555.N701_S502.C89V9ANXX.s_1.r_1
## SLX-9555.N701_S503.C89V9ANXX.s_1.r_1 ...
## SLX-11312.N712_S508.H5H5YBBXX.s_8.r_1
## SLX-11312.N712_S517.H5H5YBBXX.s_8.r_1
## colData names(9): Source Name cell line ... spike-in addition block
## reducedDimNames(0):
## spikeNames(0):
## altExpNames(2): ERCC SIRV
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Processing of scRNA-seq data

SingleCellExperiment object

container derived from bioconductor’s SummarizedExperiment
expression values stored in matrices (rows = features/genes, columns =
cells) (→ assay)
metadata about the features and cells stored in separate DataFrames

I feature metadata: e.g. gene names, number of cells with non-zero
expression, . . . (→ rowData)

I cell metadata: e.g. sample, classification, # UMI, . . . (→ colData)
cell coordinates obtained from dimensionality reductions (→ reducedDim)
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Processing of scRNA-seq data

2. Quality controls of the count matrix: example code
cont’d

## identifying the mitochondrial transcripts
ens.mm.v97 <- AnnotationHub()[["AH73905"]]
location <- mapIds(ens.mm.v97, keys=rownames(sce.416b),

keytype="GENEID", column="SEQNAME")

## Warning: Unable to map 563 of 46604 requested IDs.
is.mito <- which(location=="MT")

## calculate QC metrics
qc.df <- scater::perCellQCMetrics(sce.416b, subsets=list(Mito=is.mito))
names(qc.df)

## [1] "sum" "detected" "percent_top_50"
## [4] "percent_top_100" "percent_top_200" "percent_top_500"
## [7] "subsets_Mito_sum" "subsets_Mito_detected" "subsets_Mito_percent"
## [10] "altexps_ERCC_sum" "altexps_ERCC_detected" "altexps_ERCC_percent"
## [13] "altexps_SIRV_sum" "altexps_SIRV_detected" "altexps_SIRV_percent"
## [16] "total"
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Processing of scRNA-seq data

2. Quality controls of the count matrix: example code
cont’d (2)

scater metric Meaning

sum sum of counts for each cell (= library sizes)

detected number of features above detection.limit
(default: 0 → number of genes with
non-zero expression per cell)

## determine outliers for each metric
reasons <- quickPerCellQC(qc.df, percent_subsets=c("subsets_Mito_percent",

"altexps_ERCC_percent"))
sce.416b$discard <- reasons$discard

## add QC results to colData of the SCE
colData(sce.416b) <- cbind(colData(sce.416b), qc.df)
sce.416b$block <- factor(sce.416b$block)
sce.416b$phenotype <- ifelse(grepl("induced", sce.416b$phenotype),

"induced", "wild type")
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Processing of scRNA-seq data

2. Quality controls of the count matrix: example code
cont’d (3)
## make plot
plotColData(sce.416b, x="block", y="subsets_Mito_percent", colour_by="discard",

other_fields="phenotype") + facet_wrap(~phenotype) + ggtitle("Mito percent")
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More plots & details:https://osca.bioconductor.org/quality-control.html#quality-control-plots
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Processing of scRNA-seq data

2. Quality controls of the count matrix: Assessing genes

The most strongly expressed genes should encompass ribosomal proteins and other
housekeeping genes and ideally some of the typical marker genes known for your sample
type.
plotHighestExprs(example_sce, exprs_values = "counts")
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Processing of scRNA-seq data

2. Quality controls of the count matrix: Assessing genes

dropouts = undetected transcripts
false negatives
nearly impossible to distinguish from true negatives
very common and not restricted to lowly expressed genes

All genes
shown here are
known to be
expressed in
pancreatic β
cells.
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Processing of scRNA-seq data

2. Quality controls of the count matrix: Assessing genes

Gene dropouts are VERY COMMON and NOT restricted to lowly expressed genes!

Currently, scRNA-seq is
not a transcriptome-
wide method; it is a tech-
nique that will return a
sample of a cell’s tran-
scriptome! [Andrews and
Hemberg, 2018]

It is often benefitial to remove
genes with extremely low
capture rates because they can
distort downstream analyses.
Identify possibly contaminating
transcripts (see SoupX [Young
and Behjati, 2020] or DecontX
[Yang et al., 2019]).
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Processing of scRNA-seq data

Processing overview
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Processing of scRNA-seq data

3. Normalization

. . . aims to reduce systematic differences in read counts.

Typical factors that influence downstream analyses are:

number of UMI/genes within a cell – not just for technical reasons,
this also correlates with cell size and general RNA content of a cell!
biological factors: cell cycle status, cell size
technical batch effects such as time of preparation, experimenter,
sequencing lane/machine/day

Technical noise affecting the cell-wide profiles is difficult to esti-
mate because every single cell (of every experiment) is considered a
biological replicate.
For biological confounders, it’s almost impossible to find a consensus
of whether to ignore them or not.
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Processing of scRNA-seq data

3. Normalization assumptions

The one factor everyone can agree on that definitely needs to be
adjusted is the difference in library sizes for individual cells.

From Hafemeister and Satija [2019]:

1 Normalized expression level of a gene should not correlate with the
total sequencing depth of a cell.

2 The variance of a normalized gene (across cells) should primarily reflect
biological heterogeneity, independent of gene abundance or sequencing
depth.
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Processing of scRNA-seq data

3. Normalization: effect of global scale factor
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Processing of scRNA-seq data

3. Normalization: applying different scale factors for
different groups of genes

Friederike Dündar (ABC, WCM) Single Cell Transcriptomics March 17, 2020 47 / 97



Processing of scRNA-seq data

3. Normalization: effect on dim.reduction & clustering

Normalization accuracy is not supremely important for exploratory analyses,
i.e. simple size-factor normalization is often “good enough” [Amezquita et al.,
2020, Germain et al., 2020].
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Processing of scRNA-seq data

3. Normalization: effect on logFC and marker gene
detection

Normalization is extremely important for marker gene detection and every
gene-wise comparison.
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Processing of scRNA-seq data

3. Normalization with scTransform

The same observations that Bacher et al. [2017] described for
low-throughput, non-UMI-based data sets hold true for the scTransform
method by Hafemeister and Satija [2019], which was specifically developed
for droplet-based data.

1 GLM is used to fit model parameters (neg. binom) for each gene
using sequencing depth as a covariate.

2 Resulting parameters are regularized based on a gene’s average
expression (variance adjustment).

3 2nd round of NB regression, this time constraining the parameter
estimates to the limits found in (2).

4 seq. depth normalized and variance-stabilized expression values:
Pearson residuals = residuals/SE

scTransform is the method of choice for droplet- and UMI-based
data.
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Processing of scRNA-seq data

4. Batch correction and data integration
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Processing of scRNA-seq data

4. Batch correction for integrative analyses

All samples were
derived from
pancreas.

Merging all
samples into one
matrix without
additional batch
correction will
lead to artificial
clusters.
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Processing of scRNA-seq data

4. Batch correction for integrative analyses: MNN

The CCA-based integration implemented in Seurat is similar in spirit [Stuart et al., 2019].
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Processing of scRNA-seq data

4. Batch correction for integrative analyses

After addressing the batch effect of “experiment”, the clustering reveals the
different cell types.
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Processing of scRNA-seq data

Summary of basic count matrix processing steps
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How to draw biologically meaningful insights from scRNA-seq?

How to draw biologically meaningful insights from
scRNA-seq?
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How to draw biologically meaningful insights from scRNA-seq?

Identifying cell types and/or cell states of interest

visualizations of
dimensionality reduction

I PCA, tSNE, UMAP,
Diffusion Maps

clustering
I k-means, hierarchical

clustering, graph-based
community detection

marker gene identification
I DGE detection between

clusters of interest, followed
by GO term & pathway
enrichment analyses

trajectory inference
I inferring developmental

timeline/ordering

There is no consensus on how to define "cell type" [Clevers et al., 2017]!Friederike Dündar (ABC, WCM) Single Cell Transcriptomics March 17, 2020 57 / 97
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How to draw biologically meaningful insights from scRNA-seq?

Common workflow for identifying clusters
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How to draw biologically meaningful insights from scRNA-seq?

Feature selection – example code

Many more details here: https://osca.bioconductor.org/feature-selection.html

## see https://osca.bioconductor.org/feature-selection.html for
## how sce.pbmc was generated
library(scran);library(magrittr)

## model the gene-wise variance trying to separate technical from biological var.
## also allows for blocking on batch factors etc.
dec.pbmc <- modelGeneVar(sce.pbmc)
## extract the top 10% of genes w/ supposedly highest biological components
chosen <- getTopHVGs(dec.pbmc, prop=0.1)

Dimensionality reduction:
set.seed(123)
sce.pbmc <- runPCA(sce.pbmc,

subset_row=chosen)
## accessing PCA coordinates:
reducedDim(sce.pbmc, "pca")
plotReducedDim(sce.zeisel, dimred="PCA",

colour_by="level1class")
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How to draw biologically meaningful insights from scRNA-seq?

1. Dimensionality reduction methods

Common goal: extract vectors that capture the majority of the biologically
meaningful variation, ideally in (way) fewer than 20,000 features.

PCA, UMAP, and diffusion maps are the most commonly used methods.
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How to draw biologically meaningful insights from scRNA-seq?

1. Dimensionality reduction techniques

Scree plots are often used to decide how many PCs should be kept for downstream
analyses. They display the fraction of the variance that is explained by each PC.
percent.var <- attr(reducedDim(sce.zeisel), "percentVar")
chosen.elbow <- PCAtools::findElbowPoint(percent.var)
plot(percent.var, xlab="PC", ylab="Variance explained (%)")
abline(v=chosen.elbow, col="red")
## retain selected number of PCs
reducedDim(sce.zeisel, "PCA") <- reducedDim(sce.zeisel, "PCA")[,1:20]

Typically, we retain about 15-35
dimensions.
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How to draw biologically meaningful insights from scRNA-seq?

1. Dimensionality reduction techniques

UMAP: Uniform manifold approximation and projection
non-linear dimensionality reduction, fairly similar to t-SNE [Van Der Maaten
et al., 2008, Becht et al., 2019]
tries to find a lower-dimensional representation that preserves relationships
between neighbors
is typically performed not on the PCA-reduced space, not the full matrix

## define that the PCA coordinates
### should be used for UMAP
sce.zeisel <- runUMAP(sce.zeisel,

dimred="PCA")

## UMAP typically only returns
## 2 dimensions (for reasons of
## computation time)
plotReducedDim(sce.zeisel, dimred="UMAP",

colour_by="level1class")
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How to draw biologically meaningful insights from scRNA-seq?

1. Dimensionality reduction techniques – summary

PCA preserves variance

diffusion map finds non-linear
trajectory (better for continuous
data)

tSNE and UMAP highlight
clustering structure, i.e. local
neighborhoods
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How to draw biologically meaningful insights from scRNA-seq?

2. Clustering methods implemented for scRNA-seq
“empirically define groups of cells with similar expression profiles”

For assessments
of the different

clustering
techniques for
scRNA-seq
data, see

Freytag et al.
[2018], Duò
et al. [2018],
Menon [2018].

No size fits all,
but Seurat’s
graph-based

clustering works
reasonably well

for high-
throughput,
droplet-based
approaches.
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How to draw biologically meaningful insights from scRNA-seq?

2. Clustering

Graph clustering/community detection
clusters = groups of nodes that
are densely connected

density is a user-specified
parameter

works well on many (>1000) cells

1 select the top x PCs that capture the
majority of the gene signatures

2 construct a graph where nodes =
cells, edges = similarity measures
(based on PCs)

3 for every cell, identify its
k-nearest-neighbours (SNN graph),
i.e. every cell::neighbor pair gets a
weight that captures the similarity of
the two cells’ neighborhoods (that
consist of k NN each!)

4 use the iterative Louvain community
detection method to identify groups
of nodes that are densely connected

See Andrews and Hemberg [2018] and Kiselev et al. [2019] for details for the clustering
techniques.
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2. Clustering

Graph clustering/community detection
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How to draw biologically meaningful insights from scRNA-seq?

2. Clustering

Seurat-style clustering with bioconductor
See https://osca.bioconductor.org/clustering.html for many more details.
library(scran)
g <- buildSNNGraph(sce.pbmc, k=10, use.dimred = 'PCA')
clust <- igraph::cluster_walktrap(g)$membership
## higher resolution (fewer neighbors)
g.5 <- buildSNNGraph(sce.pbmc, k=5, use.dimred = 'PCA')

## store cluster info in SCE
sce.pbmc$cluster <- factor(clust)
plotReducedDim(sce.pbmc, "TSNE", colour_by="cluster")
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How to draw biologically meaningful insights from scRNA-seq?

4. Trajectory inference

= ordering cells along a pseudotime trajectory where pseudotime is
calculated based on expression similarities of neighboring cells

many different topologies are, theoretically, possible, but most methods focus
on inferring linear trajectories or limit themselves to less complex topologies
can handle non-linear processes; more appropriate than clustering for
continuous data along a trajectory
pseudotime != real time 4; the direction of the order is often reversed, too
absolutely depends on cells representing the transitional states to be
present in the data!

4A longer branch can simply reflect a lineage with more cells.
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How to draw biologically meaningful insights from scRNA-seq?

4. Trajectory techniques – how to choose

slingshot works reasonably well and is available via BioC [Street et al., 2018]; do
read the excellent benchmark paper of trajectory inference methods by Saelens

et al. [2019].
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How to draw biologically meaningful insights from scRNA-seq?

Getting some feeling for replicability and biological
significance of CELL TYPES/POPULATIONS

repeated runs (incl. different
tools) of clusterings etc. will
only give you an idea of the
technical robustness of your
parameter choices

cell types may be compared
across different species

known marker genes may give
some insights into significance
of individual clusters If cell types differ by few genes,

we will not pick them up!
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How to draw biologically meaningful insights from scRNA-seq?

Getting some feeling for replicability and biological
significance of MARKER GENES

Typical cell identity signals are
robust & low-dimensional! [Crow
and Gillis, 2018, Heimberg et al.,
2016]

ca. 100 genes: distinguish glia
vs. neurons (1st PC)
ca. 1,000 genes: distinguish
neuron subtypes (PC1-3)

The genes you identify as “markers”
may just have highly correlated
expression patterns with the true
drivers of the cell identity.

Novel marker gene identifications
must be followed up by additional

experiments.
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How to draw biologically meaningful insights from scRNA-seq?

Biologically meaningful differences can arise from different
gene expression properties

Different types of patterns of interest require different tests/analyses.
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How to draw biologically meaningful insights from scRNA-seq?

Moving forward: multimodal single-cell measurements
Method of the year 2019: simultaenous measurement of 2 or more
modalities5 from the same cell. See Zhu et al. [2020] and Eisenstein [2020] for
details.

5→ transcriptome, proteome, epigenetic components
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Conclusions
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Conclusions

Summary of typical processing steps

1 Filtering
doublets, empty droplets, droplets of remnant/dead cells
too rarely captures features

2 Normalization (and possibly integration)
scTransform
MNN or CCA

3 Feature selection
e.g. most variably expressed genes

4 Dimensionality reduction
obtain a subspace where distances between the cells are more reliable
than in the full matrix
PCA, tSNE, UMAP

5 Clustering and cell annotation
e.g. via hand-picked marker genes or via automated methods such as
SingleR
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Conclusions

Every scRNA-seq technique has unique pros & cons

Decision will depend on:

sample availability
experimental question
access to the method
possibly previously
published studies
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Conclusions

Limits of scRNA-seq

Technical challenges
I sensitivity is still low
I costs are still somewhat prohibitive

Numerous sources of cell-to-cell variability
I cell cycle
I cell size
I transcription bursts
I stress during isolation

Analysis methods are in their infancy!

Have a rationale!

What is your hypothesis? How are you going to distinguish transient
from permanent effects? Do you have a way of obtaining some idea
of the "ground truth"?

Friederike Dündar (ABC, WCM) Single Cell Transcriptomics March 17, 2020 77 / 97



Conclusions

When NOT to use scRNA-seq (yet?)

fairly homogeneous populations, true interest is in identifying the
main effect of a treatment/condition/genotype...
complex experimental designs (e.g., many experimental variables)
genes of interest are known to be lowly expressed/subtly changing

Beware!

If you are interested in individual genes, scRNA-seq should not be
your first choice.

See Lafzi et al. [2018] for lots of practical advice before planning
your own scRNA-seq experiment!
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Examples of publicly available scRNA-seq data collections

Consortia-style efforts:
Tabula muris, Human Cell Atlas, Allen Brain Map
Single Cell Expression Atlas

Repositories for published data sets (providing processed data):
Single Cell Portal (Broad Institute) – processed by the individual
groups themselves
Conquer – uniformly processed samples, includes QC reports! [Soneson
and Robinson, 2018]
scRNAseq package → allows you to load diverse data sets directly as
SCE objects into your R workspace
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Conclusions

Interactive visualization tools
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Coding resources

“Orchestrating Single-Cell Analysis with
Bioconductor” [Amezquita et al., 2020]:
https://osca.bioconductor.org/

Seurat vignettes:
https://satijalab.org/seurat/vignettes.html

Hemberg Lab/Kiselev Lab course (BioC & Seurat):
https://scrnaseq-
course.cog.sanger.ac.uk/website/index.html
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